Critique of the proposal for 100% renewable energy electricity supply in Australia

Below is a new, detailed critique by Dr Ted Trainer of the simulation studies by Elliston, Diesendorf and MacGill on how eastern Australia might be run off 100% renewable energy. The summary:

Three recent papers by Elliston, Diesdendorf and MacGill (2012, 2013a, 2013b) elaborate on a proposal whereby it is claimed that 100% of present Australian electricity demand could be provided by renewable energy. The following notes add considerations arising from the last two papers to those discussed in my initial assessment of the first paper. My general view is that it would be technically possible to meet total Australian electricity demand from renewables but this would be very costly and probably unaffordable, mainly due to the amount of redundant plant needed to cope with intermittency. This draft analysis attempts to show why the cost conclusions EDM arrive at are probably much too low.

Ted has also updated his critique of the Zero Carbon Australia’s report on 100% renewable energy by 2020. The original BNC post is here, and the updated PDF here.

Ted notes the following:

These efforts have taken a huge amount  of time and I am still not clear and confident about my take, mainly because neither party will cooperate or correspond.  Thus I have not been able to deal with any misunderstandings etc. I have made.  Both critiques are strengthened by information I have come across since circulating previous commentaries, but they are essentially elaborations on the general line of argument taken in earlier attempts.

I find this unwillingness to engage on these criticisms by the primary authors disappointing, but typical.


Introduction

I think these three papers are valuable contributions to the considerable advance that has occurred in the discussion of the potential of renewables in the last few years. My understanding of the situation is much improved on what it was three or four years ago and I now think some of my earlier conclusions were unsatisfactory. EDM take the appropriate general approach, which is to look at how renewable technologies might be combined at each point in time to meet demand, or more accurately, to estimate how much capacity of each technology would be required, especially to get through the times when solar and wind input is minimal. EDM put forward a potentially effective way of coping with the problem of gaps in their availability via biomass derived gas for use in gas turbines. My earlier analyses did not consider this.

It is not difficult for an approach of this kind to show that electricity demand can be met, and many impressive 100% renewable energy proposals have been published. (For critical analyses of about a dozen of these see Trainer, 2014), but a great deal of redundant capacity would be needed, and the key questions are, how much, and what would it cost? My present uncertain impression is that Australia might be able to afford to do it, but if it could it would be with significant difficulty, i.e., with major impacts on lifestyles, national systems and priorities, and on society in general.

A major disappointment with the EDM analyses is that for some crucial elements no data, evidence or derivations are given and as a result the proposal can only be taken as a statement of claims. We need to be able to work through the derivations in proposals such as this to see if they are sound or what questionable assumptions might have been made etc. Consequently I have had to spend a lot of time trying to guestimate my way to an assessment of the cost conclusions and it is not possible to confident about the results.

Required capacity?

A merit of the EDM approach is to take as the target the present demand. This avoids the uncertainty introduced when attempting to estimate both future demand and the reduction in demand that conservation effort etc. might make.

Continue reading

New critique of AEMO 100% renewable electricity for Australia report

Guest post by Dr Ted Trainer, University of NSW (http://ssis.arts.unsw.edu.au/tsw/).

For other critiques of the “100 Per Cent Renewables Study – Draft Modelling Outcomes” report on BNC, see here and here.

Summary: The AEMO report concludes that 100% of Australian electricity demand could be met by renewable energy sources. The claim is far from established and highly challengeable because some of the assumptions etc. are implausible and not likely to be borne out, and some crucial factors haven’t been taken into account. Intermittency has not been dealt with at all satisfactorily, embodied energy costs seem not to have been considered, and it is admitted that some major costs have not been included. It is clear that a thorough study would have arrived at an annual capital cost in the early years of construction that was several times the sum claimed. The main issue with renewables is not whether it is technically possible for them to meet total demand – it is whether the large amount of redundant plant needed to deal with intermittency could be afforded.

—–

This study concludes that 100% of Australian electricity demand could be met by renewable energy sources.   I think it is a valuable study, providing useful information, the kind of exploration we need, and in general its pronouncements are acceptable —  if the assumptions and inclusions/exclusions that are made clear are accepted.  However the 100% claim is far from established and highly challengeable because several of the assumptions etc. are implausible and not likely to be borne out, and some crucial factors haven’t been taken into account.  Intermittency has not be dealt with at all satisfactorily, embodied energy costs seem not to have been considered, and it is admitted that some major cost factors have not been included.   It is clear that a thorough study would have arrived at an annual capital cost in the early years of construction that was several times the sum claimed..  Following is a brief indication of some problems.

The amount of redundant, back-up plant required.

The core issue with high penetration renewables claims is to do with the amount of plant that would be needed to deal with the intermittency of wind and sun.  When both are low supply can be maintained only if there is a substantial amount of some other kind of generating capacity, or of storage capacity, that can be turned to.  Proposals attempting to provide for this end up having to assume very large quantities of back-up plant.  For instance in the Elliston, Diesendorf and MacGill proposal (2012) the multiple is 3.37.   In the Hart and Jacobson proposal for California (2011) the multiple is 4.3.  They found that in order to meet a 66 GW demand with low carbon emissions no less than 281 GW of capacity would be needed.  This would include 75 GW of gas generating capacity which would function a mere 2.6% of the time (p. 2283) and it would provide only 5% of annual demand.  This means 75 power stations would sit idle almost all the time.

Continue reading

Log, slash, truck and burn – welcome to renewable electricity nirvana

Guest Post by Geoff RussellGeoff is a mathematician and computer programmer and is a member of Animal Liberation SA. He has published a book on diet and science, CSIRO Perfidy.

Back in 2011, the federal Department of Climate Change and Energy Efficiency commissioned the Australian Energy Market Operator (AEMO) to investigate two future scenarios in which the National Electricity Market was fuelled entirely by renewables … as defined by the Department. An essential component of AEMO’s 100 percent renewable solution involves the annual transport of 50 million tonnes of plant material from farms, native forests and plantations in what can only be described as a massive soil mineral mining operation. Log, slash, truck and burn. For details read on.

AEMO has just released draft findings and been met with typically enthusiastic headlines among renewable advocates: “100 percent renewable is feasible: AEMO” and “100% renewables for Australia – not so costly after all”. It took the Financial Review to point out that “not so costly” means doubling the wholesale price of electricity. The AEMO report was welcomed by the Australian Conservation Foundation “100 per cent clean energy on the way”.

Martin Nicholson on BraveNewClimate.com responded quickly saying it’s possible to meet the modelled electricity demand using nuclear power for less than half the lowest cost scenario of the AEMO report. This is $91 billion compared to the range estimate of $219 to $332 billion for 100 percent renewables with Nicholson using the same source of costing estimates as AEMO.

A nuclear solution would also avoid some of the uncosted gotchas, the extra “challenges” contained in the report: land acquisition of half a million hectares, boosting the distribution network, electric vehicle charging infrastructure, biomass logistics infrastructure, and DSP. What’s DSP? … demand side participation. A wonderful piece of euphemistic jargon whereby people either do without or get their electricity at some inconvenient time. E.g., Why cook dinner when you get home from work when you can cook it at lunch time when the solar PV is powering and just re-heat it later? All you need is the will and a new oven remotely controlled by your smart phone. I call it the demand side kitchen rules.

Let’s first sketch AEMO’s broad findings before looking at the most contentious issue.

Climate change isn’t just about electricity

Firstly, note that the study doesn’t deal with Western Australia or the Northern Territory. It’s strictly about areas in the NEM (National Electricity Market), the eastern Australian grid.

Second, the AEMO study is about electricity. Electricity is about 1/4 of our fossil fuel energy use, and about 230 of our 580 million tonnes of CO2eq (carbon dioxide equivalent) greenhouse gas emissions. The AEMO study dealt with switching to electric vehicles by assuming that all charging would be done at times of high solar PV output and would thus absorb it’s entire assumed rooftop PV output.

Continue reading

Advanced fission and fusion technologies for sustainable nuclear energy

Last week, the Australian Academy of Science held their annual meeting in Canberra, and the final day’s event was focused on energy technology. The symposium was called “Power to the people: the science behind the debate“. I was invited as one of the speakers, to discuss next-generation nuclear power technologies and their role in decarbonising our fossil-focused economy.

The description of my talk, as it appeared in the programme, is as follows:

Title: Advanced fission and fusion technologies for sustainable nuclear energy

Abstract: Next-generation nuclear energy – including advanced fission reactors, fusion-fission hybrids and pure hydrogen-fusion designs  – offers a means to produce vast quantities of zero-carbon and reliable electricity and process heat. For fission, new designs that are now ready for commercial demonstration can take advantage of the superior physical properties of plutonium in a fast neutron spectrum to convert essentially all of the mined uranium into useful fissile material and abundant electricity.

The Integral Fast Reactor (IFR) and similar ‘Generation IV designs’ can change in a fundamental way the outlook for global energy on the necessary massive scale. These resource extension properties multiply the amount of usable fuel by a factor of over a hundred, allowing demand to be met for many centuries with fuel already at hand, by a technology that is known today, and whose properties are largely established. Demonstrating a credible and acceptable way to safely recycle used nuclear fuel will also clear a socially acceptable pathway for nuclear fission to be a major low-carbon and sustainable energy source for this century.

For fusion, there are exciting medium- to long-term prospects, based on work now being done on the International Thermonuclear Reactor Experiment (ITER) and on hybrid fusion-fission designs that use molten-salt coolants and use thorium and hydrogen isotopes as fuel.

Replacement of fossil fuels is urgently needed to sustain global society whilst mitigating environmental impacts, and sustainable forms of nuclear energy offer a realistic and effective way of achieving this goal.

Bio: Barry Brook is a Professor and ARC Future Fellow at the University of Adelaide’s Environment Institute, where he holds the Sir Hubert Wilkins Chair of Climate Change. He has published three books, over 200 refereed scientific papers, and regularly writes popular articles for the media. His awards include the 2006 Australian Academy of Science Fenner Medal and the 2010 Community Science Educator of the Year. His research focuses on the causes and consequences of extinction, analysis of energy systems for carbon mitigation, and simulation models of the synergies of human impacts on the biosphere.

Here is the HD recording of my talk – recorded professionally by the Academy, which includes many close ups of my slides. The talk runs for 28 minutes, followed by 5 minutes of questions. I trust you will find it useful, and be sure to pass on the link so that others can watch it and be more informed – and entertained!

There were a wide range of talks presented, generally of high quality, and many of which were also recorded. The full video cast can be viewed here. Below is the programme:

Continue reading

100 Per Cent Renewables Study Needs a Makeover

Guest Post by Martin Nicholson. Martin studied mathematics, engineering and electrical sciences at Cambridge University in the UK and graduated with a Masters degree in 1974. He published a peer-reviewed book on low-carbon energy systems in 2012The Power Makers’ Challenge: and the need for Fission Energy

———————-

In late April 2013, the Australian Energy Market Operator (AEMO) released its draft report titled 100 Per Cent Renewables Study – Draft Modelling Outcomes. The study was commissioned by the Department of Climate Change and Energy Efficiency (DCCEE) to explore future scenarios for the National Electricity Market (NEM) fuelled entirely by renewable resources.

AEMO provided scenarios for a 100 per cent renewable electricity supply at 2030 and 2050 along with the generation plant and the major transmission networks required to support each scenario. The study included estimated capital cost requirements for each scenario and an indicative estimate of the impact on customer energy prices.

AEMO found that a 100 per cent renewable system is likely to require much higher capacity reserves than a conventional power system. They estimated that the generation nameplate capacity could need to be over twice the maximum customer demand.

Assuming the reason for commissioning the report was to reduce greenhouse gas (GHG) emissions from electricity generation, it is disappointing that the DCCEE didn’t also request that nuclear power be included along with the renewable resources.

According to AEMO, to convert the NEM to a 100 per cent renewable system will cost at least $219 to $332 billion. This is excluding significant costs for the land (which could be as much as 5,000 sq kms) and augmentation of the distribution network. This is starting to sound worse than the recent high-speed train proposal from Melbourne to Brisbane.

Example of supply and demand in a winter week (scenario 2 in 2050)

According to the Australian Energy Regulator, the current NEM has an installed capacity of 46 GW made up of 26 GW of coal plants, 9 GW of gas, 8 GW of hydro and just over 2 GW of wind.

The following analysis is partly based on a paper I will present at a conference in July this year.

Continue reading