The Great East Japan Earthquake and Current Status of Nuclear Power Stations

- 1. Overview of the Earthquake & Tsunami and Nuclear Accident
- 2. Roadmap towards Restoration from the Accident (Step 2 Completed)
- 3. Current Status of Fukushima Daiichi Nuclear Power Station
- 4. Mid-and-long Term Roadmap

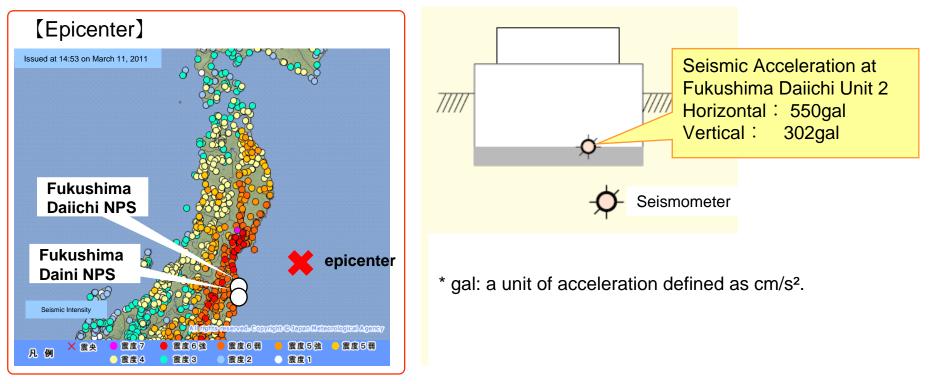
1. Overview of the Earthquake & Tsunami and Nuclear Accident

(Updated January 27, 2012)

Tohoku Pacific Ocean Earthquake

Time: 2:46 pm on Fri, March 11, 2011.	
--	--

Place: Offshore Sanriku coast (northern latitude of 38 degrees, east longitude of 142.9 degrees),
24km in depth, Magnitude 9.0


>Intensity: Level 7 at Kurihara in Miyagi prefecture

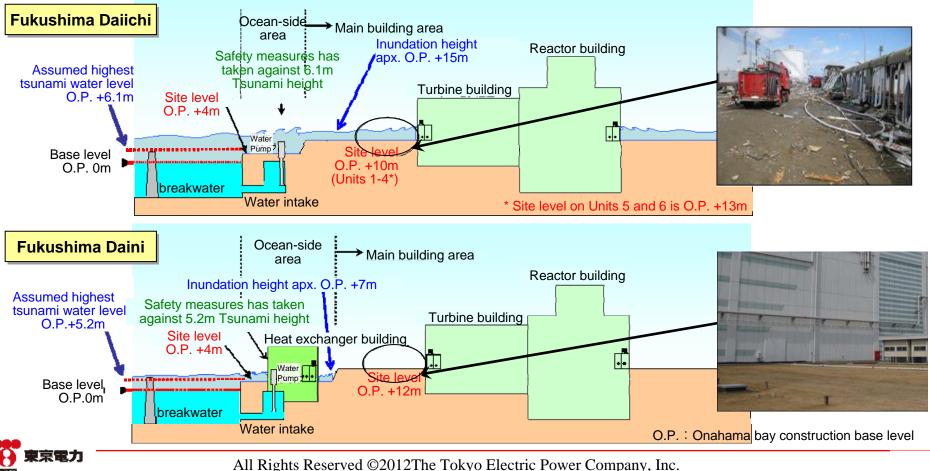
Upper 6 at Naraha, Tomioka, Okuma, and Futaba in Fukushima pref.

Lower 6 at Ishinomaki and Onagawa in Miyagi pref., Tokai in Ibaraki pref.

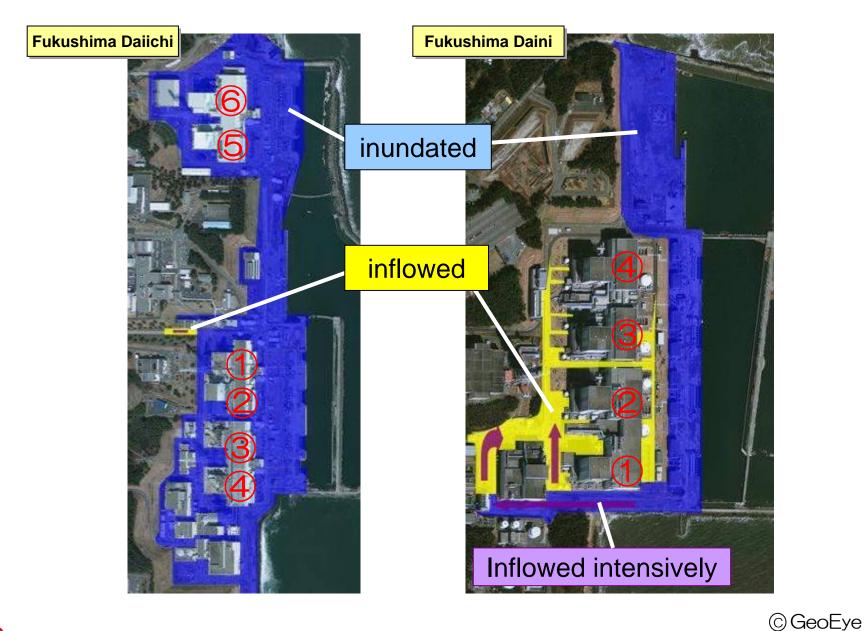
Lower 5 at Kariwa in Niigata pref.

Level 4 at Rokkasho, Higashidori, Mutsu and Ohma in Aomori pref., Kashiwazaki in Niigata pref.

Seismic Observed Data


Comparison between basic Eartiquake Ground Motion and the record of intensity							
Observation Point (The lowest basement of reactor buildings)		Observed data			Maximum Response Acceleration against Basic Earthquake Ground Motion (Gal)		
		Maximum Response Acceleration (gal)					
		Horizontal (N-S)	Horizontal (E-W)	Vertical	Horizontal (N-S)	Horizontal (E-W)	Vertical
Fukushima Daiichi	Unit 1	460	447	258	487	489	412
	Unit 2	348	550	302	441	438	420
	Unit 3	322	507	231	449	441	429
	Unit 4	281	319	200	447	445	422
	Unit 5	311	548	256	452	452	427
	Unit 6	298	444	244	445	448	415
Fukushima Daini	Unit 1	254	230	305	434	434	512
	Unit 2	243	196	232	428	429	504
	Unit 3	277	216	208	428	430	504
	Unit 4	210	205	288	415	415	504

Comparison between Basic Earthquake Ground Motion and the record of intensity



Height of Tsunami

- We assessed the impact of tsunami utilizing the latest bathymetry data, etc. in 2009, and took measures against tsunami, whose height is O.P. +6.1m at Fukushima Daiichi and O.P. +5.2m at Fukushima Daini.
- Inundation height was approximately O.P. +15m at Fukushima Daiichi and approximately O.P. +7m at Fukushima Daini.
- Accordingly, we have confirmed that the impact of Tsunami (water level and inundated area) was relatively larger in Fukushima Daiichi than Fukushima Daini.

Inundated and Inflowed Area at Fukushima Daiichi and Daini Site

Fukushima Daiichi being struck by the tsunami (1)

Taken from near the south side of Unit 5, looking east

Taken from radwaste building 4th floor, looking north

Tank Height about 5.5m (height of ground : O.P.+10m)

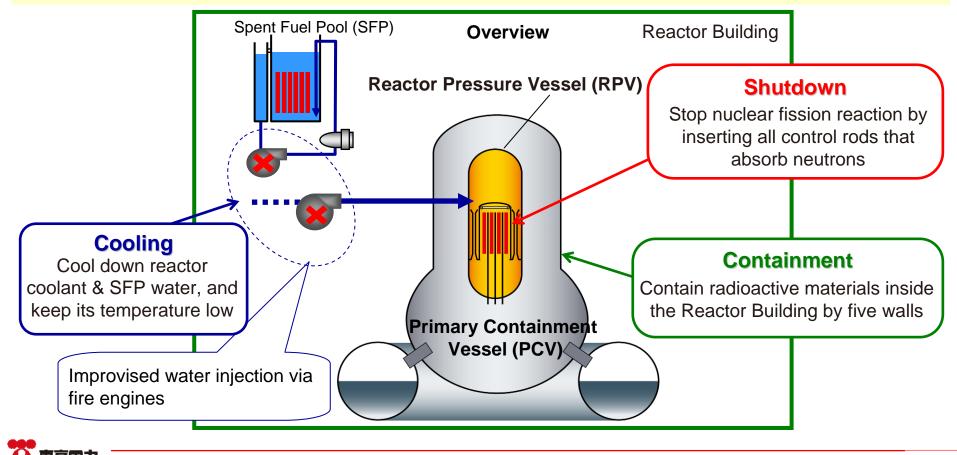
Submerged tank

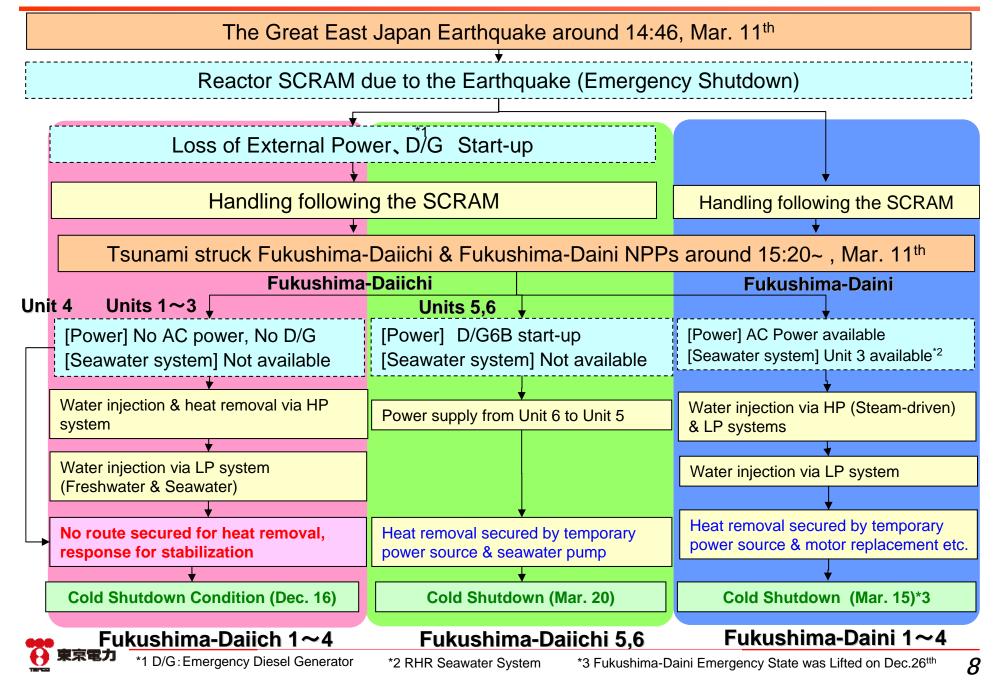
O.P. : Onahama bay construction base level

All Rights Reserved ©2012The Tokyo Electric Power Company, Inc.

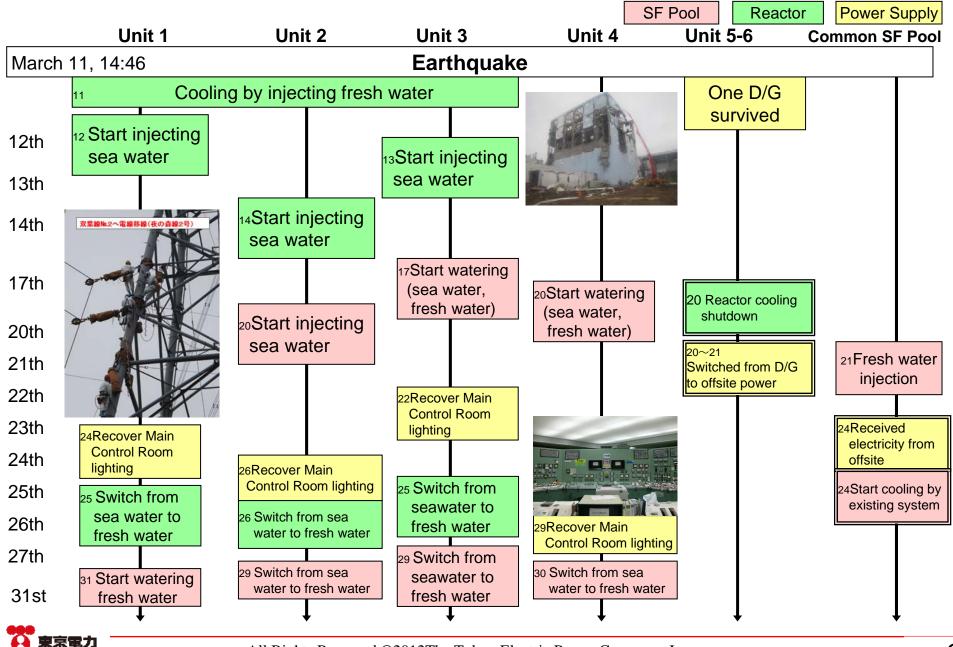
Fukushima Daiichi being struck by the tsunami (2)

Unit 3 Sea Pump Area



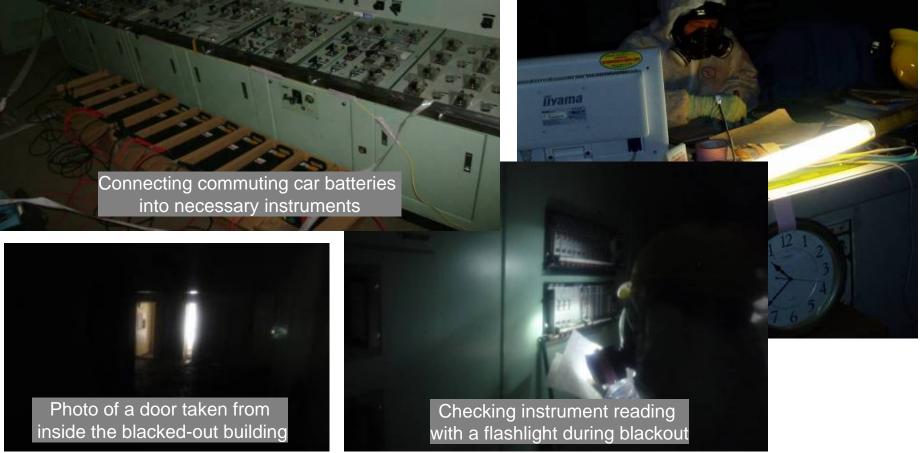


Impacts for Safety Function


- Nuclear fission chain reaction was stopped by automatic shutdown with all control rods inserted at the same time of the earthquake
- Off-site power was lost due to the impact of the earthquake, etc. and emergency generator started up. However emergency power became unavailable due to flooding by the tsunami except for Unit 6.
- Finally the "Cooling" function for the reactors and spent fuel pools of Units 1 to 4 were lost due to the loss of AC power supply and seawater systems, etc. caused by the tsunami.
- Given that high level contaminated water has been found in turbine buildings, "Containment" function is presumed to be impaired.

Progress towards Cold Shutdown Status in each Unit (Outline)

Chronology of Fuel Cooling (Fukushima Daiichi)

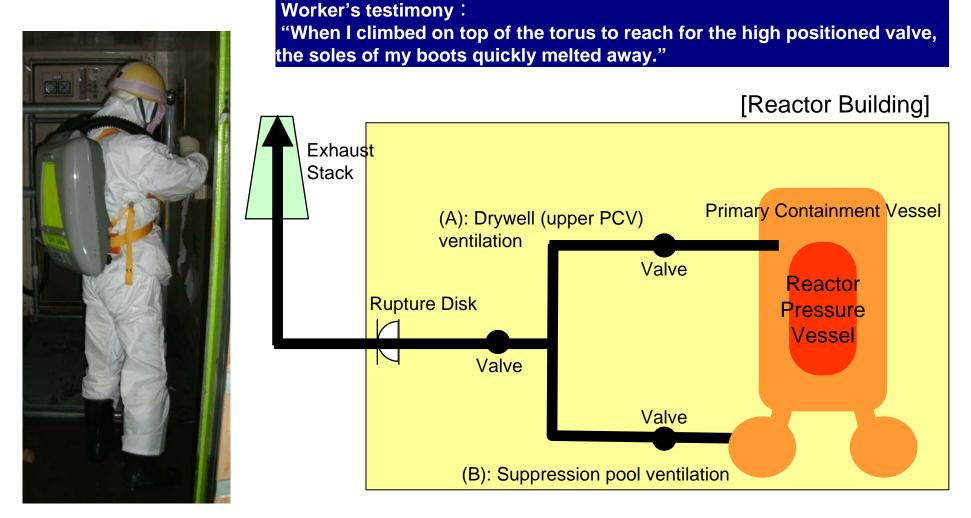

Fukushima-Daiichi Accident response - Main Control Room

On-site testimony :

"When the power source failed, we felt completely helpless."

"Heated discussion broke out among the operators regarding whether it was important to remain in the control room without power and lights."

"I bowed to ask them to remain here and somehow they agreed."


Fukushima-Daiichi Accident Response – Water Injection

On-site testimony: "As the tremendous aftershocks occurred, with our full face masks still on, we frantically headed off to the upper ground." "While laying down cables at night, entailing the search of penetrations and terminal treatment work, we were terrified that we might be electrocuted due to the outside water puddles."

Measure to Decrease Pressure of PCV (Ventilation)

Implemented ventilation to reduce the pressure of Primary Containment Vessel (PCV) in Units 1-3 to prevent PCV from getting over pressured.

INES (International Nuclear Event Scale) Evaluation

> On April 12, Nuclear and Industrial Safety Agency released as below:

- Tentatively assigned Level 7 on INES for the accident at Fukushima Daiichi Nuclear Power Station.
- In this regard however, the amount of released radioactive materials is one-tenth as much as the accident at Chernobyl.

We are wrestling with hurdles such as cooling the reactors or reducing the diffusion of radioactive materials in order to resolve the situation as soon as possible. We will commit in full force to resolve this situation along with close coordination and cooperation with the national and local governments.

	Estimated release fro	(Reference)	
	by NISA*	by Nuclear Safety Commission	Release from Chernobyl
lodine 131 (a)	130 thousands T Bq	150 thousands T Bq	1,800 thousands T Bq
	(1.3X10 ¹⁷ Bq)	(1.5X10 ¹⁷ Bq)	(1.8X10 ¹⁸ Bq)
Cesium 137	6 thousands T Bq	12 thousands T Bq	85 thousands T Bq
	(6.1X10 ¹⁵ Bq)	(1.2X10 ¹⁶ Bq)	(8.5X10 ¹⁶ Bq)
lodine value	240 thousands T Bq	480 thousands T Bq	3,400 thousands T Bq
conversion (b)	(2.4X10 ¹⁷ Bq)	(4.8X10 ¹⁷ Bq)	(3.4X10 ¹⁸ Bq)
(a) + (b)	370 thousands T Bq	630 thousands T Bq	5,200 thousands T Bq
	(3.7X10 ¹⁷ Bq)	(6.3X10 ¹⁷ Bq)	(5.2X10 ¹⁸ Bq)

INES level 7 equivalent : over 10 thousands Tera Becquerel (T Bq) (over 10¹⁶Bq)

Source: Nuclear and Industrial Safety Agency

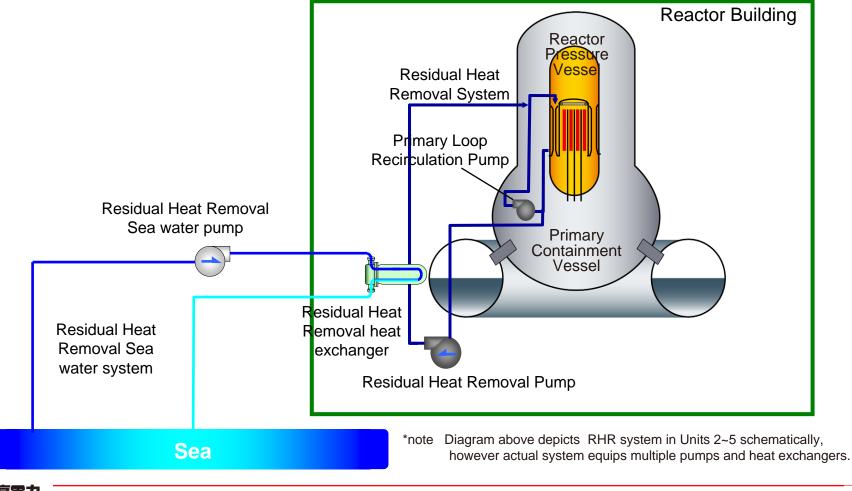
Data released on April 12

*As a result of reanalyzing using immediate post-earthquake plant data etc., the estimated release amount was corrected as follows; Iodine 131 : 1.6×10¹⁷Bq, Cesium 137 : 1.5×10¹⁶ Bq.

Source: "Report of Japanese Government to the IAEA Ministerial Conference on Nuclear Safety", Nuclear Emergency Response Headquarters (June 7, 2011). On the other hand, according to the document of the 31st Nuclear Safety Commission (May 12, 2011), the estimated release amount was corrected as follows due to re-examining the abundance ratio of Iodine and Cesium in the dust;

lodine 131 : 1.5×10^{17} Bq, Cesium 137 : 1.3×10^{16} .

At the 63rd Nuclear Safety Commission (Aug. 22, 2011), the release rate estimated from airborne radioactivity concentration has been partly re-estimated as follows;


lodine 131: 1.5×10¹⁵Bq/h (Mar. 13), 2×10¹⁵Bq/h (7:00am~10:00am, Mar.15), 4×10¹⁵Bq/h (1:00pm~5:00pm, Mar. 15)

[Reference] Core Cooling System under Normal Shutdown

> Nuclear fuels continue to generate decay heat even after stop of fission by control rod insertion

- In order to remove decay heat, "Residual Heat Removal System (RHR)" is installed. RHR pumps circulate reactor coolant and remove heat by sea water through heat exchanger in "Residual Heat Removal Sea water System"
- > This will enable fuels in reactors to be kept in stabilized cooling state (under 65° C).

