

ANU Research School of Physics and Engineering, Director's Colloquium, September 2011 Advanced nuclear power systems for long-term energy and climate security

Professor Barry W. Brook

Sir Hubert Wilkins Chair of Climate Change and ARC Future Fellow Director of Climate Science, Environment Institute School of Earth and Environmental Sciences The University of Adelaide Email: <u>barry.brook@adelaide.edu.au</u>

A challenging energy future...

Fuel for Electricity Generation (%)

Width of each bar is indicative of gross power production

Main Source: OECD Electricity Information 2007

World

Enera

Outloo

Coal remains the backbone of global electricity generation

Coal-fired electricity generation by region in the New Policies Scenario

A drop in coal-fired generation in the OECD is offset by big increases elsewhere, especially China, where 600 GW of new capacity exceeds the current capacity of the US, EU & Japan

Nuclear's current status

Operating reactors, building new reactors Operating reactors, planning new build No reactors, building new reactors No reactors, planning new build Operating reactors, stable Operating reactors, considering phase-out Civil nuclear power is illegal No reactors

Yesterday's vs Today's technology

Status of the Nuclear Power Plants after the Earthquake

Generations of Nuclear Energy

Figure 20. Mark I General Electric, GE BWR Containment.

Generations of Nuclear Energy

Generation IV

Simplification: Smaller Footprint AP1000

F

	**	r der manaling Area		Heactor
T	2.	Concrete Shield Building	8.	Integrated Head Package
6	3.	Steel Containment	9.	Pressurizer — In use at
	4.	Passive Containment Cooling Water Tank		70 Westinghouse-de- signed plants world-wide
	5.	Steam Generators	10.	Main Control Room
	6.	Reactor Cooling Pumps	11.	Feedwater Pumps
			12.	Turbine Generator
	1			
	•	I DE DESTRUCTION		
	1	2		
			190	
0 0		U P		
				KV III
	1		P	TO A
and the second s				

<u>Small Modular Reactors (SMR)</u>

B&W 125MWe *mPower* reactor and underground containment vessel

Four B&W *mPower* reactor modules generating 500 MWe

Toshiba 4S reactor module 10 – 50 MWe

Reactor

Integral Fast Reactor: Safely closing the nuclear fuel cycle

THE FATE OF THE MINED URANIUM TODAY, LESS THAN 1% OF ITS ENERGY IS BEING USED

As mined, uranium is 99.3% U-238, 0.7% U-235. For LWR fuel, the uranium first goes to an enrichment plant

Mined uranium (after the enrichment process)

Annual Mass Flow for LWR

Relative radiological toxicity of spent fuel constituents

What is Integral Fast Reactor (IFR)?

	Current Generation LWR	Next Generation IFR	Principal Impacts
Coolant	Water	Liquid sodium	Non-pressurized system
Neutron energy	Thermal (<1 eV)	Fast (>100 keV)	Breeding capability
Fuel type	Oxide	Metal	Inherent passive safety
Fuel Cycle	Aqueous reprocessing	Pyro- processing	Waste management solution, proliferation- resistance, economics

The Argonne West National Lab (now part of INL) ~50 km west of Idaho Falls

EBR-II and Fuel Cycle Facility showing reactor vessel, fuel transfer tunnel, air cell, and argon cell

EBR-II Metallic Fuel

-Cladding

Gas

Plenum

Sodium Bond

Fuel Rod

- Highly enriched uranium in driver fuel (63-75% U-235).
- Fuel rod immersed in sodium encased in a stainless-steel tube
- Large plenum collected fission gas

Schematic Drawing of EBR-II Fuel Element

Fission gas pore structure of irradiated U-10Zr fuel

OXIDE CORE

Asymptotic temperature reached during unprotected loss-of-flow event is determined by reactivity balance: comparison of oxide and metal cores

Unprotected loss-of-flow test results

Oxide fuel (9% burn-up)

Metal fuel (12% burn-up)

Breeding ratio as a function of fuel volume fraction for various fuel types

Schematic flow sheet of electro-refining based spent fuel treatment

Comparison of IFR with Conventional SFR

	IFR	Conventional SFR	Advantages
Fuel	Metal	Oxide	Superior performance
Safety	Inherent Safety	Engineered Systems	Easy licensibility Low cost
Fabrication	Injection Casting	Powder Pellet	Simple remotization
Repro- cessing	Pyro- processing	Aqueous Reprocessing	Economics Proliferation-resist. Waste management

Annual Mass Flow for IFR

ALL THE SPENT FUEL IN THE WORLD CAN BE RECYCLED INTO IFR FUEL

Weapons Usability Comparison

	Weapon Grade	Reactor Grade	IFR Grade	
	Pu	Pu Pu		
Production	Low burnup	High burnup	Fast reactor	
	PUREX	PUREX	Pyroprocess	
Composition	Pure Pu	Pure Pu	Pu + MA + U	
	94% Pu-239	65% Pu-fissile	50% Pu-fissile	
Thermal power				
w/kg	2 - 3	5 - 10	80 - 100	
Spontaneous				
neutrons, n/s/g	60	200	300,000	
Gamma radiation				
r/hr at ½ m	0.2	0.2	200	

Commercialisation?

The CEFR buildings

CEFR (China) 20 MWe (2010)

Technicians at work atop the reactor

Inside the control room

PFBR (India) 500 MWe (2012)

GEH S-PRISM 311 MWe IFR module

ARC Technology Solution

PRISM

- + 840 MWth & 311 MWe
- + Na cooled fast reactor
- + Passive safety
- + Modular/scalable
- + Factory built
- + Flexible fuel cycle (broad input composition)
- + Metal or oxide fuel (metal pref.)
- + Extensive component testing

Electro Refining

- + Modular/scalable
- + Sized to support ABR
- + Proliferation resistant
- + Removal of volatile FP through voloxidation
- + Continuous or batch process
- + Extensive testing in the U.S., Russia, Japan, and Korea
- + Used by industrial refiners

GE-Hitachi is prepared to build the first commercial-scale IFR (labeled "Advanced Recycling Center" in the diagram below) to lead the world into an era of unlimited clean energy. Efforts are underway to build the first PRISM (the reactor portion) and the first pyroprocessing facility. If the political will can be mustered, IFRs could quickly begin to turn the energy tide for the entire planet.

Gen III+ / IV / renewables synergy

Realistic low-carbon 2060 energy mix?

15-fold increase

Hydro

- Wind/Solar
- Other renewables
- Biomass + Waste
- Fossil CCS
- Nuclear

50-fold increase

Realistic low-carbon 2060 energy mix?

Supply source	EJ	$\mathrm{GW}_\mathrm{e}\mathrm{av}$	Nameplate	% Share	% GR/yr
Hydro	18.5	587	1332	6.7	0.8
Wind/Solar	77.3	2449	8164	27.9	8.1
Other renewables	2.6	84	167	1.0	4.7
Biomass + Waste	8.6	273	321	3.1	4.7
Fossil CCS	26.0	824	970	9.4	N/A
Non-nuclear*	133	4217	10955	48	4.5
Nuclear	144	4566	5372	52	5.5
World total supply	277	8783	16327	100	

*Excludes fossil fuels without CCS

Can we really get 5+ TWe by 2060?

- Gen III alone = difficult, will run low on fissile fuel
- Gen IV alone = too slow to ramp up
- Gen III and Gen IV in partnership = perfect synergy

A sustainable energy-rich future

Final word on socio-economic realities

Acknowledgements and More information

http://thesciencecouncil.com (Science Council for Global Initiatives)

Chuck Till

Len Koch

Yoon Chang

Mike Lineberry

John Sackett

Tom Blees

More information, discussion, references for slides and presentation downloads:

bravenewclimate.com

