Development of the Ceramic Adiabatic Engine Having 68% Thermal Efficiency

Hideo Kawamura

(Technical Advisor, Ship and Ocean Foundation)

Fostered by a Nippon Foundation grant from the proceeds of motorboat racing, The Ship and Ocean Foundation, in a joint project with Isuzu Ceramics Research Institute, is sponsoring research into the Ceramic Adiabatic Engine.

The following presentation on the engine was made at the ASME 2000 FALL TECHNICAL CONFERENCE, held in Peoria, United States in September 2000. (ASME the American Society of Mechanical Engineers)

Ship & Ocean Foundation

1

Structure of The Energy Recovering Turbo Charger

Outline of New Combustion System

Specifications and Test Condition

Engine Type	Single Cylinder
Bore × Stroke	132.9 × 145mm
Displacement	2011cm ³
Compression Ratio	16
Pre-Chamber Volume Ratio	20%
Engine Speed	1500rpm
Boost Pressure	187kPa
Exhaust Pressure	187kPa
Fuel Supply	All Fuel into the
	Pre-chamber
Total Air Excess Ratio	=2.3
Throat Valve Opening Timing	bTDC50deg
Cam Profile for Throat Valve	Lower accsleration

Indicator Diagram on EGR ratio: 50%, Fr: 0%

Ship & Ocean Foundation

8

Specifications and Test Condition

Engine Type	Single Cylinder
Bore × Stroke	132.9 × 145mm
Displacement	2011cm ³
Compression Ratio	15
Pre-Chamber Volume Ratio	9%
Engine Speed	1500rpm
Boost Pressure	187kPa
Exhaust Pressure	190kPa
EGR Ratio	Variable
Fuel Supply[Fr]	85%
Fuel Flow Ratio	105NI/min(const.)
Total Air Excess Ratio	1.07-1.45
Throat Valve Opening Timing	bTDC15-35 deg
Cam Profile for Throat Valve	Higher Acceleration Type

Indicator Diagram of L.H.R.E with O2: 17% and HMR 85% of CNG

Comparison of Heat Balance between Conventional Cooled Engine and L.H.R.E

$$CO_2+CH_4+59,190kcal/kmol \longrightarrow 2CO+2H_2 \cdots (1)$$

(In Catalytic Converter)

$$2CO+2H_2+2O_2 \longrightarrow 2CO_2+2H_2O+250,580kcal/2kmol \cdots (Combustion)$$

$$CH_4+2O_2 \longrightarrow CO_2+2H_2O+191,290kcal/kmol \cdots (G)$$

(CH_4 Combustion)

Energy Flow of Reforming CH₄ Engine with L.H.R Structure

Reforming Rate of CH₄ when CH₄ React to CO₂ or H₂O or in Catalytic Converter

15 Ship & Ocean Foundation

Reforming Rate of CH₄ when Temperature or Reforming Gas is Changed(Experimental Data)

Scheme of Investigating System for Separating CO₂

18 Ship & Ocean Foundation

Separating Performance of CO₂ in case of using Conventional Materials

Separating Rate of CO₂ when Carbon Graphite Deposited Phosphoric Acid is Used for Separating Materials

20 Ship & Ocean Foundation

CONCLUSION

- By creating air gaps and a combustion chamber using ceramic components, we developed an "Adiabatic Engine" that substantially reduces heat rejection from the combustion chamber.
- 2. Due to a reduction in the heat loss ratio of the calorific value of the fuel to 5%, the exhaust gas energy increases to 48%. Placing the exhaust gas energy through the "Energy Recovery Turbine" and thereby converting it to engine energy, we were able to achieve 48% thermal efficiency.

- 3. The exhaust gas that leaves the "Energy Recovery Turbine" is vaporized to drive the steam turbine, which enables the thermal efficiency in the ceramic turbo compound engine to increase to 52%.
- 4. In order to efficiently use up the energy that remains in the exhaust gas after the heat exchanger of the steam supply system, we investigated reforming the natural gas fuel and CO2, and converting them into carbon monoxide and hydrogen, therefore absorbing the remaining thermal energy. This increases the calorific value by about 30% and enables the thermal efficiency of the engine to increase to 68%.

5. Aiming at 68% thermal efficiency, the catalytic converter and CO2 separator were developed and the performance target of the system was achieved.