

Ray Dracker
Solar Millennium LLC
Berkeley, CA
Klaus-Juergen Riffelmann
Flagsol

Integrated Energy Policy Report Workshop July 31, 2008

How does the storage work with solar power?

Molten Salt and Other Storage Media

What are the benefits?

Summary

Solar Power Plant without Storage

- Electricity Production is directly dependent on the available solar radiation
- Fluctuations in radiation will directly influence electrical output

Solar Thermal Energy Storage Options

- Single Phase Liquid Storage
 - Two-Tank Indirect or Direct Storage
 - Thermocline Single Tank Storage
 - Molten Salt or Synthetic Oil Typical
- Phase Change Material Storage Latent Heat
- Concrete (or similar) Mass Storage

General Arrangement: Salt Storage System

General Arrangement: Salt Storage

Andasol-1 Construction

Andasol 1 Storage Design Data

Type: 2-Tank Molten Salt Storage

Storage Fluid: Molten Salt ("Solar Salt")

Heat Exchanger Rating: ~130MW

Storage Capacity: 1010 MWh

(~7.5 hrs full load operation)

Storage Tank Size: 14 m height 38 m diameter

Cold Tank Temperature: 292°C

Hot Tank Temperature: 386°C

Melting Point of Fluid: 223°C

Salt Mass: 27 500 tons

Flow Rate: 953 kg/s

Annual Storage Efficiency:

Molten Salt Storage – Current State-of-the-Art

- Any salt above it's melting point can be called "Molten Salt" (also "table salt" =NaCl)
- In industrial applications many different kinds of "molten salts" are used
- "Solar Salt" is used for the Thermal Storages (60%-w.NaNO₃+40%w.KNO₃)

KNO₃ in its crystalline form at room temperature

Name	Melting Point
NaCl	801°C
NaNO ₃	307°C
KNO *eutecie mixture	334°C
NIANO . I/NI	22000

Why Molten Salt?

Molten Salts are used because of their properties like

- High specific heat relative to material costs
- Very low vapour pressure
- Low degradation rate high chemical stability
- Non flammable
- Non explosive
- Environmentally Benign (also used as fertilizer)

But:

They have a high crystallization temperature

Typical Applications of Molten Salts

- Heat Treatment: Hardening baths, ...
- Cleaning: removal of paint, rubber, polymers,...
- Heat transfer systems:
 - Remove heat (e.g. from exothermic reactions)
 - Supply heat (e.g. to endothermic reactions)

→ Reliable and safe operation since decades!

Molten Salts in Process Industry

a) Molten Salt system with an output of 14 MW at 430°C, England

Heat Transfer plants. All photographs by Bertrams Heatec Ltd.

Molten Salt system
with an output of
88 MW at 400°C,Bauxite
digestion plant in
Germany

c) Molten Salt system with an output of 7.7 MW at 470°C,melamine plant in Germany

Molten Salts in Solar Thermal Applications

Thermal Storage – US Applications

- 2 x 2-Tank Molten Salt Storage
- Storage Fluid Solar Salt NaNO₃/KNO₃
- Power Rating 268 MWe
- Storage Cap. 2,400 MWh
- Storage Tank Size:
 - 15 m height
 - 40 m diameter
- Hot Tank Temp. 732 °F
- Cold Tank Temp. 558 °F
- Freeze Temp. 433 °F
- Salt Mass 65,000 tons
- Turn-around Efficiency 95%

SM Andasol 1 Project

Thermal Energy Storage Motivation

Doerte Laing, Folie 4 Trough Womshop 08.03.07

- Good fit for providing both latent and sensible heat to cycle working fluid
- Best fit for DSG technologies

Cement Storage

- Potential for very low cost
- Can be built in modules
- Best use for sensible heat transfer
- Can be used with DSG technologies
- Under Development

Plants with integrated storage can provide greater value to the utility grid

- Increase of annual capacity factor of solar power plants
- Electricity production during system peak demand periods
- Buffering during transient weather conditions
- More even distribution of electricity production
- Provide reliable peaking capacity

Shift Output from Morning Off-Peak to Evening On-Peak Charge Storage fully before noon Discharge in early evening to maintain plant output beyond sunset

Extend operation from Sunrise to Late Evening Power Generation at Sunrise; Gradual Storage Fill All Day Discharge Storage in early evening to maintain plant output beyond sunset

SOLAR BOOSTER: Shift the solar power from the morning/evening hours to the afternoon hours!

→ Now: Solar multiple < 1</p>

- → Charge of storage until noon (without any electricity production)
- → Electricity production from noon to 6 PM using heat of solar field AND storage
- → Charge the storage again in the evening

Summary

- Storage can improve economics of solar thermal power plants
- Storage helps to increase availability and plant capacity factor and improves system flexibility
- Molten salt technology is a proven technology in the process industry
- Risks are manageable
- Clear market pull from many utilities