Global Prospects for Wind Energy

Addressing The Challenges of an Intermittent Energy Source

Samir Succar Princeton Environmental Institute ssuccar@princeton.edu IAC International Workshop on Energy 30 October 2005

Outline

- Wind Energy Resources
 - Size of the Global Resource
 - Projected Growth of Wind in Global Energy
 - Remoteness
 - Intermittency
- Large-Scale Wind with Energy Storage
 - Wind with Energy Storage
 - Competition with Coal
- The Picture of Wind In Africa
 - Current Progress and Resource Estimates
 - Exploitation of Low Wind Classes
 - Small Turbine Technology

Global Wind Resource vs. Total Electricity Demand

50% Exclusion Basis

Current Forecasts For Electricity Generation Mix

Electricity Generation: Africa

Electricity Generation: World

Resource Remoteness

- Location of best resources may not be proximal to demand centers
- Additional transmission infrastructure may be required to bring wind energy to market
- Expensive long distance transmission lines represent a large fixed capital investment
- Optimal utilization is necessary to justify cost

Resource Intermittency

Resource Intermittency

Resource Intermittency

- Rated Power Delivered 20% of the Year
- Typical Capacity Factor ~ 30%

Declining Capacity Credit

Fraction of the year

Making wind dispatchable with storage: Think "baseload"

Making wind dispatchable with storage: Think "baseload"

Energy Storage for Wind

- Exploit high quality remote resources with optimal utilization of dedicated transmission infrastructure
- Achieve high penetrations of wind on the grid without cost penalties associated with intermitent generation
- Install large amounts of wind energy with little or no added spinning reserves or backup thermal generation
- Allow wind energy to compete in baseload energy markets

Energy storage options

	Source: PCAST, 1999 and EPRI/DOE, 2003			Cost of 20
		Capacity	Storage	hrs. storage
	<u>Technology</u>	<u>(\$/kW)</u>	<u>(\$/kWh)</u>	<u>(\$/kW)</u>
->	[•] Compressed Air Energy	440	1	460
	Storage (CAES) (300 MV			
	Pumped hydroelectric	900	10	1100
	Advanced battery (10 MW	/) 120	100	2100
	Flywheel (100 MW)	150	300	6200
	Superconductor (100 MW) 120	300	6100

CAES is clear choice for: Several hours (or more) of storage Large capacity $(> \sim 100 \text{ MW})$

Compressed Air Energy Storage (CAES)

Availability of CAES

- Suitable geology for compressed air storage found over 80% of the area of the USA
- Locations coincident with high quality wind resources
- Availability of fuel source is an additional constraint for wind/CAES implementation

CAES Efficiency

 $\frac{1.0 \text{KW}}{(4220/3600) * Eff_{NG} + 0.67} = 54\% (Eff_{NG} 1.00), 77\% (Eff_{NG} 0.54, NGCC), 89\% (Eff_{NG} 0.385, GT)$

Wind with CAES: Cost of Energy Breakdown

Capital cost O&M cost Fuel cost CCS Cost

Carbon Price:\$150/tC or €34/tCO₂ (24 Oct 2005 Price: \$94.6/tC)

Capital cost O&M cost Fuel cost CCS Cost Cost of emissions

Wind \$900/kW, Class 5, NG \$7/GJ, 15% CCR

Wind \$600/kW, Class 5, NG \$5/GJ, 11% CCR

Carbon Price:\$150/tC or €34/tCO₂ (24 Oct 2005 Price: \$94.6/tC)

Capital cost O&M cost Fuel cost CCS Cost Cost of emissions

Wind \$900/kW, Class 5, NG \$7/GJ, 15% CCR

Wind \$600/kW, Class 5, NG \$5/GJ, 11% CCR

Outline

- Wind Energy Resources
 - Size of the Global Resource
 - Projected Growth of Wind in Global Energy
 - Remoteness
 - Intermittency
- Large-Scale Wind with Energy Storage
 - Wind with Energy Storage
 - Competition with Coal
- The Picture of Wind In Africa
 - Current Progress and Resource Estimates
 - Exploitation of Low Wind Classes
 - Small Turbine Technology

Wind Resources Revisited

Africa

World

Cost Reductions for Low Wind Speed Turbines

- Hybrid Steel/Concrete Wind Turbine Towers
- Independent Pitch Control
- Advanced rotor design (hybrid carbon-glass)
- Manufacturing Improvements

Technical Report NREL/TP-500-37505 June 2005 Low Wind Speed Technologies Annual Turbine Technology Update (ATTU) Process for Land-Based, Utility-Class Technologies S. Schreck and A. Laxson

Resource Assessment - Africa

- Large scale wind energy resource assessments typically underestimate the actual resource
 - Source of data is low often existing low-altitude sites e.g. airports where wind is low
 - Other data sources such as global circulation models do not capture local effects well
- Programs to provide detailed resource assessments of African wind have been begun, but more work is needed
 - Solar & Wind Energy Resource Assessment (SWERA) is currently estimating wind potential in Kenya, Ghana and Ethiopia (funded by Global Environment Facility (GEF) and others)
 - 2,000 MW estimated potential in Ghana
 - Tanzania Electricity Supply Company is working with Danish firms to assess wind potential there
 - 1,000-10,000 MW estimated potential on the South African west coast

Large Scale Wind Power in Africa

	START 2004	START 2005	Growth	ANNOUNCED PROJECTIONS	Growth
	MW	MW	%	MW	%
EGYPT	69	145	110%	230	59%
MOROCCO	54	54	-	64.2	19%
TUNISIA	20	20	-	20	-
SOUTH AFRICA	3.2	3.2	-	8.4	163%
TOTAL - AFRICA	146.2	222.2	52%	302.6	36%
TOTAL - EUROPE	28,835	34,630	20%		

Sources: WindPower Monthly 2005, Republic of Egypt Ministry of Electricity and Energy http://www.nrea.gov.eg/

Small-Scale Wind for Distributed Generation

	Large Scale	Small Scale
Power	>1 MW	5-50 kW
Capital Cost (\$/kW, 2002)	900-1000	3500-4000
Generation Cost (¢/kWh)	3-5	60-200

- Small scale windpower for numerous applications:
 - water desalination, water pumping, battery charging,
 - Hybrid mini grid with PV or diesel
- Research Issues:
 - Scaling Issues (low Reynolds number) leads to poor starting conditions
 - Inexpensive, robust, lightweight materials: thin blades for reduced blade inertia (starting) and withstand fatigue from increased rotational speed and low alt. turbulence
 - Replacement costs significant

CLAUSEN, P.D., and WOOD, D.H. (1999). Research and development issues for small wind turbines, Ren. Energy, 16, 922 - 927. http://www.wind.newcastle.edu.au/

Conclusions

- Current estimates of global wind resources far exceed projected near term demand for electricity
- Resource remoteness and variability present challenges for attaining large penetrations of wind
- Energy storage mitigates variability costs and enables enhanced utilization of TL capital
- Wind/CAES allow both Wind and NG to compete in baseload markets in coal-rich regions
- Exploitation of lower wind classes and small scale turbine technology require further research to reduce costs

Backup Slides

Energy Storage Systems

Energy Storage for Wind Applications: 10 MW plant with 8 hours of storage, used 250 times a year							
	Expected Cycle Life (cycles)	Expected Service Life ¹ (years)	AC Round-Trip Efficiency	Initial Capital Cost for a 10 MW / 80 MWh Installation ²	Initial Capital Cost per kW (\$/kW)	Initial Capital Cost per kWh (\$/kWh)	
Pumped Hydro	N/A	>25 years	80-85%	\$9.0 M ³	\$900	\$110	
CAES	N/A	>25 years	>100%4	\$8.2 M ³	\$820	\$100	
Batteries							
Lead-Acid Batteries ⁵	1,250	5	50-65%	\$35 M	\$3,500	\$450	
Nickel-Cadmium Batteries	3,500	14	45-60%	\$98 M	\$9,800	\$1,225	
Sodium-Sulfur Batteries	4,500	15	65-75%	\$23 M	\$2,300	\$300	
Vanadium Redox Batteries	3,500	10	65-80 %	\$26 M	\$2,600	\$325	
Zinc-Bromine Batteries	2,000	6	65-80 %	\$40 M	\$4,000	\$500	
Hydrogen Storage ⁶	500	2	20-45%	> \$100 M	> \$10,000	> \$1,000	
SMES	> 100,000	20	90%	> \$100 M	> \$100,000	> \$100,000	
Flywheels	> 100,000	20	90%	> \$100 M	> \$100,000	> \$100,000	
Ultracapacitors	> 100,000	20	90%	> \$100 M	> \$100,000	> \$100,000	

¹ Service life calculation is based on operating conditions and cycle life, and does not include refurbishment

² Costs include initial installed cost for battery, power conditioning, and balance of plant, but not O&M or life-cycle costs

³ Costs for small pumped hydro and CAES systems are extrapolated from larger systems (hundreds of MW). These systems are unlikely to be cost effective at low power levels.

⁴ Because most CAES systems have a natural gas input, efficiency can be greater than unity

⁵ Assumes deep-cycle lead-acid batteries

⁶ Hydrogen storage figures describe state of present art; future performance may be significantly better

EPRI, Report 1008388, March, 2005

Value of Wind vs. Penetration

Experience Curves For Energy

Wind \$900/kW, Class 5, NG \$7/GJ, 15% CCR

Wind \$600/kW, Class 5, NG \$5/GJ, 11% CCR

Sky wind power and Laddermills

- Eploitation of wind in the free troposphere (at ~10km) has several cost benefits
 - Energy denstities (~10kW/m^2) are an order of mag. higher than what is available from best wind @ 100m
 - Steady winds at high elevations yields less variable output

Meijaard, J. P., Ockels, W. J., Schwab, A. L., 1999. Modeling of the dynamic behavior of a laddermill, a novel concept to exploit wind energy, http://www.lr.tudelft.nl/asset/webpage/en/laddermill.php

Deep Offshore

Musial, W., Butterfield, S., 2004. Future for offshore wind energy in the United States, conference paper preprint, *National Renewable Energy Laboratory*, report number NREL/CP-500-36313, Golden, Colorado.

Rayleigh Distribution

Wind Turbine Power Curve

Power Probability with Nominal Specific Rating

