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Temperature Anomaly (°C)

Global-mean air surface temperature relative to 1860-99 (°C)
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A challenging energy future...



Fuel for Electricity Generation (%)
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Coal remains the backbone of global
electricity generation

World
Eneragy
Outlook

Coal-fired electricity generation by region in the New Policies Scenario
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A drop in coal-fired generation in the OECD is offset by big increases elsewhere, especially
China, where 600 GW of new capacity exceeds the current capacity of the US, EU & Japan
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Nuclear’s current status



Operating reactors, building new reactors
Operating reactors, planning new build

No reactors, building new reactors

No reactors, planning new build

Operating reactors, stable

Operating reactors, considering phase-out
Civil nuclear power is illegal

No reactors



Finland

Nuclear Power
is Key to
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Yesterday’s vs Today’s technology



Status of the Nuclear Power Plants after the Earthquake

n
| 5 3 Onagawa

A
o X EPICENTER

AFFECTED AREA of the quake

—L!gg!s p Fukushima Daiichi

| 2 3 4 Fukushima Daini

, Tokai

B Accident with Nuclear Fuel Damage Suspected

o/ Accident without Nuclear Fuel Damage Suspected
Safe

Safe (Not affected by the quake)



1,
' Q\
a 8D

. add ’ _———
DIGITALGLOBE

“




Generations of Nuclear Energy
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Generations of Nuclear Energy o
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Simplification: Smaller Footprint Aar1000

Concrete, ma
Sizewell B: 520,000 65,000
Olkiluoto: 400,000 60,000
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Small Modular Reactors (SMR)
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B&W 125MWe mPower reactor
and underground containment vessel




Four B&W mPower reactor modules
generating 500 MWe




Toshiba 4S reactor module 10 = 50 MWe

Reactor



Integral Fast Reactor:
Safely closing the nuclear fuel cycle



THE FATE OF THE MINED URANIUM
TODAY, LESS THAN 1% OF ITS ENERGY IS BEING USED

As mined, uranium is 99.3% U-238, 0.7% U-235. For LWR fuel,
the uranium first goes to an enrichment plant

Mined uranium (after the enrichment process)

DU : 99.75% u-238, 0.25% U-235

After enrichment, some 85% is
left behind as depleted uranium

About 15% becomes enriched

uranium for LWR fuel \
EU: 95% u-238

In today’s LWR throwaway fuel cycle 5% U-235
about 5% of the EU gets used; ———__

the rest is considered “waste” \ -




Annual Mass Flow for LWR

85 t
o5 Depleted

Uranium

Enrichment

15 tons
1000 MWe
3.85tons U
<:| 0.13tons P LWR
9L )
1.00 tons E.P. Bt ] 13.85tons U_ran_ium
0.02 tons M.A. ="y 1.00 tons F|SS|or_1 Products
T 0.13 tons Plutonium
Reprocessing 0.02 tons Minor Actinides

Disposal Spent Euel Disposal
(100,000 years) (100,000 years)
European recycle Direct disposal is
- Saves 15% uranium the current U.S. policy

- But no reduction in waste life
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Relative Radiological Toxicity
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What is Integral Fast Reactor (IFR)?

Current Next
Generation | Generation Principal Impacts
LWR IFR
Coolant Water Liquid Non-pressurized
sodium system
Neutron Thermal Fast Breeding capability
energy (<1 eV) (>100 keV)
Fuel type Oxide Metal Inherent passive
safety
Fuel Agueous Pyro- Waste management
Cycle reprocessing | processing |solution, proliferation-

resistance, economics




The Argonne West National Lab (now part of INL) ~50 km west of Idaho Falls




SUBASSEMBLY DISMANTLING
AND REMANUFACTURE (AIR CELL)

FUEL TRANSFER CORRIDOR

EBR-II REACTOR VESSEL

FUEL ELEMENT REPROCESSING
AND FABRICATION (ARGON CELL)

EBR-Il and Fuel Cycle Facility showing reactor vessel,
fuel transfer tunnel, air cell, and argon cell



Cladding

Gas
Plenum

Sodium
Bond

Fuel
Rod

EBR-II Metallic Fuel

« EBR-Il used a sodium bonded metallic fuel..

— Highly enriched uranium in driver fuel (63-75% U-
235).

— Fuel rod immersed in sodium encased in a
stainless-steel tube

— Large plenum collected fission gas

Schematic Drawing of
EBR-Il Fuel Element



100 pm

Fission gas pore structure of irradiated U-10Zr fuel



. OXIDE CORE

FUEL TEMPERATURE
AT FULL POWER

METAL CORE
POSITIVE LOW OPERATING FUEL TEMPERATURE
DOPPLER AND HENCE SMALL STORED DOPPLER
FEEDBACK REACTIVITY LEADS TO A MUCH LOWER
ASYMPTOTIC TEMPERATURE FOR THE
METAL CORE '
ASYMPTOTIC
-— — — TEMPERATURE
f AFTER LOF
NEGATIVE , . FUEL TEMPERATURE
{ THERMAL EXPANSION AT FULL POWER
FEEDBACK .
ASYMPTOTIC _t
TEMPERATURE — — — — —_——
AFTER LOF T
INITIAL COOLANT INITIAL COOLANT
TEMPERATURE TEMPERATURE

Asymptotic temperature reached during unprotected loss-of-flow event is
determined by reactivity balance: comparison of oxide and metal cores
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Oxide fuel (9% burn-up)

Metal fuel (12% burn-up)




EREEDING RATIO

SMEARED FUEL YOLUME FRACTION
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Breeding ratio as a function of
fuel volume fraction for various
fuel types



Reduction

Oxide Electrorefine

Salt

+
Actinides

Cleanup and Waste @

Cathode Processor
L ]

Uranium
+ Actinides

Particulate
Filter

Salt Recycle

Zeolite Columns

Zeolite + FPs

Metal Waste

I__’ Refabricate

for Recycle

Glass Frit

Ceramic Waste

High Level Waste

Schematic flow sheet of electro-refining based spent fuel treatment



Comparison of IFR with Conventional SFR

Conventional Advantages
IFR SFR
Fuel Metal Oxide Superior
performance

Safety Inherent Engineered | Easy licensibility
Safety Systems Low cost

Fabrication |Injection Powder Simple remotization
Casting Pellet

Repro- Pyro- Agueous Economics

cessing processing | Reprocessing | Proliferation-resist.

Waste management




Annual Mass Flow for IFR

One time processing of
. 1000 tons of LWR spent fuel
\ provides lifelong fuel supply

50 tons

LWR Pyroprocessing

Initial 10 tons Actinides
Inventor 50 tons Uranium

890 tons Uranium

isposal
(400 years)
1000 MWe
- -
2.5 tons Actinides

15.0 tons U 13.5tons Uranium
2.0 tons Actinide

1.0 tons Fission Products

1.5tons Uranium
Makeup

: : 1.0 tons F.P.
Disposal . - :
(400 years) On-site Pyroprocessing 0.5 tons excess actinides
for startup of new IFR



Spent Nuclear Fuel (SNF)
(Store 300,000 Years)

U

Nuclear material required  Volume of waste per person generated
100 Ton /yea r per person per lifetime: for their lifetime. These fission products
. 1 golf ball remain radioactive for only 300 years.
Pyroprocessing

Plant

() T
HRTGA

wIEIT

Fission Products
| (Store 300 Years)

Metal Fuel Ingots
("Seed” Fuel for Fast Reactors)

Reprocessed Uranium
(Future Fuel Source)




Weapons Usability Comparison

Weapon Grade | Reactor Grade IFR Grade
Pu Pu Actinide
Production Low burnup High burnup Fast reactor
PUREX PUREX Pyroprocess
Composition Pure Pu Pure Pu Pu+MA+ U

94% Pu-239

65% Pu-fissile

50% Pu-fissile

Thermal power

w/kg 2-3 5-10 80 - 100
Spontaneous
neutrons, n/s/g 60 200 300,000
Gamma radiation
r/hr at %2 m 0.2 0.2 200




Commercialisation?



Technicians at work atop the reactor
- S b — o —

Inside the control room

CEFR (China)
20 MWe (2010)

PFBR (India)
500 MWe (2012)

PROTOTYPE FAST BREEDER REACTOR 500 Mwe



GEH S-PRISM 311 MWe IFR module




ARC Technology Solution

= —

+ 840 MWth & 311 MWe + Modular/scalable

+ Na cooled fast reactor + Sized to support ABR

+ Passive safety + Proliferation resistant

+ Modular/scalable + Removal of volatile FP through
+ Factory built voloxidation

+ Flexible fuel cycle (broad input + Continuous or batch process

composition) + Extensive testing in the U.S,,
+ Metal or oxide fuel (metal pref.) Russia, Japan, and Korea
+ Extensive component testing + Used by industrial refiners
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Gen llI+ / IV / renewables synergy



Realistic low-carbon 2060 energy mix?

15-fold increase \

W Hydro
Wind/Solar
Other renewables

W Biomass + Waste

M Fossil CCS

M Nuclear

50-fold increase




Realistic low-carbon 2060 energy mix?

Supply source EJ GW,.av Nameplate % Share % GR/yr
Hydro 18.5 587 1332 6.7 0.8
Wind/Solar 77.3 2449 8164 27.9 8.1
Other renewables 2.6 84 167 1.0 4.7
Biomass + Waste 3.6 273 321 3.1 4.7
Fossil CCS 26.0 824 970 9.4 N/A
Non-nuclear* 133 4217 10955 48 4.5
Nuclear 144 4566 5372 52 5.5
World total supply 277 8783 16327 100

*Excludes fossil fuels without CCS



Can we really get 5+ TWe by 20607
— Gen lll alone = difficult, will run low on fissile fuel
— Gen IV alone =too slow to ramp up
— Gen lll and Gen IV in partnership = perfect synergy

w
ol
1

30 - Uranium
Requirements
25 - with LWR Only

=
o1
1 L]
1
 ——
|

Undiscovered Resources LWR + IFR

H
(@)

[
——

Cumulative uranium requirements
(million tonnes U)
N
o1 o

N —

1970 1990 2010 2030 2050 2070 2090
Year




A sustainable energy-rich future
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Final word on
SOclo-economic realities
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Fit-for-service low-carbon
technologies

HH
HH
=

Nuclear - FOAK

Carbon-intensive
technologies

Muclear - Established

Coal + CCS
IGCC + CCS
CCGT + CCS

T
.

-

o

o
N

kg CO,eq per MWh
S

0-

HH

HH

Fit-for-service low-carbon
electricity generation technologies

Solar Thermal
+ Storage/Gas

PF Coal
|IGCC Coal
Gas CC

OO OOO@A0

Nicholson, Biegler & Brook (2011)

“How carbon pricing changes the relative
competitiveness of low-carbon baseload
generating technologies”

Energy doi: 10.1016/j.energy.2010.10.039



LCOE US$ per MWh

210+
180- Solar Thermal
+ Storage/Gas
150- — Coal + CCS
IGCC + CCS
il _—— — CCGT+CCS
90— — — Nuclear
| PF Coal
60+

0 30 60 90 120 150 180
Emissions price US$ per tonne CO,eq
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