

Safety of fast spectrum Gen-IV reactors

Janne Wallenius

Sflatps!Qzijdt-!LU

Course objectives

After this course, you will be able to make design choices making Gen–IV reactors sustainable, safe and reasonably economical. The objective is achieved if you show you are able to

- Calculate and analyse reactor safety parameters in fast neutron reactors
- Assess breeding performance for potentials fuels and coolants
- Select structural materials permitting high burnup in fast neutron spectra

How does americium affect the safety of fast neutron reactors?

- Doppler feedback
- Coolant temperature coefficient
- **Effective delayed neutron fraction**
- Coolant void worth
- Examples of fast reactor designs with full TRU recycling

Impact of americium on fast neutron reactor safety

- Gen-IV reactors should be able to recycle minor actinides from the waste stream of both Gen-IV reactors and LWRs
- Introduction of americium into the fuel of fast reactors leads to
- Reduction in Doppler feedback
- Increase in coolant temperature coefficient
- Reduction in effective delayed neutron fraction
- Increase in coolant void worth

Doppler feedback: physics

6-9

- Thermal oscillations of nuclei leads to Doppler broadening of resonances in the reaction cross sections.
- ΔT = 1000K ~ ΔΓ = 0.1 eV!
- Resonance "area" is conserved!
- Neutron spectrum is depleted on the high energy side of the resonance – neutron flux at the resonance peak is reduced.
- Doppler effect more efficient for low energy resonances
- Captures below 3 keV provide 60% of Doppler feedback in a sodium cooled FBR with oxide fuel, though constituting only 15% of captures!

Doppler feedback: impact of americium

Capture cross section of ²⁴¹Am 5–10 times higher than that of ²³⁸U between 10–500 keV.

Am removes the soft tail of the neutron spectrum, and thus reduces Doppler feedback, even in the presence of ²³⁸U!

Fuel	KD
(U _{0.8} ,Pu _{0.2})O ₂	570±20
(U _{0.7} ,Pu _{0.2} ,Am _{0.1})O ₂	230±20
(U _{0.6} ,Pu _{0.2} ,Am _{0.2})O ₂	60±10
(U _{0.5} ,Pu _{0.2} ,Am _{0.3})O ₂	25±10
(Pu _{0.2} ,Am _{0.3} ,Zr _{0.5})O ₂	5±10
(Pu _{0.1} ,Zr _{0.9})O ₂	420±10

- In oxide fuel fast neutron reactors, reactivity decreases logarithmically with fuel temperature.
- Constant of proportionality = Doppler constant = K_D
- Small temperature changes: dp/dT = K_D/T
- 10% Am reduces Doppler constant by a factor close to 3, even with 70% ²³⁸U in the fuel!
- Specific Doppler feedback of fertile Pu isotopes stronger than that of ²³⁸U!

Coolant temperature coefficient

Fuel	α _{Na}
(U _{0.8} ,Pu _{0.2})O ₂	+0.17
(U _{0.7} ,Pu _{0.2} ,Am _{0.1})O ₂	+0.34
(U _{0.6} ,Pu _{0.2} ,Am _{0.2})O ₂	+0.47
(U _{0.5} ,Pu _{0.2} ,Am _{0.3})O ₂	+0.58
(Pu _{0.2,} Am _{0.3} ,Zr _{0.5})O ₂	+0.53
(Pu _{0.1,} Zr _{0.9})O ₂	-0.35

- Fission probability of ²⁴¹Am rises rapidly in the hard tail of the neutron spectrum
- Fission probability increases when coolant density decreases (mainly due to decrease in capture cross section): Spectral component
- Neutron leakage increases when coolant density decreases: Leakage component
- Small cores: Leakage dominates, α_{Na} is negative!
- Large cores: spectral effect dominates.
- With 10% Am in the fuel of medium sized core (1500MW_{th}), the void coefficient exceeds magnitude of Doppler feedback!

Delayed neutron fraction

Nuclide	∨tot	∨d∕∨ _{tot}
238 <mark>U</mark>	2.53	1.89%
²³⁹ Pu	3.02	0.22%
²⁴¹ Am	3.37	0.13%
²⁴⁴ Cm	3.42	0.13%

Delayed neutrons are emitted by decaying fission products several seconds after the fission.

 2^{35} U: β = 0.68%

- Yield of important delayed neutron emitters (Br-isotopes) decreases with increasing mass number
- Number of prompt fission neutrons (v) increases with increasing mass number

Effective delayed neutron fraction

Fuel	$\beta_{\rm eff}/\beta$
(U _{0.8} ,Pu _{0.2})O ₂	390/460
(U _{0.6} ,Pu _{0.2} ,Am _{0.2})O ₂	270/390
(U _{0.5} ,Pu _{0.2} ,Am _{0.3})O ₂	220/350
(Pu _{0.2} ,Am _{0.3} ,Zr _{0.5})O ₂	160/260
(Pu _{0.1,} Zr _{0.9})O ₂	290/310

- Fraction of neutrons inducing fission that were born as delayed neutrons: β_{eff}
- Delayed neutron spectrum softer than prompt spectrum
 - β_{eff} smaller than β in a fast spectrum
 - ²⁴¹Am has a very high capture cross section at the peak of the delayed neutron spectrum
 - $\beta_{eff}/\beta = 0.6$ with 30% americium in the fuel.
 - β_{eff} < 220 pcm with 30% americium in the fuel.

Coolant void worth

Fuel	W_{Nα} /β _{eff}
(U _{0.8} ,Pu _{0.2})O ₂	+1.8
(U _{0.7} ,Pu _{0.2} ,Am _{0.1})O ₂	+7.2
(U _{0.6} ,Pu _{0.2} ,Am _{0.2})O ₂	+13
(U _{0.5} ,Pu _{0.2} ,Am _{0.3})O ₂	+19
(Pu _{0.2,} Am _{0.3} ,Zr _{0.5})O ₂	+25
(Pu _{0.1} ,Zr _{0.9})O ₂	-17

Sodium void worth (in units of dollars) for a medium sized oxide fuel core with varying americium content

- Sodium boiling may lead to rapid voiding of the core
- Fission gas release or steam bubble introduction are potential sources of void
- Void worth increases rapidly with americium concentration
- Positive void worth of 3–4 dollars acceptable if a prompt negative temperature feedback of –0.5 pcm/K is available (Doppler, axial fuel expansion).
- Positive void worth of 7 dollars may not be acceptable with a Doppler feedback of -0.2 pcm/K

Fast reactors with enhanced Am recycling capabilities

- Standard" sodium cooled FBR design allows for 2–3% Am in the fuel, enough to recycle its own production, but not for burning Am from LWRs.
- Generation IV fast neutron reactors may handle ~5 % Am in their fuel by means of innovative design:
- Dedicated Am & Cm target assemblies at the periphery of the EFR core (Europe)
- Metal alloy fuel with large axial expansion coefficient of the fuel: IFR (USA)
- Lead cooling with nitride fuel: BREST (Russia)
- Helium gas cooling: GCFR (France)

