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Supplemental Information 

SI-1 - Forecasting Sulfur Emissions  

We obtain the share of 2000 global sulfur emissions for six categories of sulfur emitting 

activities.  These activities and their share of 2000 emissions as calculated by Smith et 

al (1) are given in table S1. 

These values are used to generate the quantity of sulfur emissions by activity in 2000 as 

calculated by Stern (2).  This series is used because it is the one used to estimate the 

original model (3). 

SI-1.1 Coal Consumption We obtain annual data on global and Chinese coal 

consumption from the Energy Information Administration (4).  We calculate an index 

for sulfur emissions per unit coal consumption (IntensitySO2) as follows: 

€ 

IntensitySO2t = (1−%Chinat ) + ((%Chinat ) ×ESO2t )  

in which %Chinat is the fraction of global coal consumption burned in China and ESO2t 

is the ratio of SO2 emissions per kWh of electricity generated by coal fired stations in 

China relative to the rest of the world, both in year t.  The value for the rest of the world 

is proxied by the SO2 emission rate per coal fired kWh in the US.  Observations for 

China are available from 1998 - 2007 from Xu (5, 6).  Data for the US are calculated by 

dividing SO2 emissions from the US electric power sector (7) by the quantity of 

electricity generated from coal-fired stations (8). 

This index, along with information about global coal consumption (4) are used to 

calculate sulfur emissions from coal consumption (CoalSO2) as follows: 
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€ 

CoalSO2t= CoalSO2t−1 ×
IntensitySO2t
IntensitySO2t−1

×
WorldCoalt
WorldCoalt−1

 

in which Worldcoal is global coal consumption. 

SI-1.2 Smelting We obtain annual data for the global production of copper, zinc, lead, 

and nickel (9).  Lefohn et al. (10) report information on the tons of sulfur emitted per 

ton of copper (1.2), zinc (0.5), lead (0.14), and nickel (1.2) produced.  These data are 

used to create an estimate for the quantity of sulfur emitted by the production of these 

four metals (Metal) as follows: 

€ 

Metalt = QitEi
i=1

4

∑  

in which Qit is the quantity of metal i produced in year t and Ei is the quantity of sulfur 

emitted per ton of metal i produced (values in parentheses above).  The index Metal is 

used to forecast sulfur emissions due to smelting as follows: 

€ 

SmeltSt = SmeltSt−1 * (Metalt /Metalt−1) * (1− Eff )  

in which SmeltSt is the quantity of sulfur emitted by smelting in year t and Eff is a 

measure for the annual increase in the fraction of sulfur scrubbed from the waste stream 

(or removed from the waste stream by pre-processing) per unit of economic activity .  A 

value for Eff of 0.08 is chosen based on a methodology that is described in the next 

section. This value for Eff represents an 8 percent annual increase in the fraction of 

sulfur removed per unit of economic activity.  

SI-1.3 Bunker fuels The quantity of sulfur emitted from the burning of marine bunker 

fuels (BunkerSO2) is calculated as follows: 
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€ 

BunkerSO2t = BunkerSO2t−1 ×
Bunkert
Bunkert−1

× (1−Eff)  

in which Bunkert is the quantity of marine bunker fuel consumed globally (11). 

SI-1.4 Petroleum The quantity of sulfur emitted from the combustion of petroleum 

(PetrolSO2) is calculated as follows: 

€ 

PetrolSO2t = PetrolSO2t−1 ×
Petrolt
Petrolt−1

× (1−Eff) 

in which  Petrol  is the quantity of petroleum consumed globally (12). 

SI-1.5 Natural Gas The quantity of sulfur emitted from the combustion of natural gas 

(NGasSO2) is calculated as follows: 

€ 

NGasSO2t =NGasSO2t−1 ×
NGast
NGast−1

× (1−Eff)  

in which NGast is the quantity of natural gas consumed globally (13). 

SI-1.6 Other  The quantity of sulfur emitted from other activities includes land-use 

change, other industrial processes, and traditional biomass.  The quantity of sulfur 

emitted from these activities (OtherSO2) is calculated as follows: 

€ 

OtherSO2t =OtherSO2t−1 

We leave these emissions constant at the 2000 level based on the notion that any 

increase related to an increase in economic activity or lower levels of emissions per unit 

activity as measured by Eff will offset population growth.  This estimate is likely to 

understate sulfur emissions.  
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SI-1.7 Total Emissions of Sulfur is calculated from the following product: 

€ 

TotSO2t = TotSO2t−1 ×
CoalSO2t +PetSO2t + SmeltSO2t +BunkSO2t +NgasSO2t +OthSO2t

CoalSO2t−1 +PetSO2t−1 + SmeltSO2t−1 +BunkSO2t−1 +NgasSO2t−1 +OthSO2t−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

Global emissions (TotSO2) are converted to radiative forcing using formulae from 

Kattenburg (14), which include both direct and indirect effects. 

SI-1.8 Validating the Methodology  To validate the methodology for calculating sulfur 

emissions, we assemble the time series described above for 1990- 2000, and use the 

methodology to calculate sulfur emissions from 1991- 2000.  These values are 

compared to values reported by Stern (2). 

Efforts to abate sulfur emissions per unit of economic activity, as measured by Eff, vary 

among nations and activities.  Values are available for some nations in some sectors.  

For example, in the US, the amount of sulfur emitted per unit of coal burned in the 

electric power sector declines about 5.5 percent per year between 1996 and 2007. 

To choose a value for Eff, we use a range of values for Eff to generate in-sample 

simulations for global sulfur emissions between 1991 and 2000.  To choose a value, we 

regress the in-sample simulation against the observed value as follows: 

€ 

St = γ ˆ S t +εt  

in which St is the value for anthropogenic sulfur emissions calculated by Stern (2) for 

year t and 

€ 

ˆ S  is the value calculated using the methodology described above. We 

estimate the above regression using values of Eff that range between 0 and 0.10. We 

choose the value of Eff under which the OLS estimate for 

€ 

γ  is closest to 1, which would 
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be the expected point value of 

€ 

γ  for the value of Eff that generates changes in sulfur 

emissions that most closely match observed changes between 1991 and 2000 (ie. a one-

to-one correspondence) (Table S2). 

Based on these results, we choose a value of 0.08.  Sulfur emissions (post 2000) 

calculated using this range of values for Eff are given in Figure S-1, in which SOX 

(Black line) are the values of sulfur emissions calculated by Stern (2) and Eff is equal to 

0.08 (Red line).  The increase in sulfur emissions after 2003 that is generated by all 

scenarios is consistent with the results generated in a detailed country-by-country 

analysis through 2005 (15). 

SI-2 Statistical Results   

We follow the statistical methodology for estimating global mean surface temperature 

described by Kaufmann et al. (3).  The long-run cointegrating relationship between the 

aggregate of radiative forcing (greenhouse gases, sulfur emissions, and solar insolation) 

(RFAGG) and global surface temperature (Temp) is estimated from the following 

equation using dynamic ordinary least squares (16).  

Tempt = 

€ 

α  + 1β  RFAGGt + ut                  (S-1) 

The rate at which temperature adjusts to changes in radiative forcing and the short run 

responses to changes in the Southern Oscillation Index (SOI) and the forcing of 

volcanic sulfates (RFVol) is estimated using the following error correction model.  
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€ 

ΔTempt =θ + β2 ˆ u t−1 + δkΔTempt− i
k =1

s

∑ + φkΔRFAGGt−k
k =1

s

∑

+ πkSOIt−k
k =0

s

∑ + ζ k RFVolt−k +εt
k =0

s

∑
               (S-2) 

in which tû  is the estimated disequilibrium between observed temperature and the 

equilibrium implied by the long-run cointegrating relationship ( tû  = Tempt – (α̂  + 1̂β  

RFAGGt).  The appropriate lag length (s) for equation (S-2) is chosen using the Akaike 

Information criterion (AIC) (17) and the equation is estimated using ordinary least 

squares (OLS).  Results for three sample periods are given in Table S3.  Previous efforts 

(3) indicate that the effect of the North Atlantic Oscillation on global surface 

temperature is not statistically different from zero and so is not included. 

SI-2.1 In Sample vs. Out-of-Sample Figure S-2 represents the model’s ability to simulate 

global surface temperature (Table S3).  The model is initialized with data that start in 

1866; no additional information about global surface temperature is given to the model 

after 1870, which is the first year of the in-sample simulation.   Notice that simulated 

temperature (orange line) captures short and long term movements in observed 

temperature (black line) and there is no noticeable difference in the in-sample [1870-

1998] simulation (orange), and out-of-sample [1999-2008] simulation (purple).  A 

statistical test for differences between these periods is described below. 

By the end of the forecast, there is little difference between the simulations that starts in 

1870 and 1999.  For example, the simulation that starts in 1870 (orange) simulates a 

global surface temperature of 0.462o C in 2008; the simulation (based on the same 

estimation period) that starts in 1999 (purple) is 0.484o C.  This convergence is caused 

by the model’s tendency to move towards the equilibrium that is implied by the long-
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run cointegrating relationship and the transitory effects of stationary variables like 

ENSO events or volcanic sulfates. 

SI-2.2 Error Estimates  The simulated 95% error bars for the temperature forecasts 

(Figures 2 & 3) represent estimation uncertainty of the regression coefficients.   

Measurements of greenhouse gas concentrations, solar insolation, and volcanic forcings 

are relatively certain compared to anthropogenic sulfur emissions.  Uncertainty about 

this forcing is examined separately in section SI –2.4. 

To simulate temperature error bars for each forecast, we augment model coefficients 

(both the cointegrating relationship and the error correction model) with errors drawn 

from the asymptotic normal distributions of the corresponding estimators.  Disturbances 

to the equations are set to zero for the simulations so that the uncertainty bands 

represents estimation (sampling) uncertainty only, not random disturbance uncertainty.  

In other words, the error bars represent sampling uncertainty of the conditional mean of 

temperature, given the radiative forcing components.  These bound the 2.5th and 97.5th 

percentiles of 1000 simulations.   

SI-2.3 Cointegration Breakdown We use a methodology developed by Andrews and 

Kim (19) to test whether the long-run cointegrating relationship between global 

temperature and radiative forcing (greenhouse gas concentrations, sulfur emissions, and 

solar insolation) changes during the 1999-2005 (the last period for which the 

coinegrating relation can be estimated) period relative to the relationship estimated with 

data from the sample period that ends in 1998.  To do so, we estimate the model with 

data from sample periods that start in 1864, 1920, and 1960, and end in 2005, and use 
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the results to calculate the residual from the cointegrating relationship ( tû ).  This 

residual is used to calculate the R test statistic as follows: 

2

1
)ˆ(∑∑

+

=

+

+=

=
mT

ts
t

mT

Tt
uR                                                      (S-3) 

in which T = 1998 and m is seven (representing 1999-2005).  The R statistic tests for a 

breakdown in the cointegrating relationship during the 1999-2005 period.  The test 

statistic is evaluated against an asymptotic null distribution that is generated from 

seven-year sub-samples, the first of which ends seven years after the start date and the 

last ends in 1998.  These values are ranked by size and the value at the 95 percentile is 

used as the critical value.  The R statistic fails to exceed the critical value for sample 

periods that start in 1864 and 1920 (Table S3), which indicates that we cannot reject the 

null hypothesis that the cointegrating relationship is stable throughout against the 

alternative that the cointegrating relationship breaks down during the 1999-2005 period.  

Conversely, we reject the null hypothesis for the sample period that starts in 1960. 

Because the power of the test depends on the size of m and T, the failure to reject the 

null hypothesis should not be interpreted as strong evidence in favor of stable 

cointegration (19). 

SI-2.4 Uncertainty About Anthropogenic Sulfur forcing Uncertainty about 

anthropogenic sulfur forcing arises from two sources; uncertainty about emissions and 

uncertainty about the formula used to translate emissions to radiative forcing.  One way 

to evaluate this uncertainty is to compare our estimate for the radiative forcing with 

published estimates.  For example, our method for forecasting sulfur emission in 2005 

and converting to those emissions to radiative forcing generate values of the direct (-.26 
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W m–2) and indirect (-0.73 W m–2) effect.  Although generated using a very different 

methodology, our values are close to mean values for the direct (-.4 +0.2 W m–2) and 

indirect (-0.7 with a 5 to 95% range of –0.3 to –1.8 W m–2) effects published by (21). 

 

In addition to this similarity, we investigate how both sources of uncertainty may affect 

the estimate for the statistical model and the out-of-sample forecast.  To evaluate the 

effect of uncertainty about emissions, we add a normally distributed random error to 

each year’s point estimate for anthropogenic sulfur emissions, recalculate total radiative 

forcing, and use the new time series to re-estimate the model.  Increasing uncertainty 

will diminish the statistical model’s ability to match the stochastic trend in global 

surface temperature to radiative forcing.  This diminution is evaluated by testing for 

cointegration between the time series for temperature and radiative forcing, which 

includes uncertainty about anthropogenic sulfur forcing.  To quantify this effect, we 

generate 1,000 experimental data sets for each of three sample periods (1860-1998; 

1920-1998, 1960-1998) and seven magnitudes of uncertainty (+10%, +15%, +20%, 

+25% +33%, +40%, +50%). A finding of cointegration for 950 of the 1000 

experimental data sets indicates that a given level of uncertainty about anthropogenic 

sulfur forcing does not have a statistically measurable effect on the model’s ability to 

detect a relationship between global surface temperature and radiative forcing (Table 

S4). 

Results in Table S4 indicate that uncertainty about anthropogenic sulfur emissions has a 

relatively small effect on the model’s ability to detect a statistically meaningful 

relationship between global surface temperature and radiative forcing.  For the full 
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sample period, errors +25% do not diminish the model’s ability to detect cointegration.  

Only when the errors become large (>+33%) or the sample size becomes small (38) 

does uncertainty about anthropogenic sulfur emissions interfere with the statistical 

model’s ability to detect cointegration.  Table S-4 reports rates at which the Augmented 

Dickey-Fuller test rejects the null hypothesis of non-cointegration.  As the sample size 

decreases, the power of this test also decreases and detecting cointegration is less likely; 

this explains the pattern in Table S-4 in which cointegration is found less frequently the 

shorter the sample for a given level of uncertainty about anthropogenic sulfur forcing.  

In fact, if sulfur forcings include a substantial estimation error, our statistical analysis 

would be unlikely to detect cointegration.  

To evaluate the degree to which uncertainty about the method used to calculate 

anthropogenic sulfur emissions for 2001-2008 affects the forecast for global surface 

temperature, we focus on uncertainty about Eff, which is the most uncertain determinant 

of our measure for emissions.  To do so, we generate out-of-sample forecasts for surface 

temperature (1999-2008) with time series for anthropogenic sulfur emissions that are 

generated using values of Eff equal to 0.05 (green), 0.06 (light blue), 0.7 (purple), 0.08 

(orange), 0.09 (red), and 0.10 (grey) (Figure S-3).  By 2008, these different assumptions 

about Eff generate a 6 percent difference in radiative forcing due to anthropogenic sulfur 

emissions between the high and low removal scenarios (Figure S-1). 

This range of values generates temperature values that fall within the 95% confidence 

interval (Figure S-3) of simulations generated using a value of Eff equal to 0.08 

(orange).  This result implies that uncertainty about the rate at which sulfur emissions 

are removed from the emission stream has little effect on conclusions regarding the 
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model’s ability to simulate the post 1998 pattern of observed global surface 

temperature. 

To evaluate the degree to which uncertainty about the formulae used to convert 

anthropogenic sulfur emissions to radiative forcing affects the statistical results, we 

scale the annual point estimate for radiative forcing by values between 0.0 and 2.4 

(

€ 

RFSOXModified = λRFSOX ).  These values imply a range of uncertainty about our 

calculation for total aerosol forcing in 2005 (-0.99) that is larger than the 95 percent 

confidence interval (-0.5 Wm-2 - -2.4 Wm-2) for 2005 that is described by (21).  These 

altered values for forcing are added to the other forcings and the statistical model is 

restimated through 1998.  The effect on the statistical results (Table S5) is evaluated 

using three metrics; (1) an ADF statistic that tests for cointegration between the surface 

temperature and radiative forcing, (2) the statistical significance of the estimate for the 

long-run relationship between radiative forcing and surface temperature ( 1β in equation 

eq. (S-1)) and (3) the statistical significance of the error correction mechanism ( 2β  in 

equation (S-2)) that represents how surface temperature adjusts to disequilibrium in the 

long-run cointegrating relation.  Failure to reject the null hypothesis associated with any 

one of these three metrics would indicate that uncertainty about the formulae used to 

translate anthropogenic sulfur emissions to radiative forcing disrupts the statistical 

model’s ability to quantify the relationship between radiative forcing and global surface 

temperature. 

For the 1864-1998 and 1920-1998 sample periods, both the ADF statistic and the 

statistical significance of 2β  in equation (S-2) suggest that the statistical model would 

be disrupted if the actual forcing is 20 to 30 percent greater (

€ 

λ >1.2 −1.3) than that 
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indicated by the formulae.  For the more recent period, in which the data are more 

accurate, the model performs well even if the actual forcing is 110 percent greater than 

indicated by the formula. Conversely, both the ADF statistic and the statistical 

significance of 

€ 

β2  in equation S-2 suggest that if the statistical model would be 

disrupted if the actual forcing is 40 percent (

€ 

λ < 0.6) or more less than indicated by the 

formulae.  

To evaluate the degree to which uncertainty about the formulae used to convert 

anthropogenic sulfur emissions to radiative forcing, we take the extreme values for λ 

which generate statistically ‘acceptable’ models for the 1960-1998  period from table S-

5 (

€ 

λ = 0.6; λ = 2.1), estimate the model, and use the regression results to simulate 

temperature for 1999-2008.  Simulations replicate the general pattern of observed 

temperature and fall well within the 95 confidence interval (Figure S-4). Together, these 

results suggest that uncertainty about the formulae used to translate anthropogenic 

sulfur emissions to radiative forcing has a relatively small effect on the statistical 

model’s ability to quantify the relationship between radiative forcing and global surface 

temperature. 

To evaluate the degree to which the estimation period within the period for which direct 

measurements of greenhouse gases are available (or changes in the reliability of the 

temperature data) affects the simulation of global temperatures, we generate out-of-

sample forecasts for three additional sample periods: 1960-1990, 1960-1995, and 1960-

2000 (Figure S-5).  As expected the accuracy of the out-of-sample estimations improves 

with greater sample size.  Nonetheless, the choice of sample period has relatively little 

effect on the models’ out-of-sample temperature forecast for 1999-2008. 
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Figure S-6 illustrates the effect of the ‘spin-up’ date on the out-of-sample forecast. To 

evaluate this source of uncertainty, we start model simulations in 1900, 1925, 1950, 

1975, 1985, and 1995.  Regardless of year in which the simulation starts, the forecasts 

for 1999-2008 are similar, which indicates that the date at which the model starts has 

little effect on the out-of-sample forecast for 1999-2008. 

 

SI-2.5 Alternative measure of surface temperature To evaluate the degree to which the 

results are sensitive to the measure of temperature, we repeat the analysis with GISS 

temperature data (22), which start in 1880.  As indicated by Table S6, the results are 

essentially unchanged; (1) temperature cointegrates with radiative forcing, (2) the long 

run relation between temperature and radiative forcing can be measured with a high 

degree of statistical precision and, (3) disequilibrium in the long-run relation between 

temperature and radiative forcing moves temperature towards the long-run value that is 

implied by radiative forcing. Furthermore, the point estimates ( 1β  and 2β ) for these 

effects are similar (See Table S3).  Together, these results suggest that the time series 

used to measure global surface temperature has little effect on the results. 

A reviewer suggests that we repeat the analysis with the GISS data because the 

measures of temperature differ after 1998.  Specifically, the CRU temperature data peak 

in 1998 while the GISS temperature data peak in 2005.  To evaluate the degree to which 

these differences are meaningful, we test whether the two temperature series cointegrate 

and whether the cointegrating relationship between the two temperature series breaks 

down after 1998 (using the R statistic—equation (S-3)). 
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For the three sample periods described in Tables S3 and S6, the Cru and GISS measures 

of temperature cointegrate and we fail to reject the null hypothesis that the cointegrating 

relationship is stable throughout over the entire sample period, against the alternative 

alternative hypothesis that the cointegrating relationship breaks down during the 1999-

2005 period (See Table S7).  This implies that the differences between the two 

temperature series are not statistically meaningful and therefore the temperature series 

used should not have a significant effect on the statistical results, a hypothesis that is 

consistent with the similarity of results in Tables S3 and S6.  

SI-2.6 Cointegration & Omitted Variable We recognize that our measure of radiative 

forcing does not include some important components, such as black carbon.  But the 

results of the statistical model do not depend on energy balance, as described by (23).  

Rather, the statistical model focuses on the non-stationary changes in the independent 

and dependent variables and it seeks to determine whether non-stationary changes in 

radiative forcing match non-stationary changes in global surface temperature.  These 

nonstationary changes constitute a ‘fingerprint’ that can be used to determine whether 

the relationship between temperature and radiative forcing is statistically meaningful.  

The degree to which non-stationary changes in temperature match non-stationary 

changes in radiative forcing is evaluated by the statistical notion of cointegration. 

Cointegration between surface temperature and radiative forcing indicates that the 

omission of a forcing(s) (e.g. black carbon) does not diminish the statistical model.   

This finding implies that either; (1) the forcing(s) omitted from the statistical model is 

small, (2) the forcing(s) omitted from the statistical model is stationary, (3) the 

forcing(s) omitted from the statistical model shares the same stochastic trend as forcings 
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that are included in the model.  In the case of black carbon, the first hypothesis is 

unlikely—black carbon has forcing, 0.9 W/m2, with a range of 0.4 to 1.2 W/m2 (24).  

The second hypothesis cannot be tested directly because there is no annual time series 

for black carbon that overlaps the sample period. Data are available at ten-year intervals 

between 1850 and 2000, but the spacing interferes with tests designed to detect 

stochastic trends. Despite this limit, we use the decadal time series to evaluate the 

degree to which the omission of black carbon affects the results—see next section.  The 

third hypothesis is consistent with observations that up to one third of black carbon 

emissions are associated with the combustion of fossil fuels, which also emit sulfur, and 

are therefore correlated with sulfate aerosols (25). 

SI-2.7 Stratospheric Water Vapour, Black Carbon, & Omitted Variable Bias  To 

evaluate the degree to which omitted variables, such as stratospheric water vapour and 

black carbon, affect the statistical results, we test whether errors from the statistical 

model are related to stratospheric water vapour or black carbon.  If the statistical model 

omits an important explanatory variable, the lack of explanatory power will appear in 

the error term and temporal changes in the error term will be related to temporal 

changes in the omitted forcing variable. 

To test this hypothesis, we create annual values for stratospheric water vapour and black 

carbon and test whether they are related to statistical estimates of the regression error 

from the cointegrating relation, the error correction models, or the simulation model.  

Annual estimates for stratospheric water vapour are created by interpolating (and then 

averaging)  monthly observations (26).  Annual estimates for black carbon are created 

by interpolating decadal values (25). 
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To test whether the omission of stratospheric water vapour or black carbon biases the 

estimate of the long-run cointegrating relation between surface temperature and 

radaitive forcing, we estimate equation (S-4): 

ut = 0δ  + 1δ OVt + vt                        (S-4) 

in which ut is the error term from the cointegrating relation (S-1), OVt is the omitted 

variable (stratospheric water vapour or black carbon), 0δ  and 1δ  are regression 

coefficients, and vt is the regression error.  If the omission of water vapour or black 

carbon affects the estimate for the long run relation between radiative forcing and 

temperature, the error from the long-run relationship will be related to the omitted 

variable (i.e. 01 ≠δ ).  This hypothesis is evaluated by testing whether 1δ  in (S-4) is 

statistically significant (the unobserved error ut is replaced by the estimate tû ).   

To check whether the omission of stratospheric water vapour or black carbon biases the 

estimate for the dynamics by which surface temperature adjusts to our measure of 

radiative forcings, we estimate equation (S-5 and S-6): 

∑
=

− ++=
s

k
tktkt OV

1
0 ηγγε                                    (S-5) 

€ 

εt = α + γk

k=1

s

∑ ΔOVk−i + ηt                  (S-6) 

in which tε  is the error term from the error correction model (eq. S-2), sjj ,...,1, =γ  are 

regression coefficients, and tη  is the regression error.  The lag length (s) is chosen using 

AIC (17).  Both a level (eq. S-5) and a first different (eq. S-6) specification are used 
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because we cannot determine whether the time series for the omitted forcing is 

stationary (eq. S-5) or contains a stochastic trend (eq. S-6)—the time series for 

stratospheric water vapour is too short to generate a statistically meaningful conclusion 

and interpolating decadal values smoothes the time series in a way that distorts tests 

designed to detect stochastic trends.  Again, if the omission of stratospheric water 

vapour or black carbon affects the statistical estimate of the error correction model, we 

expect that the null hypothesis 0...1 === sγγ  is rejected 

To check whether the omission of stratospheric water vapour or black carbon affects the 

simulation for surface temperature that is generated by the statistical model, we estimate 

equation S-7: 

€ 

Tempt − ˆ T empt = ρ0 + ρ1OVt +υ t               (S-7) 

in which Tempt is the observed value for global surface temperature, 

€ 

ˆ T empt  is the value 

for surface temperature simulated by the model (red line, Figure S-1), 0ρ  and 1ρ are 

regression coefficients estimated using OLS, and tυ  is the regression error. Again, if the 

omission of stratospheric water vapour or black carbon biases the forecast, we expect to 

reject the null hypothesis 01 =ρ  for equation S-7. 

As indicated in Table S8, the results reject the null hypothesis that stratospheric water 

vapour is not related to the errors from the cointegrating relation (eq. S-4).  But the OLS 

estimate of 1δ  has a negative (wrong) sign.  Stratospheric water vapour has a positive 

effect on temperature such that the omission of this variable should cause the model to 

under-predict observed temperature, in which case 1δ  would be positive.  We fail to 

reject the null hypothesis that stratospheric water vapour is not related to the short run 
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dynamics by which surface temperature adjusts to our measure of radiative forcing (eq. 

(S-5) and (S-6)) or the simulation error (eq. (S-7)).  Together these results suggest that 

the omission of stratospheric water vapour does not have a statistically meaningful 

effect on our results. 

For black carbon we fail to reject the null hypothesis that black carbon is not related to 

the error from the cointegrating relation or the short run dynamics by which surface 

temperature adjusts to our measure of radiative forcing.  We reject the null hypothesis 

that black carbon is not related the forecast error at the ten percent level.  Although the 

estimate for 1δ  has the correct sign (positive), the estimated regression has little 

explanatory power—the R2 is 0.017.   Together, these results suggest that the omission 

of black carbon has little effect on the analysis. 

SI-2.8 Relation to Satellite Measures of Top of Atmosphere Net Forcing.  If our measure 

for total radiative forcing is a reasonable representation, it should be consistent with 

satellite measures for top of the atmosphere net energy flux (TOA).  Measurements 

(W/m2) are available starting 2000:Q2 from the Terra instrument and 2002:Q3 from the 

Aqua instrument.  Because our estimates are annual, there are not enough observations 

to estimate statistically meaningful relation between our measure of radiative forcing 

and satellite measures of TOA. 

Instead, we determine whether our measure of radiative forcing and satellite measures 

of TOA ‘move’ in the same direction by fitting a time trend to these variables with the 

following equation: 

€ 

Yt =α + θTimet +ηt                 (S-8) 
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in which Y is either our measure of radiative forcing or quarterly anomalies for a 

satellite measure of TOA, α and θ are regression coefficients estimated using OLS, and 

η is a regression error.  The change in Y over the sample period is given by the sign and 

statistical significance of 

€ 

θ as evaluated by a t test of the null hypothesis 

€ 

θ = 0. 

The results in Table S-9 indicate that neither satellite measure of TOA shows a 

statistically measurable change between the start date and 2008:Q4.  Similarly, our 

measure of radiative forcing does not show a statistically measurable change during 

comparable sample periods.  Together, these results suggest that our measure of 

radiative forcing is consistent with satellite measures for top of the atmosphere net 

energy flux. 
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Figure S-1 Observed sulphur emissions GgS 1870-2007 (black line).  Sulphur emission 

forecasts eff = 0.5 (purple line), eff = 0.6 (brown line),  eff = 0.7 (grey line),  eff = 0.8 

(red line),  eff = 0.9 (orange line),  eff = 0.1 (light blue line).   
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Figure S-2 Observed global surface temperature degrees Celsius (black line).  Out-of-

sample forecast with no additional temperature data after 1870 (orange line), and 1999 

(purple line). 
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Figure S-3 Out of sample forecasts of observed surface temperature (black line) with 

Eff=0.05 (green line), Eff=0.06 (light blue line), Eff=0.07 (purple line), Eff=0.08 

(orange line), 95% confidence intervals (orange bars), Eff=0.09 (red line), Eff=0.10 

(grey line). 
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Figure S-4 Out of sample forecasts of observed surface temperature (black line) with 

sulphur emissions to radiative forcing conversion parameter, 

€ 

λ=1.0 (green line), with 

95% confidence intervals (green bars), 

€ 

λ=0.6 (blue line), and 

€ 

λ=2.1 (orange line). 
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Figure S-5   Out-of-sample forecasts of observed surface temperature (black line) based 

on in-sample estimations from periods 1960-1990 (light blue line), 1960-1995 (green 

line), 1960-1998 (red line), and 1960-2000 (purple line).  
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Figure S-6   Observed surface temperature (black line) forecast with spin-up in 1900 
(blue line), 1925 (red line), 1950 (green line), 1975 (purple line), 1985 (light blue line), 
and 1995 (orange line).  
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Table S1 – Components of 2000 Emissions 

Activity Share of 2000 emissions 

Coal 51.3% 

Petroleum 23.1% 

Smelting 10.0% 

Marine bunkers 7.0% 

Natural gas 2.1% 

Other 6.4% 
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Table S2 – Estimating Efficiency Gains 

Eff B 

0.05 0.944 

0.055 0.954 

0.060 0.964 

0.065 0.974 

0.070 0.983 

0.075 0.993 

0.080 1.00 

0.085 1.012 

0.090 1.021 

0.096 1.030 

0.10 1.039 
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Table S3 – DOLS and ECM results for three sample periods 

 Estimation Sample Period 

Variable 1864-1998 1920-1998 1960-1998 

Long-run relation             

α -0.34** -0.32** -0.24** 

β 0.57** 0.54** 0.41** 

ADF -5.02** -3.89** -4.39** 

R statistic 0.36 0.14 1.00* 

Error correction model       

α 0.022* 0.034* 8.92x10-2** 

€ 

β2  -.241** -0.387** -0.816** 

€ 

δ1 -0.154 + -5.94x10-2 -0.140 

€ 

δ2  4.09x10-3     – -.246+ 

€ 

φ1 -1.48x10-1 -0.201 0.263** 

€ 

φ2  -4.26x10-2    – 7.62x10-2 

€ 

π0  -5.62x10-3 ** -7.20x10-3** -6.55x10-3** 

€ 

π1  -2.35x10-3  -1.00x10-3 -8.60x10-3** 

€ 

π2  3.18x10-3 *    – -6.75x10-3** 

€ 

ζ0  4.62x10-2 ** 4.86x10-2* 8.52x10-2** 

€ 

ζ1 -8.76x10-3 2.10x10-2 3.91x10-2** 

€ 

ζ2  1.38x10-4    – 2.11x10-2 

Coefficients are statistically significantly different from zero at the: **1%, *5%, +10% level as 

determined by standard errors that are calculated using the procedure described by Newey and 

West (18) with a lag length of six—conclusions about the significance level of regression 

coefficients do not change if a lag length of three is used. 
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Table S-4 Finding of cointegration* between surface temperature and radiative forcing 
out of 1,000 experimental data sets 

 Sample Period 

Error  1860-1998 1920-1998 1960-1998 

+10% 1000 950 966 

+15% 1000 901 904 

+20% 1000 824 707 

+25% 994 709 430 

+33% 932 469 123 

+40% 770 299 41 

+50% 506 136 8 
* The critical value (-2.83) for the Augmented Dickey Fuller statistic (constant, no 
trend) is calculated using values from (20). 
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Table S5 – Effect on statistical results (ADF cointegration test, estimated cointegrating 
coefficient β1, and error correction term β2) of scaling anthropogenic sulfur by a factor 
of λ 
 1864-1998 1920-1998 1960-1998 

 ADF   ADF   ADF   
0.0 -2.64+ 0.26** -0.23** -2.49 0.27** -0.44** -5.01** 0.41** -0.09 
0.1 -2.71+ 0.28** -0.24** -2.62 0.28** -0.45** -5.12** 0.41** -0.14 
0.2 -2.79* 0.30** -0.24** -2.77 0.30** -0.50** -5.18** 0.42** -0.21 
0.3 -2.87* 0.32** -0.25** -2.94* 0.33** -0.52** -5.21** 0.42** -0.38 
0.4 -2.96* 0.34** -0.25** -3.13* 0.35** -0.53** -5.18** 0.42** -0.48 
0.5 -3.06* 0.37** -0.26** -3.35* 0.38** -0.53** -5.12** 0.43** -0.57 
0.6 -3.16* 0.40** -0.26** -3.59* 0.41** -0.53** -5.02** 0.43** -0.67* 
0.7 -3.25* 0.43** -0.27** -3.81* 0.45** -0.52** -4.88** 0.42** -0.75* 
0.8 -5.05** 0.47** -0.26** -3.98** 0.48** -0.50** -4.73** 0.42** -0.80** 
0.9 -5.07** 0.52** -0.26** -4.02** 0.52** -0.45** -4.56** 0.42** -0.82** 
1.0 -5.02** 0.57** -0.24** -3.89** 0.54** -0.39** -4.39** 0.41** -0.82** 
1.1 -3.91** 0.62** -0.21** -3.61* 0.55** -0.31** -4.22** 0.40** -0.79** 
1.2 -3.67* 0.66** -0.15* -3.24* 0.54** -0.16** -4.05** 0.39** -0.75** 
1.3 -3.34* 0.70** -0.11+ -2.87* 0.49** -0.12* -3.88* 0.38** -0.71** 
1.4 -2.97* 0.70** -0.08 -2.51 0.42** -0.09+ -3.73* 0.37** -0.67** 
1.5 -2.16 0.64** -0.05 -2.17 0.33* -0.07 -3.58* 0.36** -0.63** 
1.6 -1.73 0.51* -0.04 -1.84 0.24 -0.06 -3.45* 0.35** -0.59** 

1.7 -1.23 0.33 -0.03 -1.54 0.15 -0.06 -3.32* 0.34** -0.55** 
1.8 -0.72 0.15 -0.03 -1.26 0.08 -0.07 -3.20* 0.33** -0.52** 
1.9 -0.28 0.00 -0.03 -1.03 0.03 -0.07 -3.09* 0.32** -0.49* 
2.0 0.01 -0.10 -0.04 -0.84 -0.01 -0.08 -2.98* 0.30** -0.46* 
2.1 0.16 -0.17 -0.04 -0.71 -0.04 -0.08 -2.89* 0.29** -0.43* 
2.2 0.20 -0.21 -0.05 -0.61 -0.06 -0.09 -2.79+ 0.28** -0.41* 
2.3 0.19 -0.23 -0.05 -0.54 -0.07 -0.10 -2.71+ 0.27** -0.39* 
2.4 0.14 -0.23 -0.06 -0.49 -0.08 -0.10 -2.62 0.26** -0.38* 

Test statistics reject the null hypothesis at the: **1%, and *5% level 

Values in bold highlight the range of  for which the statistical results are not sensitive 
to uncertainty about the formulae for radiative forcing. 
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Table S6 – DOLS and ECM results for three sample periods estimated with the GISS 

temperature time series 

 Estimation Sample Period 

Variable 1885-1998 1920-1998 1960-1998 

Long-run relation (eq S-1)             

α -0.21** -0.18** -0.11** 

β 0.58** 0.52** 0.41** 

ADF -5.18** -4.12** -4.41** 

R statistic (eq. S-3) 3.12* 0.61 0.18 

Error correction model (eq. S-2)       

α 0.022+ 0.034** 0.083** 
 -.276** -0.417** -0.98** 

 -0.177 -0.110 -4.58x10-2 

 -0.072 -- 0.264* 
 -0.171 --  
 -0.145 -0.202 0.221 
 -2.95x10-2 -- 0.100 

 -6.12x10-2 --  

 -5.80x10-3 ** -6.43x10-3** -5.01x10-3** 

 -2.06x10-3 -1.30x10-3 -7.91x10-3** 

 2.94x10-3 -- 6.29x10-3** 

 -2.74x10-3+ --  

 4.75x10-2 ** 4.64x10-2** 7.43x10-2** 

 -2.00x10-3 2.55x10-2 3.80x10-2+ 

 2.98x10-2 -- 2.15x10-2 
 2.21x10-2+ 2.18x10-2  
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Table S-7 - Cointergation Tests of the GISS and CRU temperature data 

 ADF Test of Cointegration R Statistic breakdown 1999-2008 

1880-2008 -2.83* 8.89E-04 

1920-2008 -3.32* 2.86E-03 

1960-2008 -4.11** 6.76E-03 
Test statistics reject the null hypothesis at the: **1%, and *5% level 
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Table S-8 - Regression results for omitted variable bias 

 
Stratospheric Water Vapour 
Sample period 1981-2008 

Black Carbon 
Sample period 1866-2000 

β = 0 (eq. S-4) 

€ 

β = −0.111,  p < 0.01 

€ 

β = −2.96E − 3, p > 0.82 

β = 0 (eq. S-5) 

€ 

β = 2.44E − 3,  p > 0.95 

€ 

β = 3.04E − 3, p > 0.047 

β = 0 (eq. S-6) 

€ 

β = 6.06E − 2, p > 0.10 

€ 

β = 0.179, p > 0.06 

β = 0 (eq. S-7) 

€ 

β = −2.29E − 2 , p > 0.62 

€ 

β =1.57E − 2, p > 0.37 
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Table S-9 - Statistical estimates for changes in Satellite measures of TOA or our 
measure of radiative forcing through 2008. 

Dependent Variable (Y) Sample period β t statistic 

Aqua 2002:Q3-2008:Q4 4.09E-03 .33 

Terra 2000:Q2-2008:Q4 6.85E-03 .93 

RFAGG 2000-2008 -4.57E-03 .91 

RFAGG 2002-2008 -7.75E-3 .83 
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