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16 Accelerating Technological Innovation 
 
Key Messages 
 
Effective action on the scale required to tackle climate change requires a widespread 
shift to new or improved technology in key sectors such as power generation, 
transport and energy use. Technological progress can also help reduce emissions from 
agriculture and other sources and improve adaptation capacity.  
 
The private sector plays the major role in R&D and technology diffusion. But closer 
collaboration between government and industry will further stimulate the development of a 
broad portfolio of low carbon technologies and reduce costs. Co-operation can also help 
overcome longer-term problems, such as the need for energy storage systems, for both 
stationary applications and transport, to enable the market shares of low-carbon supply 
technologies to be increased substantially. 
 
Carbon pricing alone will not be sufficient to reduce emissions on the scale and pace 
required as:  
• Future pricing policies of governments and international agreements should be made 

as credible as possible but cannot be 100% credible. 
• The uncertainties and risks both of climate change, and the development and 

deployment of the technologies to address it, are of such scale and urgency that the 
economics of risk points to policies to support the development and use of a portfolio 
of low-carbon technology options. 

• The positive externalities of efforts to develop them will be appreciable, and the time 
periods and uncertainties are such that there can be major difficulties in financing 
through capital markets.  

 
Governments can help foster change in industry and the research community through a range 
of instruments: 
• Carbon pricing, through carbon taxes, tradable carbon permits, carbon contracts 

and/or implicitly through regulation will itself directly support the research for new 
ways to reduce emissions; 

• Raising the level of support for R&D and demonstration projects, both in public 
research institutions and the private sector; 

• Support for early stage commercialisation investments in some sectors. 
 
Such policies should be complemented by tackling institutional and other non-market 
barriers to the deployment of new technologies.   
 
These issues will vary across sectors with some, such as electricity generation and transport, 
requiring more attention than others.  
 
Governments are already using a combination of market-based incentives, regulations and 
standards to develop new technologies. These efforts should increase in the coming decades. 
 
Our modelling suggests that, in addition to a carbon price, deployment incentives for low-
emission technologies should increase two to five times globally from current levels of 
around $33billion.  
 
Global public energy R&D funding should double, to around $20 billion, for the 
development of a diverse portfolio of technologies.   
 
16.1 Introduction 
 
Stabilisation of greenhouse gases in the atmosphere will require the deployment of low-
carbon and high-efficiency technologies on a large scale. A range of technologies is already 
available, but most have higher costs than existing fossil-fuel-based options. Others are yet to 
be developed. Bringing forward a range of technologies that are competitive enough, with a 
carbon price, for firms to adopt is an urgent priority. 
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In the absence of any other market failures, introducing a fully credible carbon price path for 
applying over the whole time horizon relevant for investment would theoretically be enough to 
encourage suitable technologies to develop. Profit-maximising firms would respond to the 
creation of the path of carbon prices by adjusting their research and development efforts in 
order to reap returns in the future. This chapter sets out why this is unlikely to be sufficient in 
practice, why other supporting measures will be required, and what form they could take. 
 
This chapter starts by examining the process of innovation and how it relates to the challenge 
of climate change mitigation, exploring how market failures may lead to innovation being 
under-delivered in the economy as a whole. Section 16.3 looks more closely at the drivers for 
technology development in key sectors related to climate change. It finds that clean energy 
technologies face particularly strong barriers – which, combined with the urgency of the 
challenge, supports the case for governments to set a strong technology policy framework 
that drives action by the private sector. 
 
Section 16.4 outlines the policy framework required to encourage climate related 
technologies. Section 16.5 discusses one element of this framework – policies to encourage 
research, development and demonstration. Such policies are often funded directly by 
government, but it is critical that they leverage in private sector expertise and funding.  
 
Investment in Research and Development (R&D) should be complemented by policies to 
create markets and drive deployment, which is discussed in Section 16.6. A wide range of 
policies already exist in this area; this section draws together evidence on what works best in 
delivering a response from business.  
 
A range of complementary policies, including patenting, regulatory measures and network 
issues are also important; these issues are examined in Section 16.7. Regulation is discussed 
in the context of mitigation more generally, and in particular in relation to energy efficiency in 
Chapter 17.  
 
Overall, an ambitious and sustained increase in the global scale of effort on technology 
development is required if technologies are to be delivered within the timescales required.  
The decline in global public and private sector R&D spending should be reversed. And 
deployment incentives will have to increase two to five-fold worldwide in order to support the 
scale of uptake required to drive cost reductions in technologies and, with the carbon price, 
make them competitive with existing fossil fuel options. In Chapter 24, we return to the issue 
of technological development, considering what forms of international co-operation can help 
to reduce the costs and accelerate the process of innovation. 
 
16.2 The innovation process 
 
Innovation is crucial in reducing costs of technologies. A better understanding of this complex 
process is required to work out what policies may be required to encourage firms to deliver 
the low-emission technologies of the future. 
 
Defining innovation 
 
Innovation is the successful exploitation of new ideas1. Freeman identified four types of 
innovation in relation to technological change2: 
 
• Incremental innovations represent the continuous improvements of existing products 

through improved quality, design and performance, as has occurred with car engines;  
• Radical innovations are new inventions that lead to a significant departure from 

previous production methods, such as hybrid cars;  
• Changes in the technological systems occur at the system level when a cluster of 

radical innovations impact on several branches of the economy, as would take place 
in a shift to a low-emission economy;  

• Changes of techno-economic paradigm occur when technology change impacts on 
every other branch of the economy, the internet is an example.  

                                                 
1 DTI (2003)  
2 Freeman (1992) 
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Many of the incentives and barriers to progress for these different types of technological 
change are very different from each other. 
 
Innovation is about much more than invention: it is a process over time 
 
Joseph Schumpeter identified three stages of the innovation process: invention as the first 
practical demonstration of an idea; innovation as the first commercial application; and 
diffusion as the spreading of the technology or process throughout the market. The traditional 
representation of the diffusion process is by an S-shaped curve, in which the take-up of the 
new technology begins slowly, then ‘takes off’ and achieves a period of rapid diffusion, before 
gradually slowing down as saturation levels are reached. He proposed the idea of  ‘creative 
destruction’ to describe the process of replacement of old firms and old products by 
innovative new firms and products.  
 
There is an opportunity for significant profits for firms as the new product takes off and this 
drives investment in the earlier stages. High profits, coupled with the risk of being left behind, 
can drive several other firms to invest through a competitive process of keeping up. As 
incumbent firms have an incentive to innovate in order to gain a competitive advantage, and 
recognising that innovation is typically a cumulative process that builds on existing progress, 
market competition can stimulate innovation3. As competition increases, and more firms move 
closer to the existing technological frontier of incumbents, the expected future profits of the 
incumbents are diminished unless they innovate further. Such models imply a hump-shaped 
relationship between the degree of product market competition and innovation, as originally 
suggested by Schumpeter. 
 
An expanded version of this ‘stages’ model of innovation that broadens the invention stage 
into basic R&D, applied R&D and demonstration is shown in the subsequent figure. In this 
chapter the term R&D will be used but this will also cover the demonstration stage4. The 
commercialisation and market accumulation phases represent early deployment in the market 
place, where high initial cost or other factors may mean quite low levels of uptake. 
 
Figure 16.1 The main steps in the innovation chain5 

 

Business and finance community

 
This model is useful for characterising stages of development, but it fails to capture many 
complexities of the innovation process, so it should be recognised as a useful simplification. A 
more detailed characterisation of innovation in each market can be applied to particular 
markets using a systems approach6. The transition between the stages is not automatic; 
many products fail at each stage of development. There are also further linkages between 

                                                 
3 Aghion et al (2002): Monopolists do not have competitive pressures to innovate while intense competition means 
firms may lack the resource or extra profit for the innovator may be competed away too quickly to be worthwhile. 
4 R,D&D (Research, Development and Demonstration) can be used for this but it can lead to confusion over the final 
D as some of the literature uses deployment or diffusion in the same acronym. 
5 Grubb (2004) 
6 For an excellent overview of innovation theory see Foxon (2003) 
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stages, with further progress in basic and applied R&D affecting products already in the 
market and learning also having an impact on R&D.  
 
Experience curves can lead to lock-in to existing technologies 
 
As outlined in Section 9.7 dynamic increasing returns, such as economies of scale and 
learning effects, can arise during production and lead to costs falling as production increases. 
These vary by sector with some, such as pharmaceuticals, experiencing minimal cost 
reductions while others fall by several orders of magnitude. These benefits lead to experience 
curves as shown in Box 9.4.  
 
Experience curves illustrate that new technologies may not become cost effective until 
significant investment has been made and experience developed. Significant learning effects 
may reduce the incentive to invest in innovation, if companies wait until the innovator has 
already proven a market for a new cost effective technology. This is an industry version of a 
collective action problem with its associated free-rider issues. 
 
Figure 16.2 Illustrative experience curve for a new technology 
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Dynamic increasing returns can also lead to path dependency and ‘lock-in’ of established 
technologies. In this diagram, the market dominant technology (turquoise line) has already 
been through a process of learning. The red line represents a new technology, which has the 
potential to compete. As production increases the cost of the new technology falls because of 
dynamic increasing returns, shown by the red line above. In this case, the price of the new 
technology does ultimately fall below the level of the dominant technology. Some 
technological progress can also be expected for incumbent dominant technologies but 
existing deployment will have realised much of the learning7. 
 
The learning cost of the new technology is how much more the new technology costs than the 
existing technology; shown by the dotted area where the red line is above the blue. During 
this period, the incumbent technology remains cheaper, and the company either has to sell at 
a loss, or find consumers willing to pay a premium price for its new product. So, for products 
such as new consumer electronics, niche markets of “early adopters” exist. These consumers 
are willing to pay the higher price as they place a high value on the function or image of the 
product.  
 
The learning cost must be borne upfront; the benefits are uncertain, because of uncertainty 
about future product prices and technological development, and come only after point A 
when, in this case, the technology becomes cheaper than the old alternative. If, as is the case 
in some sectors, the time before the technology becomes competitive might span decades 
and the learning costs are high, private sector firms and capital markets may be unwilling to 

                                                 
7 The learning rate is the cost reduction for a doubling of production and this requires much more deployment after 
significant levels of investment. 
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take the risk and the technology will not be developed, especially if there is a potential free-
rider problem. 
 
Innovation produces benefits above and beyond those enjoyed by the individual firm 
(‘knowledge spillovers’); this means that it will be undersupplied 
 
Information is a public good. Once new information has been created, it is virtually costless to 
pass on. This means that an individual company may be unable to capture the full economic 
benefit of its investment in innovation. These knowledge externalities (or spillovers) from 
technological development will tend to limit innovation.  
 
There are two types of policy response to spillovers. The first is the enforcement of private 
property rights through patenting and other forms of protection for the innovator. This is likely 
to be more useful for individual products than for breakthroughs in processes or know-how, or 
in basic science. The disadvantage of rigid patent protection is that it may slow the process of 
innovation, by preventing competing firms from building on each others’ progress. Designing 
intellectual property systems becomes especially difficult in fields where the research process 
is cumulative, as in information technology8. Innovation often builds on a number of existing 
ideas. Strong protection for the innovators of first generation products can easily be 
counterproductive if it limits access to necessary knowledge or research tools for follow-on 
innovators, or allows patenting to be used as a strategic barrier to potential competitors. 
Transaction costs, the equity implications of giving firms monopoly rights (and profits) and 
further barriers such as regulation may prevent the use of property rights as the sole incentive 
to innovate. Also much of value may be in tacit knowledge (‘know-how’ and ‘gardeners’ craft’) 
rather than patentable ideas and techniques. 
 
Another broad category of support is direct government funding of innovation, particularly at 
the level of basic science. This can take many forms, such as funding university research, tax 
breaks and ensuring a supply of trained scientists.  
 
Significant cross-border spillovers and a globalised market for most technologies offer an 
incentive for countries to free-ride on others who incur the learning cost and then simply 
import the technology at a later date9.  The basic scientific and technical knowledge created 
by a public R&D programme in one country can spillover to other countries with the capacity 
to utilise this progress.  While some of the leaning by doing will be captured in local skills and 
within local firms, this may not be enough to justify the learning costs incurred nationally.   
 
International patent arrangements, such as the Trade Related International Property Rights 
agreement (TRIPs10), provides some protection, but intellectual property rights can be hard to 
enforce internationally. Knowledge is cheap to copy if not embodied in human capital, 
physical capital or networks, so R&D spillovers are potentially large. A country that introduces 
a deployment support mechanism and successfully reduces the cost of that technology also 
delivers benefits to other countries.  Intellectual property right issues are discussed in more 
detail in Section 23.4. 
 
International co-operation can also help to address this by supporting formal or informal 
reciprocity between RD&D programmes. This is explored in Chapter 24. 
 
Where there are long-term social returns from innovation, it may also be undersupplied 
 
Government intervention is justified when there is a departure between social and private 
cost, for example, when private firms do not consider an environmental externality in their 
investment decisions, or when the benefits are very long-term (as with climate change 
mitigation) and outside the planning horizons of private investments. Private firms focus on 
private costs and benefits and private discount rates to satisfy their shareholders. But this can 
lead to a greater emphasis on short-term profit and reduce the emphasis on innovations and 
other low-carbon investments that would lead to long-term environmental improvements. 

                                                 
8  Scotchmer (1991) 
9 Barreto and Klaassen (2004) 
10 The agreement on Trade Related Intellectual Property Rights (TRIPs) is an international treaty administered by the 
World Trade Organization which sets down minimum standards for most forms of intellectual property regulation 
within all WTO member countries. 
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16.3 Innovation for low-emission technologies 
 
The factors described above are common to innovation in any sector of the economy. The 
key question is whether there are reasons to expect the barriers to innovation in low-emission 
technologies to be higher than other sectors, justifying more active policies. This section 
discusses factors specific to environmental innovation and in particular two key climate 
change sectors – power generation and transport. 
 
Lack of certainty over the future pricing of the carbon externality will reduce the 
incentive to innovate 
 
Environmental innovation can be defined11 as innovation that occurs in environmental 
technologies or processes that either control pollutant emissions or alter the production 
processes to reduce or prevent emissions. These technologies are distinguished by their vital 
role in maintaining the ‘public good’ of a clean environment. Failure to take account of an 
environmental externality ensures that there will be under-provision or slower innovation12.  
 
In the case of climate change, a robust expectation of a carbon price in the long term is 
required to encourage investments in developing low-carbon technologies. As the preceding 
two chapters have discussed, carbon pricing is only in its infancy, and even where 
implemented, uncertainties remain over the durability of the signal over the long term. The 
next chapter outlines instances in which regulation may be an appropriate response to lack of 
certainty. This means there will tend to be under-investment in low-carbon technologies. The 
urgency of the problem (as outlined in Chapter 13) means that technology development may 
not be able to wait for robust global carbon pricing. Without appropriate incentives private 
firms and capital markets are less likely to invest in developing low-emission technologies. 
 
There are additional market failures and barriers to innovation in the power generation 
sector 
 
Innovation in the power generation sector is key to decarbonising the global economy. As 
shown in Chapter 10, the power sector will need to be at least 60% decarbonised by 205013 
to keep on track for greenhouse gas stabilisation trajectories at or below 550ppm CO2e.  
 
For reasons that this section will explore the sector is characterised by low levels of research 
and development expenditure by firms. In the USA, the R&D intensity (R&D as a share of 
total turnover) of the power sector was 0.5% compared to 3.3% in the car industry, 8% in the 
electronics industry and 15% in the pharmaceutical sector14. OECD figures for 2002 found an 
R&D intensity of 0.33% compared to 2.65% for the overall manufacturing sector15. Unlike in 
many other sectors, public R&D represents a significant proportion, around two thirds of the 
total R&D investment16. 
 
The available data17 on energy R&D expenditure show a downward trend in both the public 
and private sector, despite the increased prominence of energy security and climate change. 
Public support for energy R&D has declined despite a rising trend in total public R&D. In the 
early 1980s, energy R&D budgets were, in real terms, twice as high as now, largely in 
response to the oil crises of the 1970s.  

                                                 
11 Taylor, Rubin and Nemet (2006) 
12 Anderson et al (2001); Jaffe, Newell and Stavins (2004) and (2003) 
13 This is consistent with the ACT scenarios p86 IEA, 2006 which would also require eliminating land use change 
emissions to put us on a path to stabilising at 550ppm CO2e 
14 Alic, Mowery and Rubin (2003) 
15 Page 35: OECD, (2006) 
16 There are doubts as to the accuracy of the data and the IEA’s general view is that private energy R&D is 
considerably higher than public energy R&D (though this still represents a significant share). 
17 Page 33-37: OECD (2006) 
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Figure 16.3 Public energy R&D investments as a share of GDP18 
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Figure 16.4 Public R&D and public energy R&D investments19 
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Private energy R&D has followed a similar trend and remains below the level of public R&D. 
The declines in public and private R&D have been attributed to three factors. First, energy 
R&D budgets had been expanded greatly in the 1970s in response to the oil price shocks in 
the period , and there was a search for alternatives to imported oil. With the oil price collapse 
in the 1980s and the generally low energy prices in the 1990s, concerns about energy 
security diminished, and were mirrored in a relaxation of the R&D effort. Recent rises in oil 
prices have not, yet, led to a significant increase in energy R&D.  Second, following the 
liberalisation of energy markets in the 1990s, competitive forces shifted the focus from long-
term investments such as R&D towards the utilisation of existing plant and deploying well-
developed technologies and resources - particularly of natural gas for power and heat, 
themselves the product of R&D and investment over the previous three decades. Third, there 

                                                 
18 Source: IEA R&D database http://www.iea.org/Textbase/stats/rd.asp Categories covered broken down in IEA total 
Figure 16.8 
19 OECD countries Page 32: OECD (2006) 
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were huge declines in R&D expenditures on nuclear power following the experiences of many 
countries with cost over-runs, construction delays, and the growth of public concerns about 
reactor safety, nuclear proliferation and nuclear waste disposal. In 1974, electricity from 
nuclear fission and fusion accounted for 79% of the public energy R&D budget; it still 
accounts for 40%. Apart from nuclear technologies, energy R&D budgets decreased across 
the board (Figure 16.8).  
 
Figure 16.5 Trends in private sector energy R&D20 
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The sector’s characteristics explain the low levels of R&D 
 
There are a number of ways to interpret these statistics, but they suggest that private returns 
to R&D are relatively low in the sector. There are four distinct factors which help explain this. 
 
The first factor is the nature of the learning process. Evidence from historical development of 
energy-related technologies shows that the learning process is particularly important for new 
power generation technologies, and that it typically takes several decades before they 
become commercially viable. Box 9.4 shows historical learning curves for energy 
technologies. 
 
If early-stage technologies could be sold at a high price, companies could recover this 
learning cost. In some markets, such as IT, there are a significant number of ‘early adopters’ 
willing to pay a high price for a new product. These ‘niche markets’ allow innovating 
companies to sell new and higher-cost products at an early profit. Later, when economies of 
scale and learning bring down the cost, the product can be sold to the mass market. Mobile 
phones are a classic example. The earliest phones cost significantly more but there were 
people willing to pay this price. 
 
In the absence of niche markets the innovating firm is forced to pay the learning cost, as a 
new product can be sold only at a price that is competitive with the incumbent. This may 
mean that firms would initially have to sell their new product at a loss, in the hope that as they 
scale up, costs will reduce and they can make a profit. If this loss-making period lasts too 
long, the firm will not survive.  
 
In the power sector, niche markets are very limited in the absence of government policy, 
because of the homogeneous nature of the end-product (electricity). Only a very small 
number of consumers have proved willing to pay extra for carbon-free electricity. As cost 
reductions typically take several decades this leaves a significant financing gap which capital 
markets are unable to fill. Compounding this, the power generation sector also operates in a 
highly regulated environment and tends to be risk averse and wary of taking on technologies 
that may prove costlier or less reliable. Together, these factors mean that energy generation 

                                                 
20 Source Page 35 OECD (2006); For US evidence see Kammen and Nemet (2005) 
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technologies can fall into a ‘valley of death’, where despite a concept being shown to work 
and have long-term profit potential they fail to find a market. 
 
For energy technologies, R&D is only the beginning of the story. There is continual feedback 
between learning from experience in the market, and further R&D activity. There is a 
dependence on tacit knowledge and a series of incremental innovations in which spillovers 
play an important role and reduce the potential benefits of intellectual property rights. This is 
in strong contrast with the pharmaceutical sector. For a new drug, the major expense is R&D. 
Once a drug has been invented and proven, comparatively little further research is required 
and limited economies of scale and learning effects can be expected. 
 
The second factor is infrastructure. National grids are usually tailored towards the operation of 
centralised power plants and thus favour their performance. Technologies that do not easily fit 
into these networks may struggle to enter the market, even if the technology itself is 
commercially viable. This applies to distributed generation as most grids are not suited to 
receive electricity from many small sources. Large-scale renewables may also encounter 
problems if they are sited in areas far from existing grids. Carbon capture and storage also 
faces a network issue, though a different one; the transport of large quantities of CO2, which 
will require major new pipeline infrastructures, with significant costs.  
 
The third factor is the presence of significant existing market distortions. In a liberalised 
energy market, investors, operators and consumers should face the full cost of their 
decisions. But this is not the case in many economies or energy sectors. Many policies distort 
the market in favour of existing fossil fuel technologies21, despite the greenhouse gas and 
other externalities. Direct and indirect subsidies are the most obvious. As discussed in 
Section 12.5 the estimated subsidy for fossil fuels is between $20-30 billion for OECD 
countries in 2002 and $150-250 billion per year globally22. The IEA estimate that world energy 
subsidies were $250 billion in 2005 of which subsidies to oil products amounted to $90 
billion23. Such subsidies compound any failure to internalise the environmental externality of 
greenhouse gases, and affect the incentive to innovate by reducing the expectations of 
innovators that their products will be able to compete with existing choices. 
 
Finally, the nature of competition within the market may not be conducive to innovation. A 
limited number of firms, sometimes only one, generally dominate electricity markets, while 
electricity distribution is a ‘natural’ monopoly. Both factors will generally lead to low levels of 
competition, which, as outlined in Section 16.1, will generally lead to less innovation as there 
is less pressure to stay ahead of competitors. The market is also usually regulated by the 
government, which reduces the incentive to invest in innovation if there is a risk that the 
regulator may prevent firms from reaping the full benefits of successful innovative 
investments. 
 
These barriers will also affect the deployment of existing technologies 
 
The nature of competition, existing infrastructure and existing distortions affect not only the 
process of developing new technologies; these sector-specific factors can also reduce the 
effectiveness of policies to internalise the carbon externality. They inhibit the power of the 
market to encourage a shift to low-carbon technologies, even when they are already cost-
effective and especially if they are not. The generation sector usually favours more traditional 
(high-carbon) energy systems because of human, technical and institutional capacity. 
Historically driven by economies of scale, the electricity system becomes easily locked into a 
technological trajectory that demonstrates momentum and is thereby resistant to the technical 
change that will be necessary in a shift to a low-carbon economy24. 
 

                                                 
21 Neuhoff (2005). 
22 Source: REN21 (2005)  which cites; UNEP & IEA. (2002). Reforming Energy Subsidies. Paris. 
www.uneptie.org/energy/publications/pdfs/En-SubsidiesReform.pdf Also Johansson, T. & Turkenburg, W. state in 
(2004). Policies for renewable energy in the European Union and its member states: an overview. Energy for 
Sustainable Development 8(1): 5-24.that “at present, subsidies to conventional energy are on the order of $250 billion 
per year”  and $244 billion per annum between 1995 and 1998 (34% OECD) in Pershing, J. and Mackenzie (2004) 
Removing Subsidies.Leveling the Playing Field for Renewable Energy Technologies. Thematic Background Paper. 
International Conference for Renewable Energies, Bonn (2004) 
23 WEO, (in press) 
24 Amin (2000) 
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Despite advances in the transport sector, radical change may not be delivered by the 
markets 
 
Transport currently represents 14% of global emissions, and has been the fastest growing 
source of emissions because of continued growth of car transport and rapid expansion of air 
transport. Innovation has been dominated by incremental improvements to existing 
technologies, which depend on oil. These, however, have been more than offset by the 
growth in demand and shift towards more powerful and heavier vehicles. The increase in 
weight is partly due to increased size and partly to additional safety measures. The 
improvements in the internal combustion engine from a century of learning by doing, the 
efficiency of fossil fuel as an energy source and the existence of a petrol distribution network 
lead to some ‘lock-in’ to existing technologies. Behavioural inertia compounds this ‘lock-in’ as 
consumers are also accustomed to existing technologies.  
 
Certain features of road transport suggest further innovative activity could be delivered 
through market forces. Although there is no explicit carbon price for road fuel, high and stable 
fuel taxes25 in most developed countries provide an incentive for the development of more 
efficient vehicles. Niche markets also exist which help innovative products in transport 
markets to attract a premium. These factors together help to explain how hybrid vehicles have 
been developed and are now starting to penetrate markets, with only very limited government 
support: some consumers are content to pay a premium for what can be a cleaner and more 
fuel-efficient product. There is also a small number of large global firms in this sector, each of 
which have the resources to make significant innovation investments and progress. They can 
also be less concerned about international spillovers as they operate in several markets. 
 
Incremental energy efficiency improvements are expected to continue in the transport sector. 
These will be stimulated both by fuel savings and, as they have been in the past, by 
government regulation. Both the hybrid car, and later, the fuel cell vehicle, are capable of 
doubling the fuel efficiency of road vehicles, whilst behavioural changes - perhaps 
encouraged, for example, by congestion pricing or intelligent infrastructure26 - could lead to 
further improvements. 
 
Markets alone, however, may struggle to deliver more radical changes to transport 
technologies such as plug-in hybrids or other electrical vehicles. Alternative fuels (such as 
biofuel blends beyond 5-10%, electricity or hydrogen) may require new networks, the cost of 
which is unlikely to be met without incentives provided by public policy. The environmental 
benefit of alternative transport fuels will depend on how they are produced. For example, the 
benefit of electric and hydrogen cars is limited if the electricity and hydrogen is produced from 
high emission sources. Obstacles to the commercial deployment of hydrogen cell vehicles, 
such as the cost of hydrogen vehicles and low-carbon hydrogen production, and the 
requirement to develop hydrogen storage further, ensure it is unlikely that such vehicles will 
be widely available commercially for at least another 15 to 20 years.   
 
In Brazil policies to encourage biofuels over the past 30 years through regulation, duty 
incentives and production subsidies have led to biofuels now accounting for 13% of total road 
fuel consumption, compared with a 3% worldwide average in 2004. Other countries are now 
introducing policies to increase the level of biofuels in their fuel mix. Box 16.1 shows how 
some governments are already acting to create conditions for hydrogen technologies to be 
used. Making hydrogen fuel cell cars commercial is likely to require further breakthroughs in 
fundamental science, which may be too large to be delivered by a single company, and are 
likely to be subject to knowledge spillovers. 
 
The development of alternative technologies in the road transport sector will be important for 
reducing emissions from other transport sectors such as the aviation, rail and maritime 
sectors. The local nature of bus usage allows the use of a centralised fuel source and this has 
led to early demonstration use of hydrogen in buses (see Box 16.1). In other sectors, such as 
aviation where weight and safety are prominent concerns, early commercial development is 
unlikely to take place and will be dependent on development in other areas first. The capital 
stock in the aviation, maritime and rail sectors (ships, planes and trains) lasts several times 

                                                 
25 There are exceptions in the case of biofuels with many countries offering incentives through tax incentives. 
26 Intelligent infrastructure uses information to encourage efficient use of transport systems. 
http://www.foresight.gov.uk/Intelligent_Infrastructure_Systems/Index.htm  
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longer than road vehicles so this may result in a slower rate of take-up of alternative 
technologies. The emissions associated with rail transport can be reduced through 
decarbonising the fuel mix through biofuels or low carbon electricity generation. In the aviation 
sector improved air traffic management and reduced weight, through the use of alternative 
and advanced materials, can add to continued improvements in the efficiency of existing 
technologies. 

Box 16.1 Hydrogen for transport 
 
Hydrogen could potentially offer complete diversification away from oil and provide very low 
carbon transport.  Hydrogen would be best suited to road vehicles. The main ways of 
producing hydrogen are by electrolysis of water, or by reforming hydrocarbons.  Once 
produced, hydrogen can be stored as a liquid, a compressed gas, or chemically (bonded 
within the chemical structure of advanced materials). Hydrogen could release its energy 
content for use in powering road vehicles by combustion in a hydrogen internal combustion 
engine or a fuel cell. Fuel cells convert hydrogen and oxygen into water in a process that 
generates electricity.  They are almost silent in operation, highly efficient, and produce only 
water as a by-product.  Hydrogen can produce as little as 5% of the emissions of conventional 
fuel if produced by low-emission technologies.27

  
There are several hydrogen projects around the world including: 
• Norway: plans for a 580km hydrogen corridor between Oslo and Stavanger in a joint 

project between the private sector, local government and non-government 
organisations. The first hydrogen station opened in August 2006  

• Denmark and Sweden: interested in extending the Norwegian hydrogen corridor 
• Iceland: home to the first hydrogen fuelling station in April 2003 and it is proposed 

that Iceland could be a hydrogen economy by 2030 
• EU: trial of hydrogen buses 
• China: hydrogen buses to be used at the Beijing Olympics in 2008 

 
• California: plans to introduce hydrogen in 21 interstate highway filling stations 

Innovation will also play a role by addressing emissions in other sectors, reducing 
demand and enabling adaptation to climate change. 
 
Innovation has enabled energy efficiency savings, for example, through compact fluorescent 
and diode based lights and automated control systems. Furthermore, innovation is likely to 
continue to increase the potential for energy efficiency savings. Energy efficiency innovation 
has often been in the form of incremental improvements but there is also a role for more 
radical progress that may require support. Some markets (such as the cement industry in 
some developing countries including China and building refurbishment in most countries) are 
made up of small local firms not large multinationals, which are less likely to undertake 
research since their resources and potential rewards are smaller. In addition, R&D, for 
example, in building technologies and urban planning could have a profound impact on the 
emissions attributed to buildings and increase climate resilience. Chapter 17 discusses 
energy efficiency in more detail. 
 

                                                 
27 E4tech, (2006) 
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Box 16.2 The scope for innovation to reduce emissions from agriculture  
 
Research into fertilisers and crop varieties associated with lower GHG emissions could help 
fight climate change28.  In some instances it may be possible to develop crops that both 
reduce emissions and have higher yields in a world with more climate change (see Box 26.3). 
 
Another important research area in agriculture will be how to enhance carbon storage in soils, 
complementing the need to understand emissions from soils (see Section 25.4).  The 
economic potential for enhanced storage is estimated at 1 GtCO2e in 2020, but the technical 
potential is much greater (see Section 9.6). 
 
Research into sustainable farming practices (such as agroforestry) suitable to local conditions 
could lead to a reduction in GHG emissions and may also improve crop yields.  It could 
reduce GHG emissions directly by reducing the need to use fertilisers, and indirectly by 
reducing the emissions from industry and transport sectors to produce the fertiliser29. 
 
Research into livestock feeds, breeds and feeding practices could also help reduce methane 
emissions from livestock. 
 

 

In addition to using biomass energy (see Box 9.5), agriculture, and associated manufacturing 
industries, have the potential to displace fossil-based inputs for sectors such as chemicals, 
pharmaceuticals, manufacturing and buildings using a wide range of products made from 
renewable sources.   

Direct emissions from industrial sectors such as cement, chemical and iron and steel can also 
benefit from further innovation, whether it is in these sectors or in other lower-carbon products 
that can be substitutes. Innovation in the agricultural sector, discussed in a mitigation context 
in Box 16.2 above, can also help improve the capacity to adapt to the impacts of climate 
change. New crop varieties can improve yield resilience to climate change30. The 
Consultative Group on International Agricultural Research (CGIAR) will have a role to play in 
responding to the climate challenge through innovation in the agricultural sector (see Box 
24.4). The development and dissemination of other adaptation technologies is examined in 
Chapter 19. 
 
16.4 Policy implications for climate change technologies 
 
Policy should be aimed at bringing a portfolio of low-emission technology options to 
commercial viability 
 
Innovation is, by its nature, unpredictable. Some technologies will succeed and others will fail. 
The uncertainty and risks inherent in developing low-emission technologies are ideally suited 
to a portfolio approach. Experience from other areas of investment decisions under 
uncertainty31 clearly suggests that the most effective response to the uncertainty of returns is 
to develop a portfolio. While markets will tend to deliver the least-cost short-term option, it is 
possible they may ignore technologies that could ultimately deliver huge cost savings in the 
long term.  
 
As Part III set out, a portfolio of technologies will also be needed to reduce emissions in key 
sectors, because of the constraints acting on individual technologies. These constraints and 
energy security issues mean that a portfolio will be required to achieve reductions at the scale 
required. There is an option value to developing alternatives as it enables greater and 
potentially less costly abatement in the future. The introduction of new options makes the 
marginal abatement cost curve (see Section 9.3) more elastic. Early development of 
economically viable alternatives also avoids the problem of ‘locking in’ high-carbon capital 
stock for decades, which would also increase future marginal abatement costs. Policies to 
encourage low-emission technologies can be seen as a hedge against the risk of high 
abatement costs. 

                                                 
28 Norse (2006). 
29 Box 25.4 provides further examples of sustainable farming practices. 
30 IRRI (2006). 
31 Pindyck and Dixit (1994) 
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There are costs associated with developing a portfolio. Developing options involves paying 
the learning cost for more technologies. But policymakers should also bear in mind links to 
other policy objectives. A greater diversity in sources of energy, for instance, will tend to 
provide benefits to security of supply, as well as climate change. There is thus a type of 
externality from creating a new option in terms of risk reduction as well as potential cost 
reduction. Firms by themselves do not have the same perspective and weight on these 
criteria as broader society. The next section looks at how the development of a suitable 
portfolio can be encouraged 
 
Developing a portfolio requires a combination of government interventions including 
carbon pricing, R&D support and, in some sectors, technology-specific early stage 
deployment support. These should be complemented by policies to address non-
market barriers. 
 
Alongside carbon pricing and the further factors identified in Chapter 17, supporting the 
development of low-emission technologies can be seen as an important element of climate 
policy. The further from market the product, given some reasonable probability of success, 
the greater the prima facie case for policy intervention. In the area of pure research, spillovers 
can be very significant and direct funding by government support is often warranted. Closer to 
the market, the required financing flows are larger, and the private returns to individual 
companies are potentially greater. The government’s role here is to provide a credible and 
clear policy framework to drive private-sector investment.  
 
The area in the innovation process between pure research and technologies ready for 
commercialisation is more complex. Different sectors may justify different types of 
intervention. In the electricity market, in particular, deployment policies are likely to be 
required to bring technologies up to scale. How this support is delivered is important and 
raises issues about how technology neutral policy should be, which will be discussed later in 
this chapter in Section 16.6. 
 
Figure 16.6 Interaction between carbon pricing and deployment support32 
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This diagram summarises the links between two of the elements of climate policy. The 
introduction of the carbon price reduces the learning cost since the new technology, for 
example a renewable, in this illustrative figure becomes cost effective at point B rather than 
point A, reducing the size of the learning cost represented by the dotted area. Earlier in the 
learning curve, deployment support is required to reduce the costs of the technology to the 
point where the market will adopt the technology. It is the earlier stages of innovation, 
research, development and demonstration which develop the technology to the point that 
deployment can begin. 
 

                                                 
32 In this figure the policy encourage learning but firms may be prepared to undertake investments in anticipation of 
technological progress or carbon price incentives. 
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Across the whole process, non-market barriers need to be identified and, where appropriate, 
overcome. Without policy incentives when required, support will be unbalanced, and 
bottlenecks are likely to appear in the innovation process33. This would reduce the cost 
effectiveness at each other stage of support, by increasing the cost of the technology and 
delaying or preventing its adoption. 
 
Uncertainties, both with respect to climate change and technology development, argue for 
investment in technology development. Uncertainties in irreversible investments argue for 
postponing policies until the uncertainties are reduced. However, uncertainties, especially 
with respect to technology development, will not be reduced exogenously with the ‘passage of 
time’ but endogenously through investment and the feedback and experience it provides. 
 
Most of the development and deployment of new technologies will be undertaken by 
the private sector; the role of governments is to provide a stable framework of 
incentives 
 
Deployment support is generally funded through passing on increased prices to the 
consumers. But it should still be viewed, alongside public R&D support, as a subsidy and 
should thus be subject to close scrutiny and, if possible, time limited. The private sector will 
be the main driver for these new technologies. Deployment support provides a market to 
encourage firms to invest and relies on market competition to provide the stimulus for cost 
reductions. Both public R&D and deployment support are expected to have a positive impact 
on private R&D. 
 
In some sectors the benefits from innovation can be captured by firms without direct support 
for deployment, other than bringing down institutional barriers and via setting standards. This 
is particularly so in sectors that rely on incremental innovations to improve efficiency rather 
than a step change in technology, since the cost gap is unlikely to be so large. In these 
sectors firms may be comfortable to invest in the learning cost of developing low-emission 
technologies. 
 
Firms with products that are associated with greenhouse gas emissions are increasingly 
seeking to diversify in order to ensure their long-run profitability. Oil firms are increasingly 
investing in low-emission energy sources. General Electric’s Ecomagination initiative has 
seen the sale of energy efficient and environmentally advanced products and services rise to 
$10.1 billion in 2005, up from $6.2 billion in 2004 - with orders nearly doubling to $17 billion. 
GE’s R&D in cleaner technologies was $700m in 2005 and expected to rise to $1.5 billion per 
annum by 2010.34 Indeed in a number of countries the private sector is running ahead of 
government policy and taking a view on where such policy is likely to go in the future which is 
in advance of what the current government is doing. 
 
R&D and deployment support have been effective in encouraging the development of 
generation technologies in the past 
 
Determining the benefits of both R&D and deployment is not easy. Studies have often 
successfully identified a benefit from R&D but without sufficient accuracy to determine what 
the appropriate level of R&D should be. Estimating the appropriate level is made more difficult 
by the broad range of activities that can be classed as R&D. Ultimately the benefits of 
developing technologies will depend on the amount of abatement that is achieved (and thus 
the avoided impacts) and the long-term marginal costs of abating across all the other sectors 
within the economy (linked to the carbon price), both of which are uncertain. 
 
However, some evidence provides indications of the effectiveness of policy in promoting the 
development of technologies: 
 
• Estimates of R&D benefits. Private returns from economy-wide R&D have been 

estimated at 20-30% whilst the estimated social rate of return was around 50%35. 

                                                 
33 Weak demand-side policies risk wasting R&D investments see Norberg-Bohm and Loiter (1999) and Deutch (2005)
34 Source GE press release May 2006: 
http://home.businesswire.com/portal/site/ge/index.jsp?ndmViewId=news_view&newsId=20060517005223&newsLang
=en&ndmConfigId=1001109&vnsId=681  
35 Kammen and Margolis (1999) 
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While it is private-sector not public-sector R&D that has been positively linked with 
growth, the public-sector R&D can play a vital role in stimulating private spending up 
to the potential point of crowding out36. It also plays an important role in preserving 
the ‘public good’ nature of major scientific advances. Examples of valuable 
breakthroughs stimulated by public R&D must be weighed up alongside examples of 
wasteful projects. 

 
• Historical evidence. Examining the history of existing energy technologies and the 

prominent role that public R&D and initial deployment have played in their 
development illustrates the potential effectiveness of technology policy. Extensive 
and prolonged public support and private markets were both instrumental in the 
development of all generating technologies. Military R&D, the US space programme 
and learning from other markets have also been crucial to the process of innovation 
in the energy sector. This highlights the spillovers that occur between sectors and the 
need to avoid too narrow an R&D focus. This experience has been mirrored in other 
sectors such as civil aviation and digital technologies where the source has also been 
military. Perhaps this is related to the fact that US public defence R&D was eight 
times greater than that for energy R&D in 2006 (US Federal Budget Authority). 
Historical R&D and deployment support has delivered the technological choices of 
the present with many R&D investments that may have seemed wasteful in the 
1980s, such as investments in renewable energy and synfuels, now bearing fruit. The 
technological choices of the coming decades are likely to develop from current R&D. 

 
Box 16.3 Development of existing technology options37  
 
Nuclear: From the early stages of the Cold War, the Atomic Energy Commission in the US, 
created primarily to oversee the development of nuclear weapons, also promoted civilian 
nuclear power. Alic et al38 argue that by exploiting the ‘peaceful atom’ Washington hoped to 
demonstrate US technological prowess and perhaps regain moral high ground after the 
atomic devastation of 1945. The focus on weapons left the non-defence R&D disorganised 
and starved of funds and failed to address the practical issues and uncertainties of 
commercial reactor design. The government’s monopoly of nuclear information, necessary to 
prevent the spreading of sensitive information, meant state R&D was crucial to development.  
 
Gas: The basic R&D for gas turbine technology was carried out for military jet engines during 
World War II. Since then developments in material sciences and turbine design have been 
crucial to the technological innovation that has made gas turbines the most popular 
technology for electricity generation in recent years. Cooling technology from the drilling 
industry and space exploration played an important role. In the 1980s improvements came 
from untapped innovations in jet engine technology from decades of experience in civil 
aviation. Competitive costs have also been helped by low capital costs, reliability, modularity 
and lower pollution levels. 
 
Wind: The first electric windmills were developed in 1888 and reliable wind energy has been 
available since the 1920s. Stand-alone turbines were popular in the Midwestern USA prior to 
centrally generated power in the 1940s. Little progress was made until the oil shocks led to 
further investment and deployment, particularly in Denmark (where a 30% capital tax break 
(1979-1989) mandated electricity prices (85% of retail) and a 10% target in 1981 led to 
considerable deployment) and California where public support led to extensive deployment in 
the 1980s. Recent renewable support programmes and technological progress have 
encouraged an average annual growth rate of over 28 % over the past ten years39.  
 
Photovoltaics: The first PV cells were designed for the space programme in the late 1950s. 
They were very expensive and converted less than 2% of the solar energy to electricity.  Four 
decades of steady development, in the early phases stimulated by the space programme, 
have seen efficiency rise to nearly 25% of the solar energy in laboratories, and costs of 
commercial cells have fallen by orders of magnitude. The need for storage or ancillary power 

                                                 
36 When public expenditure limits private expenditure by starving it of potential resources such as scientists OECD 
(2005) 
37 Alic, Mowery and Rubin (2003) 
38 Alic, Mowery and Rubin (2003) 
39 Global Wind Energy Council http://www.gwec.net/index.php?id=13  
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sources have held the technology back but there have been some niche markets in remote 
locations and, opportunities to reduce peak demand in locations where solar peaks and 
demand peaks coincide.  
 
Public support has been important. A study by Norberg-Bohm40 found that, of 20 key 
innovations in the past 30 years, only one of the 14 they could source was funded entirely by 
the private sector and nine were totally public. Recent deployment support led the PV market 
to grow by 34% in 2005.  Nemet41 explored in more detail how the innovation process 
occurred. He found that, of recent cost reductions, 43% were due to economies of scale, 30% 
to efficiency gains from R&D and learning-by-doing, 12% due to reduced silicon costs (a 
spillover from the IT industry).  
 
 
• Learning curve analysis. Learning curves, as shown in Box 9.4 and in other 

studies42, show that increased deployment is linked with cost reductions suggesting 
that further deployment will reduce the cost of low-emission technologies. There is a 
question of causation since cost reductions may lead to greater deployment; so 
attempts to force the reverse may lead to disappointing learning rates. The data 
shows technologies starting from different points and achieving very different learning 
rates. The increasing returns from scale shown in these curves can be used to justify 
deployment support, but the potential of the technologies must be evaluated and 
compared with the costs of development.  

 
16.5 Research, development and demonstration policies 
 
Government has an important role in directly funding skills and basic knowledge 
creation for science and technology 
 
At the pure science end of the spectrum, the knowledge created has less direct commercial 
application and exhibits the characteristics of a ‘public good’. At the applied end of R&D, there 
is likely to be a greater emphasis on private research, though there still may be a role for 
some public funding.  
 
Governments also fund the education and training of scientists and engineers. Modelling for 
this review suggests that the output of low-carbon technologies in the energy sector will need 
to expand nearly 20-fold over the next 40-50 years to stabilise emissions, requiring new 
generations of engineers and scientists to work on energy-technology development and use. 
The prominent role of the challenge of climate change may act as an inspiration to a new 
generation of scientists and spur a wider interest in science. 
 
R&D funding should avoid volatility to enable the research base to thrive. Funding cycles in 
some countries have exhibited ‘roller-coaster’ variations between years, which have made it 
harder for laboratories to attract, develop, and maintain human capital. Such volatility can also 
reduce investors’ confidence in the likely returns of private R&D. Kammen43 found levels 
changed by more than 30% in half the observed years. Similarly it may be difficult to expand 
research capacity very quickly as the skilled researchers may not be available. Governments 
should seek to avoid such variability, especially in response to short-term fuel price 
fluctuations. The allocation of public R&D funds should continue to rely on the valuable peer 
review process and this should include post-project evaluations and review to maximise the 
learning from the research. Research with clear objectives but without over-commitment to 
narrow specifications or performance criteria can eliminate wasteful expenditures44 and allow 
researchers more time to apply to their research interests and be creative. 
 
Governments should seek to ensure that, in broad terms, the priorities of publicly funded 
institutions reflect those of society. The expertise of the researchers creates an information 
asymmetry with policymakers facing a challenge in selecting suitable projects. Arms-length 

                                                                                                                                            
40 Norberg-Bohm (2000)  
41 Source: Nemet, in press 
42 For an example Taylor, Rubin and Nemet (2006) 
43 Kammen (2004) 
44 Newell and Chow (2004) 
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organisations and expert panels such as research-funding bodies may be best placed to 
direct funding to individual projects. 
 
Three types of funding are required for university research funding. 
• Basic research time and resources for academic staff to pursue research that 

interests them. 
• Research programme funding (such as research councils) that directs funding 

towards important areas. 
• Funding to encourage the transfer of knowledge outside the institution. The 

dissemination of information encourages progress to be applied and built on by other 
researchers and industry and ensures that it not be unnecessarily duplicated 
elsewhere. 

 
Research should cover a broad base and not just focus on what are currently considered key 
technologies, including basic science and some funding to research the more innovative 
ideas45 to address climate change. Historical examples of technological progress when the 
research was not directed towards specific economic applications (such as developments in 
nanotechnology, lasers and the transistor) highlight the importance of open-ended problem 
specification. There must be an appropriate balance between basic science and applied 
research projects46. Increases in energy R&D (as discussed in the final section of this 
chapter) can be complemented by increased funding for science generally. The potential 
scale of increase in basic science will vary by country depending on their current level and 
research capabilities47. 
 
There may also be a case for demonstration funding to prove viability and reduce risk. An 
example of this is the UK DTI’s ‘Wave and Tidal Stream Energy Demonstration Scheme’ that 
will support demonstration projects undertaken by private firms. This has many features to 
encourage the projects and maximise learning through provision of test site and facilities and 
systematic comparison of competing alternatives. Governments can help such projects 
through providing infrastructure. Demonstration projects are best conducted or at least 
managed by the private sector.48

 
Energy storage is worthy of particular attention 
 
Inherent uncertainty on fruitful areas of research ensures governments should be cautious 
against picking winners. However, some areas of research suggest significant potential 
through a combination of probability of success, lead-times and global reward for success. 
Priorities for scientific progress in the energy sector should include PV (silicon and non-silicon 
based), biofuel conversion technologies, fusion, and material science.  
 
As markets expand, all the key low carbon primary energy sources will run into constraints. 
Nuclear power will be confined to base-load electricity generation unless energy storage is 
available to enable its energy to follow loads and contribute to the markets for transport fuels. 
Intermittent renewable energy forms with backup generation will face the same problem. 
Electricity generation from fossil fuels with carbon capture and storage will likewise be unable 
to enter the transport markets unless improved and lower cost forms of hydrogen storage or 
new battery technology are developed. Solar energy can in theory meet the world’s energy 
needs many times over, but will, like energy from wind, waves and tides, eventually depend 
on the storage problem being solved.  
 
The analysis of the costs of climate change mitigation in Chapter 9 provides further 
confirmation of the need for an expansion of RD&D activities in energy storage technologies. 
A failure to develop such technologies will inevitably increase the costs of mitigation once low-
emission options for electricity generation are exploited. In contrast, success in this area will 
                                                 
45 For some examples, see Gibbs (2006) 
46 Newell and Chow (2004) 
47 In 2004 the UK Government published a ten-year Science and Innovation Investment Framework, which set a 
challenging ambition for public and private investment in R&D to rise from 1.9% to 2.5% of UK GDP, in partnership 
with business; as well as the policies to underpin this.  An additional £1 billion will be invested in science and 
innovation between 2005-2008, equivalent to real annual growth of 5.8% and to continue to increase investment in 
the public science base at least in line with economic growth. http://www.dti.gov.uk/science/science-
funding/framework/page9306.html  
48 Newell and Chow (2004) 
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allow low-emission sources to provide energy in other sectors, such as transport. Current 
R&D and demonstration efforts on hydrogen production and storage along with other 
promising options for storing energy (such as advanced battery concepts) should be 
increased. This should include research on devices that convert the stored energy, such as 
the fuel cell. 
 
In the case of applied energy research, partnership between the public and private 
sectors is key 
 
It is important that public R&D leverages private R&D and encourages commercialisation. 
Ultimately the products will be brought into the market by private firms who have a better 
knowledge of markets, and, so it is important that public R&D maintains the flow of knowledge 
by ensuring public R&D complements the efforts of the private sector. 
 
The growth and direction of private R&D efforts will be a product of the incentives for low-
emission investments provided by the structure of markets and public policies. Public R&D 
should aim to complement, not compete, with private R&D, generally by concentrating on 
more fundamental, longer-term possibilities, and by sharing in the risks of some larger-scale 
projects such as CCS. In many areas the private sector will make research investments 
without public support, as has been the case recently on advanced biofuels (see Box 16.4). 
 
Box 16.4 Second generation biofuels 
 
Cellulosic ethanol is a not-yet-commercialized fuel derived from woody biomass. In his 2006 
State of the Union address, Bush praised the fuel's potential to curb the nation's “addiction 
to foreign oil”. A joint study by the Departments of Agriculture and Energy49 concludes that 
U.S. biomass feedstocks could produce enough ethanol to displace 30 percent of the 
nation's gasoline consumption by 2030. 
 
In May 2006, Goldman Sachs & Co became the first major Wall Street firm to invest in the 
technology. Goldman Sachs & Co invested more than $26 million in Iogen Corp., an Ottawa-
based company that operates the world's first and only demonstration facility that converts 
straw, corn stalks, switchgrass and other agricultural materials to ethanol. Iogen hopes to 
begin construction on North America's first commercial cellulosic ethanol plant next year.  
 
In September 2006 Richard Branson announced plans to invest $3 billion in mitigating 
climate change. Some of this will be invested in Virgin Fuels, which will develop biofuels 
including cellulosic ethanol. 
 
 
The OECD50 found that economic growth was closely linked to general private R&D, not 
public R&D, but that public R&D plays a vital role in stimulating private spending. There is 
evidence51 from the energy sector that patents do track public R&D closely, which suggests 
that they successfully spur innovation and private sector innovation. R&D collaboration 
between the public and private-sector is one way of reducing the cost and risks of R&D.  
 
The public sector could fund private sector research through competitive research funding, 
with private sector companies bidding for public funds as public organisations currently do 
from research councils. Prizes to reward innovation can be used to encourage breakthroughs. 
Historically they have proved very successful but defining a suitable prize can be 
problematic52. An alternative approach, as suggested for the pharmaceutical sector, is to 
commit to purchase new products to reward those that successfully innovate.53

 

                                                 
49 US Departments of Agriculture and Energy (2005) 
50 OECD (2005) 
51 Kammen and Nemet (2005) 
52  Newell and Wilson (2005)
53 Kremer and Glennerster (2004) 
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Box 16.5 Public-private research models - UK Energy Technologies Institute54 
 
In 2006, the UK launched the Energy Technologies Institute (ETI). It will be funded on a 50:50 
basis between private companies and the public sector with the government prepared to 
provide £500 million, creating the potential for a £1 billion institute over a minimum lifetime of 
ten years. 
 
The institute will aim to accelerate the pace and volume of research directed towards the 
eventual deployment of the most promising research results. ETI will work to existing UK 
energy policy goals including a 60% reduction in emissions by 2050. 
 
The ETI will select, commission, fund, manage and, where appropriate, undertake research 
programmes. Most investment will focus on a small number of key technology areas that have 
greatest promise for deployment and contributing to low-emission secure energy supplies. 

 
 

16.6 Deployment policy 
 
A wide range of policies to encourage deployment are already in use.  
 
In addition to direct emissions pricing through taxes and trading and R&D support, there are 
strong arguments in favour of supporting deployment in some sectors when spillovers, lock-in 
to existing technologies, or capital market failures prevent the development of potentially low-
cost alternatives.  Without support the market may never select those technologies that are 
further from the market but may nevertheless eventually prove cheapest. Policies to support 
deployment exist throughout the world including many non-OECD countries55. China and 
India have both encouraged large-scale renewable deployment in recent years and now have 
respectively the largest and fifth largest renewable energy capacity worldwide56. 
 
There is some deployment support for clean technologies in most developed countries. The 
mechanism of support takes many forms though the costs are generally passed onto the 
consumer. The presence of a carbon price reduces the cost and requirement for deployment 
support. Deployment support is generally a small component of price when spread across all 
consumption (see Box 16.7) but does add to the impact of carbon pricing on electricity prices. 
Policymakers should consider the impact of deployment support on energy prices over time. 
Consumers will be paying for the development of technologies that benefit consumers in the 
future. 
 

                                                 
54 http://www.dti.gov.uk/science/science-funding/eti/page34027.html  
55 Page 20 REN 21 Renewables global status report 2005  -  See page 20 REN 21 (2005)  
56 Figures from 2005 - excluding large scale hydropower. Page 6 REN 21 (2006) 
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Box 16.6 Examples of existing deployment incentives 
 
• Fiscal incentives: including reduced taxes on biofuels in the UK and the US; 

investment tax credits. 
• Capital grants for demonstrator projects and programmes: clean coal programmes in 

the US; PV ‘rooftop’ programmes in the US, Germany and Japan; investments in 
marine renewables in the UK and Portugal; and numerous other technologies in their 
demonstration phase. 

• Feed-in tariffs are a fixed price support mechanism that is usually combined with a 
regulatory incentive to purchase output: examples include wind and PVs in Germany; 
biofuels and wind in Austria; wind and solar schemes in Spain, supplemented by 
‘bonus prices’; wind in Holland. 

• Quota based schemes: the Renewable Portfolio Standards in twenty three US 
States; the vehicle fleet efficiency standards in California 

• Tradable quotas: the Renewables Obligation and Renewable Transport Fuels 
Obligation in the UK. 

• Tenders for tranches of output (the former UK Non Fossil Fuel Obligation) with 
increased output prices subsidised out of the revenues from a general levy on 
electricity tariffs. 

• Subsidy of the infrastructure costs of connecting new technologies to networks. 
• Procurement policies of public monopolies: This was the approach historically of 

the public monopolies in electricity for purchase of nuclear power throughout the 
OECD; it is currently the approach in China. It is often combined with regulatory 
agreements to permit recovery of costs, soft loans by governments, and, in the case 
of nuclear waste, government assumption of liabilities.  

 

• Procurement policies of national and local governments: these include 
demonstrator projects on public buildings; use of fuel cells and solar technologies by 
defence and aerospace industries; hydrogen fuel cell buses and taxis in cities; energy 
efficiency in buildings. 

The deployment mechanisms described in Box 16.6 can be characterised as price or quantity 
support, with some tradable approaches containing elements of both. The costs of these 
policies are generally passed directly on to consumers though some are financed from 
general taxation. When quantity deployment instruments are not tradable, the policymaker 
should consider whether there are sufficient incentives to strive for cost reductions and 
whether the supplier can profit from passing an excessive cost burden onto the consumer. If 
the level of a price deployment instrument is too low no deployment will occur, while if it is too 
high large volumes of deployment will occur with financial rewards for participants which are 
essentially government created rents. With tradable quantity instruments, the market is left to 
determine the price, usually with tradable certificates between firms. This does lead to price 
uncertainty. If the quantity is too high, bottlenecks may lead to a high cost. If the quantity is 
too low, there may not be sufficient economies of scale to reduce the cost. 
 
Both sets of instruments have proved effective but existing experience favours price-based 
support mechanisms. Comparisons between deployment support through tradable quotas 
and feed-in tariff price support suggest that feed-in mechanisms achieve larger deployment at 
lower costs57. Central to this is the assurance of long-term price guarantees. The German 
scheme, as described in Box 16.7 below, provides legally guaranteed revenue streams for up 
to twenty years if the technology remains functional. Whilst recognising the importance of 
planning regimes for both PV and wind, the levels of deployment are much greater in the 
German scheme and the prices are lower than comparable tradable support mechanisms 
(though greater deployment increases the total cost in terms of the premium paid by 
consumers). Contrary to criticisms of the feed-in tariff, analysis suggests that competition is 
greater than in the UK Renewable Obligation Certificate scheme. These benefits are logical 
as the technologies are already prone to considerable price uncertainties and the price 
uncertainty of tradable deployment support mechanisms amplifies this uncertainty. 
Uncertainty discourages investment and increases the cost of capital as the risks associated 
with the uncertain rewards require greater rewards.  
 
 

                                                 
57 Butler and Neuhoff (2005); EC (2005); Ragwitz, and Huber (2005); Fouquet et al (2005) 
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Box 16.7 Deployment support in Germany  
 
Feed-in tariffs have been introduced in Germany to encourage the deployment of onshore 
and offshore wind, biomass, hydropower, geothermal and solar PV58. The aim is to meet 
Germany’s renewable energy goals of 12.5% of gross electricity consumption in 2010 and 
20% in 2020. The policy also aims to encourage the development of renewable technologies, 
reduce external costs and increase the security of supply. 
 
Each generation technology is eligible for a different rate. Within technologies the rate varies 
depending on the size and type. Solar energy receives between €0.457 to 0.624 per kWh 
while wind receives €0.055 to 0.091per kWh. Once the technology is built the rate is 
guaranteed for 20 years. The level of support for deployment in subsequent years declines 
over time by 1% to 6.5% each year with the rate of decline derived from estimated learning 
curves59. 
 
In 2005 10.2% of electricity came from renewables (70% supported with feed-in tariffs) the 
Federal Environment Ministry (BMU) estimate that the current act will save 52 million tonnes 
on CO2 in 2010. The average level of feed-in tariff was €0.0953 per kWh in 2005 (compared 
to an average cost of displaced energy of €0.047 kWh). The total level of subsidy was €2.4 
billion Euro at a cost shared all consumers of €0.0056 per kWh (3% of household electricity 
costs)60. There are an estimated 170,000 people working in the renewable sector with an 
industry turnover of €8.7 billion.61

 
The 43.7 TWh of electricity covered by the feed in tariffs was split mostly between wind 
(61%), biomass (19%) and hydropower (18%). It has succeeded in supporting several 
technologies. Solar accounted for 2% (0.2% of total electricity) with an average growth rate of 
over 90% over the last four years. Despite photovoltaic’s low share Germany has a significant 
proportion of the global market with 58% of the capacity installed globally in 2005 (39% of the 
total installed capacity) and 23% of global production.62

 
 
Regulation can also be used to encourage deployment, for example by reducing uncertainty 
and accelerating spillover effects, and may be preferable in certain markets (see Chapter 17 
for details). Performance standards encourage uptake and innovation in efficient technologies 
by establishing efficiency requirements for particular goods, in particular encouraging 
incremental innovation Alternatively, technology specific design standards can be targeted 
directly at the cleanest technologies by mandating their application or banning alternatives. 
 
There are already considerable sums of money spent on supporting technology deployment. 
It is estimated that $10 billion63 was spent in 2004 on renewable deployment, around $16 
billion is spent each year supporting existing nuclear energy and around $6.4billion64 is spent 
each year supporting biofuels. The total support for these low-carbon energy sources is thus 
$33 billion each year. Such sums are dwarfed by the existing subsidies for fossil fuels 
worldwide that are estimated at $150 billion to 250 billion each year. All these costs are 
generally paid by the consumer. 
 
Technology-neutral incentives should be complemented by focused incentives to bring 
forward a portfolio of technologies 
 
Policy frameworks can be designed to treat support to all low-carbon technologies in a 
‘technology-neutral’ way. The dangers of public officials ‘picking winners’ should point to this 

                                                 
58 Originally introduced in 1991 with the Electricity Feed Act this was replaced in 2000 with the broader Act on 
Granting Priority to Renewable Energy Sources (Renewable Energy Sources Act) and amended in 2004 
http://www.ipf-renewables2004.de/en/dokumente/RES-Act-Germany_2004.pdf  
59 Small hydropower does not decline and is guaranteed for 30 years and large hydropower only 15 years. 
60BMU (2006a) 
61 BMU (2006b) 
62 http://www.iea-pvps.org/isr/index.htm  
63 Deployment share of figure page 16 REN 21, 2005 grossed up to global figure based on IEA deployment figures. 
Nuclear figure from same source. 
64 Based on global production of 40 billion litres and on an average support of £0.1 per litre and a PPP exchange rate 
of $1.6 to £1 
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as the starting point in most sectors. Markets and profit orientated decisions, where the 
decision maker is forced to look carefully at cost and risk are better at finding the likely 
commercial successes. However, the externalities, uncertainties and capital market problems 
in some sectors combine with the urgency of results and specificity of some of the 
technological problems that need to be solved when tackling climate change, all point to the 
necessity to examine the issues around particular technologies and ensure that a portfolio 
develops.  
 
The policy framework of deployment support could differentiate between technologies, 
offering greater support to those further from commercialisation, or having particular strategic 
or national importance. This differentiation can be achieved several ways, including 
technology-specific quotas, or increased levels of price support for certain technologies. 
Policies to correct the carbon externality (taxes / trading) are, and should continue to be, 
technology neutral. Technology neutrality is also desirable for deployment support if the aim is 
to deliver least cost reductions to meet short-term targets, since the market will deliver the 
least-cost technology.  
 
However, as has already been discussed, the process of learning means that longer-
established technologies will tend to have a price advantage over newer technologies, and 
untargeted support will favour these more developed technologies and bring them still further 
down the learning curve. This effect can be seen in markets using technology-neutral 
instruments: in the USA, onshore wind accounts for 92% of new capacity in green power 
markets65. 
 
This concentration on near-to-market technologies will tend to work to the exclusion of other 
promising technologies, which means that only a very narrow portfolio of technologies will be 
supported, rather than the broad range which Part III of this report shows are required. This 
means technology neutrality may be cost efficient in the short term, but not over time.  
 
Most deployment support in the electricity generation sector has been targeted towards 
renewable and nuclear technologies. However, significant reductions are also expected from 
other sources. As highlighted in Box 9.2 carbon capture and storage (CCS) is a technology 
expected to deliver a significant portion of the emission reductions. The forecast growth in 
emissions from coal, especially in China and India, means CCS technology has particular 
importance. Failure to develop viable CCS technology, while traditional fossil fuel generation 
is deployed across the globe, risks locking-in a high emissions trajectory. The demonstration 
and deployment of CCS is discussed in more detail in Chapter 24. Stabilising emissions 
below 550ppm CO2e will require reducing emissions from electricity generation by about 
60%66. Without CCS that would require a dramatic shift away from existing fossil-fuel 
technologies.67

 
Policies should have a clear review process and exit strategies, and governments must 
accept that some technologies will fail.  
 
Uncertainty over the economies of scale and learning-by-doing means that some 
technological failures are inevitable. Technological failures can still create valuable 
knowledge, and the closing of technological avenues narrows the investment options and 
increases confidence in other technologies (as they face less alternatives). The Arrow-Lind 
theorem68 states that governments are generally large enough to be risk neutral as they are 
large enough to spread the risk and thus have a role to play in undertaking riskier 
investments. It is not a mistake per se to buy insurance or a hedge that later is not needed 
and that is in many ways a suitable analogy for fostering a wider portfolio of viable 
technologies than the market would do by itself69. 
 
Credibility is also important to policy design. Policies benefit from providing clear, bankable, 
signals to business. There is a role for monitoring and for a clear exit strategy to prevent 
excessive costs and signal the ultimate goal of these policies: competition on a level playing 

                                                 
65 Bird and Swezey (2005) 
66 This is consistent with the IEA ACT scenarios see Box 9.7 
67 For more on CCS see Boxes 9.2 and 24.8 and Section 24.3 
68 Arrow and Lind (1970) 
69 Deutch (2005) 
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field. A good example has been the Japanese rebates in the ‘Solar Roofs’ programme, which 
have declined gradually over time, from 50% of installed cost in 1994 to 12% in 2002 when 
the scheme ended. 
 
Alternative approaches can also help spur the deployment of new innovations. For example, 
extension services, the application of scientific research and new knowledge to agricultural 
practices through farmer education, had a significant impact on the deployment of new crop 
varieties during the Green Revolution. Also, organisations such as the Carbon Trust in the 
UK, Sustainable Development Technologies Canada, established by governments but 
independent of them to allow the application of business acumen, have proved successful in 
encouraging investment in the development and demonstration of clean technologies. They 
can play an important role at each stage of the technology process, from R&D to ensuring 
their widespread deployment once they have become cost effective. They have proved 
especially successful in acting as a “stamp of approval” that spurs further venture capital 
investment. Finding niche markets and building these into large-scale commercialisation 
opportunities is a key challenge for companies with promising low carbon technologies. These 
organisations are at the forefront of identifying niche markets for commercialisation of new 
technologies and promoting public-private investment in deployment.   
 
16.7 Other supporting policies  
 
Other policies have an important impact on the viability of technologies.  
 
There are many other policy options available to governments that can affect technology 
deployment and adoption. Governments set policies such as the planning regime and building 
standards. How these are set can have an important impact on the adoption of new 
technologies. They can constrain deployment either directly or indirectly by increasing costs. 
Regulations can stifle innovation, but if well designed they can drive innovation. Depending 
how these are set, they can act as a subsidy to low-emission alternative technologies or to 
traditional fossil fuels. Setting the balance is difficult, since their impacts are hard to value. But 
they must be considered since they can have an important effect on the outcome. 
 
• The intellectual property regime can act as an incentive to the innovator, but the 

granting of the property right can also slow the dissemination of technological 
progress and prohibit others from building on this innovation. Managing this balance 
is an important challenge for policymakers.  

 
• Planning and licensing regulations have proven a significant factor for nuclear, wind 

and micro-generation technologies. Planning can significantly increase costs or, in 
many cases, prevent investments taking place. Local considerations must be set 
against wider national or global concerns. 

 
• It is important how governments treat risks and liabilities such as waste, safety or 

decommissioning costs for nuclear power or liabilities for CO2 leakage from CCS 
schemes. Governments can bear some of these costs but, unless suppliers and 
ultimately consumers are charged for this insurance, it will be a subsidy. 

 
• Network issues are particularly important for energy and transport technologies. The 

existing transport network and infrastructure, especially fuel stations, is tailored to 
fossil fuel technologies.  

 
• Intermittent technologies such as wind and solar may be charged a premium if they 

require back-up sources. How this is treated can directly affect economic viability, 
depending on the extent of the back-up generation required and the premium 
charged. 

 
• Micro-generation technologies can sell electricity back to the grid and do not incur the 

same distribution costs and transmission losses as traditional much larger sources. 
The terms under which such issues are resolved has an important impact on the 
economics of these technologies. Commercially proven low-carbon technologies 
require regulatory frameworks that recognise their value, in terms of flexibility and 
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modularity70, within a distributed energy system. Regulators should innovate in 
response to the challenge of integrating these technologies to exploit their potential, 
and unlock the resultant opportunities that arise from shifting the generation mix away 
from centralised sources. 

 
• Capacity constraints may arise because of a shortage in a required resource. For 

example, there may be a shortage of skilled labour to install a new technology. 
 
• There are other institutional and even cultural barriers that can be overcome. Public 

acceptability has proven an issue for both wind and nuclear and this may also be the 
case for hydrogen vehicles. Consumers may have problems in finding and installing 
new technologies.  Providing information of the risks and justification of particular 
technologies can help overcome these barriers. 

 
16.8 The scale of action required  
 
Extending and expanding existing deployment incentives will be key 
 
Deployment policies encourage the private sector to develop and deploy low-carbon 
technologies. The resulting cost reductions will help reduce the cost of mitigation in the future 
(as explained in Chapter 10). Consumers generally pay the cost of deployment support in the 
form of higher prices. Deployment support represents only a proportion of the cost of the 
technology as it leverages private funds that pay for the market price element of the final cost.  
 
It is estimated that existing deployment support for renewables, biofuels and nuclear energy is  
$33 billion each year (see Section 16.6). The IEA’s Energy Technology Perspectives71 looks 
at the impact of policies to increase the rate of technological development. It assumes that 
$720billion of investment in deployment support occurs over the next two to three decades. 
This estimate is on top of an assumed carbon price (whether through tax, trading or implicitly 
in regulation) of $25 per tonne of CO2. If the IEA figure is assumed to be additional to the 
existing effort, it suggests an increase of deployment incentives of between 73% and 109%, 
depending on whether this increase is spread over two or three decades. 
 
The calculations shown in Section 9.8 include estimates of the level of deployment incentives 
required to encourage sufficient deployment of new technologies (consistent with a 550ppm 
CO2e stabilisation level). The central estimates from this work are that the level of support 
required will have to increase deployment incentives by 176% in 2015 and 393% in 202572. 
These estimates are additional to an assumed a carbon price at a level of $25 per tonne of 
CO2.  
 
At this price the abatement options are forecast to become cost effective by 2075 so the level 
of support tails off to zero by this time. If policies lead to a price much higher than this before 
the technologies are cost effective then less support will be required. Conversely if no carbon 
price exists the level of support required will have to increase (by a limited amount initially but 
by much larger amounts in the longer term). While most of this cost is expected to be passed 
on to consumers, firms may be prepared to incur a proportion of this learning cost in order to 
gain a competitive advantage. 
 
Such levels of support do represent significant sums but are modest when compared with 
overall levels of investment in energy supply infrastructure ($20 trillion up to 203073) or even 
estimates of current levels of fossil-fuel subsidy as shown in the graph below.74  
 
 
 
 
 
 

                                                 
70 Small-scale permits incremental additions in capacity unlike large technologies such as nuclear generation. 
71Page 58,  IEA (2006) 
72 See papers by Dennis Anderson available at www.sternreview.org.uk  
73 IEA (in press) 
74 In this graph mid points in the fossil fuel subsidy range is used in and the IEA increase made over a 20 year period. 
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Figure 16.7 Estimated scale of current and necessary global deployment support 
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The level of support required to develop abatement technologies depends on the carbon price 
and the rate of technological progress, which are both uncertain. It is clear from these 
numbers that the level of support should increase in the decades to come, especially in the 
absence of carbon pricing. Based on the numbers above, an increase of 2-5 times current 
levels over the next 20 years should help encourage the requisite levels of deployment 
though this level should be evaluated as these uncertainties are resolved. 
 
The scale is, however, not the only issue. It is important that this support is well structured to 
encourage innovation at low cost. A diverse portfolio of investments is required as it is 
uncertain which technologies will prove cheapest and constraints on individual technologies 
will ensure that a mix is necessary. Those technologies that are likely to be the cheapest 
warrant more investment and these may not be those that are the currently the lowest cost. 
This requires a reorientation of public support towards technologies that are further from 
widespread diffusion.  
 
Some countries are already offering significant support for new technologies but globally this 
support is patchy. Issues on coordinating deployment support internationally to achieve the 
required diversity and scale are examined in Chapter 24. 
 
Global energy R&D funding is at a low level and should rise 
 
Though benefits of R&D are difficult to evaluate accurately a diverse range of indicators 
illustrate the benefits of R&D investments. Global public energy R&D support has declined 
significantly since the 1980s and this trend should reverse to encourage cost reductions in 
existing low-carbon technologies and the development of new low-carbon technological 
options. The IEA R&D database shows a decline of 50% in low-emission R&D75 between 
1980 and 2004. This decline has occurred while overall government R&D has increased 
significantly76. A recent IEA publication on RD&D priorities77 strongly recommends that 
governments consider restoring their energy RD&D budgets at least to the levels seen, in the 
early 1980s. This would involve doubling the budget from the current level of around $10 

                                                 
75 For countries available includes renewables, conservation and nuclear. The decline is 36% excluding nuclear. 
76 OECD R&D database shows total public R&D increasing by nearly 50% between 1988 and 2004 whilst public 
energy R&D declined by nearly 20% over the same period. 
77 Page 19 OECD (2006) 
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billion78. This is an appropriate first step that would equate to global levels of public energy 
R&D around $20 billion each year.  
 
Figure 16.8 Public energy R&D in IEA countries79  
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The directions of the effort should also change. A generation ago, the focus was on nuclear 
power and fossil fuels, including synthetic oil fuels from gas and coal, with comparatively few 
resources expended on conservation and renewable energy. Now the R&D efforts going into 
carbon capture and storage, conservation, the full range of renewable energy technologies, 
hydrogen production and use, fuel cells, and energy storage technologies and systems 
should all be much larger. 
 
A phased increase in funding, within established frameworks for research priorities, would 
allow for the expansion in institutional capacity and increased expertise required to use the 
funding effectively. A proportion of this public money should target be designed to encourage 
private funds, as is proposed for the UK’s Energy Technology Institute (see Box 16.5). 
 
Private R&D should rise in response to market signals. Private energy R&D in OECD 
countries fell in recent times from around $8.5bn at the end of the 1980s to around $4.5bn in 
200380. Significant increases in public energy R&D and deployment support combined with 
carbon pricing should all help reverse this trend and encourage an upswing in private R&D 
levels. 
 
This is not just about the total level of support. How this money is spent is crucial. It is 
important that the funding is spread across a wide range of ideas. It is also important that it is 
structured to provide stability to researchers while still providing healthy competition. There 
should be rigorous assessment of these expenditures to ensure that they maintained at an 
appropriate level. Approaches to encourage international co-operation to achieve these goals 
are explored in Chapter 24. 
 
16.9 Conclusions 
 
This chapter explores the process of innovation and discovers that externality from the 
environmental impact of greenhouse gas emissions exacerbates existing market 
imperfections, limiting the incentive to develop low-carbon technologies. This provides a 
                                                 
78 2005 figure Source: IEA R&D database http://www.iea.org/Textbase/stats/rd.asp
79 Source: IEA Energy R&D Statistics 
80 Page 35, OECD (2006) 
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strong case for supporting the development of new and existing low-carbon technologies, 
particularly in a number of key climate change sectors. The power of market forces is the key 
driver of innovation and technical change but this role should be supplemented with direct 
public support for R&D and, in some sectors, policies designed to create new markets. Such 
policies are required to deliver an effective portfolio of low-carbon technologies in the future. 
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