HEER: Liquid Salt Thermal Reactor Concept

Bo Feng, Josh Whitman, Dr. Pavel Hejzlar, and Prof. Mujid Kazimi Center for Advanced Nuclear Energy Systems Nuclear Science and Engineering MIT

> ORNL FHR Workshop September 20, 2010

Agenda

- Project Overview (2)
- Material Selection (4)
- Core Design (4)
- Performance (2)

Project Overview

Project Overview (1/2)

HEER Project Goals

- Develop a <u>High Efficiency and Environmentally-friendly Nuclear</u> <u>Reactor (HEER) to address the needs of electricity, drinkable water,</u> and hydrogen production
- Project supported by Masdar Institute of Science and Technology (Abu Dhabi, UAE) from 2007-2009
- Medium-sized reactor (1000 MWt)
- Ready for deployment worldwide → additional proliferation resistance (infrequent refueling)
- Concepts:
 - Liquid Salt Thermal Reactor
 - Annular-Fueled Superheat BWR
 - High power density IRIS

The Future MIST campus (rendered image)

Project Overview (2/2)

Liquid Salt Thermal Reactor

- Cool with liquid salt to avoid pressurized primary side
- Self-moderating hydride fuel to avoid additional moderator volume, i.e. graphite rods
- Medium enrichment (19.9 wt%) U for ~10 yr cycle length
- Supercritical CO₂ secondary side for high efficiency (45.7%)

Power Rating	1000 MWt (457 MWe)
Cycle Efficiency	45.7%
Peak Fuel Temperature	720ºC
Coolant Outlet Temperature	570ºC
Primary Coolant	Liquid Salt (NaF-BeF ₂)
Secondary Coolant	Supercritical CO ₂
Fuel Type	Hydride (U _{0.31} ZrH _{1.6})
Flow Type	Integral (Dual-Free Level)

Material Selection

Material Selection (1/4)

Salt Selection Criteria

- Set up property importance criteria and weighting factors
- Point system based on rankings for each property among fluoride salts from LS-VHTR study [Ingersoll, 2006]
- Chloride salts discounted due to high thermal capture of Cl (30.5 b)

	Weighting
Desired property	factor
1. low melting temperature	2
2. high heat capacity	1.5
3. low viscosity	1.5
4. high thermal conductivity	1
5. low thermal capture cross section	1
6. high moderation	1
7. low volume expansion coefficient	1

Material Selection (2/4) Fluoride Salt Properties at 700°C

Scoring	
	5
	4
	3
	2
	1

best

	MP	р*Ср	Visc.	К	n Cap.	Mod.	Vol. Exp.	total
Salt	[°C]	[cal/cm ^{3°} C]	[cP]	[W/mK]	Ratio ¹	Ratio ²	Coeff.	score
LiF-BeF ₂	460	1.12	5.6	1	8	60	2.52E-04	25.5
NaF-BeF ₂	340	1.05	7	0.87	28	15	1.84E-04	23
LiF-NaF-BeF ₂	315	0.98	5	0.97	20	22	2.25E-04	32
LiF-ZrF ₄	509	0.9	>5.1	0.48	9	29	2.99E-04	9
$NaF-ZrF_4$	500	0.88	5.1	0.49	24	10	2.96E-04	5
$KF\operatorname{-}ZrF_4$	390	0.7	<5.1	0.45	67	3	3.17E-04	9
RbF-ZrF ₄	410	0.64	5.1	0.39	14	13	3.11E-04	9.5
LiF-NaF-ZrF ₄	436	0.84	6.9	0.53	20	13	3.12E-04	3
LiF-NaF-KF	454	0.91	2.9	0.92	90	2	3.61E-04	12
LiF-NaF-RbF	435	0.63	2.6	0.62	20	8	3.01E-04	12.5
water (300°C)	0	0.986	0.09	0.54	75	246	3.30E-03	

¹ per unit volume, relative to graphite

² as calculated in [Williams et al., 2006]

LiF-NaF-BeF₂ winner but NaF-BeF₂ much cheaper (avoids Li⁷ enr.)

[Williams et al., 2006]

Material Selection (3/4)

SiC Cladding

- Solid monolith surrounded by reinforced SiC fibers to add strength
- CVD carbon coating for salt compatibility [Sridharan, 2008]
- Strength loss saturates quickly below 1000°C (max fuel temp = 720°C)
- Thermal conductivity drops to 4 W/mK at high burnup (this was the assumed K for conservatism)

Triplex SiC cladding tube (monolith, fiber composite, and barrier coating are all SiC)

[Carpenter, 2006]

Material Selection (4/4)

Supercritical CO₂

- Recompressive SCO₂ Brayton cycle
- Core outlet temperature of 570°C (set to minimize △P), 20 MPa compressor outlet pressure → 45.7% cycle efficiency
- Very compact turbine (1.5 m rotor for 300 MWe), lower capital costs

[[]Dostal, 2004]

Core Design

Core Design (1/4)

Computational Tools

- Reactivity: MCNP + CASMO
- Burnup: MCODE (MCNP + ORIGEN)
- Thermal Hydraulics: iterative MATLAB scripts based on existing correlations

Container, coupling MCNP & ORIGEN

Core Design (2/4) $U_{0.31}ZrH_{1.6} Fuel Pins$

- TRIGA fuel large prompt negative T_{fuel} feedback, high thermal conductivity (18 W/mK)
- Hydrogen diffuses out of fuel as T_{fuel} increases beyond limit
- 750°C recommended T_{CL} design limit [Simnad, 1981], set $T_{CL} = 720^{\circ}C$
- Thin fuel pins (0.7 cm diam) to reduce maximum T_{CL}

Core Design (3/4) Assembly and Core

- Pins per assembly limited by assembly mass (500 kg)
- Wire wrap with Hastelloy cans to keep orificing option
- 18 B₄C control rods yield roughly same worth as 24 Ag-In-Cd rods in PWR assembly (1.02 assembly ppf)
- Integral burnable poison to control excess reactivity and core radial power profile – 0.25 wt% Gd had least BU penalty (~3-4 MWd/kg)

Core Design (4/4) Pool Design

- Integral design to protect against LOCAs
- Vessel diameter small enough to be built off-site and transported via rail or barge
- Dual-free level design allows CO₂ to escape in the event of IHX tube rupture

Performance

Performance (1/2)

Burnup Performance

- Single batch \rightarrow less frequent refueling (fixed 10 EFPYs)
- Infinite pin lattice (poison-free) \rightarrow BU_d = 98.5 MWd/kg, Q''' = 47 kW/L
- For 1000 MWt core, BU_d ~ 70 MWd/kg, Q''' = 26.4 kW/L mainly due to highlyabsorptive Hastelloy cans
- Using spacers (no cans) or SiC cans yields BU_d ~ 95 MWd/kg, Q'''~ 36 kW/L
 → smaller core diameter (8.5 m → 7.2 m)

Performance (2/2) Conclusions

- Proposal of a more traditional design with fluoride salt using hydride fuel rods
- Spectrum similar to low enriched PWR (can use similar reactivity control methods)
- 10 year single batch cycle feasible with power density ~36 kW/L and ~20 wt% enrichment
- With traditional fuel pin design, Hastelloy cans are a huge neutronic penalty, should consider spacers (which precludes orificing) or inert can material (SiC)
- More data is needed on salt/cladding corrosion, multilayer cladding performance, materials for SCO₂, fabrication feasibility of SiC cans, high burnup hydride fuel performance modeling
- **<u>Bottom line</u>**: one of many options for high temperature salt application

References

- Carpenter D.M. "Assessment of Innovative Fuel Designs for High Performance Light Water Reactors," Masters Thesis, Massachusetts Institute of Technology, 2006.
- Dostal V. "A supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors," ScD Thesis, Massachusetts Institute of Technology, 2004.
- Forsberg C.W., Peterson P.F., Pickard P.S., "Molten-Salt-cooled Advanced High-Temperature Reactor for Production of Hydrogen and Electricity", Nuclear Technology, Vol. 144, pp. 289-302, December 2003.
- Fratoni, M. and E. Greenspan, "Neutronic Design of Hydride Fueled BWRs," University of California-Berkeley, internal paper to be published in Nuclear Engineering and Design, 2009.
- Hejzlar P., Driscoll M., Gibbs J., Gong Y., Kao S., "Supercritical CO2 Brayton Cycle for Medium Power Applications," MIT-ANP-PR-117, 2006.
- Ingersoll D., Forsberg C. and MacDonald P., "Trade Studies for the Liquid-Salt-Cooled Very High-Temperature Reactor: Fiscal Year 2006 Progress Report," Oak Ridge National Laboratory, ORNL/TM-2006/140, Feb 2007.
- Olander D., Greenspan E., Garkisch H. and Petrovic B., "Uranium-Zirconium Hydride Fuel Properties," University of California-Berkeley, internal paper, 2007.
- Peterson, P. "High Temperature Knudsen Cell Mass Spectrometry of Fluoride Salts," University of California-Berkeley, internal draft report, 2003.
- Simnad M.T., "The U-ZrH_x Alloy: Its Properties and Use in TRIGA Fuel," Nuclear Engineering and Design, vol. 64, pp. 403-422, 1981.
- Sridharan, K. Private communication. University of Wisconsin-Madison, Sept. 2008.
- Williams D. "Molten Fluorides as High Temperature Coolants for Nuclear Reactors," University of Tennessee Nuclear Engineering Design presentation, Jan. 21, 2003.
- Williams D., Toth L. and Clarno K., "Molten Salt Coolants for the Advanced High-Temperature Reactor (AHTR)," Oak Ridge National Laboratory, ORNL/TM-2006/12, Mar. 2006.

Backup Slides

Backup Slides (1/8) Geometry

Pin

P/D	1.08
Pitch [cm]	0.756
Pin Diameter [cm]	0.700
Clad Thickness [cm]	0.057
Gap [cm]	0.020
Fuel Diameter [cm]	0.546
Wire Wrap Diameter [cm]	0.056

Assembly Rings per Asse. 11 Pins per Asse. 331 Can Thickness [cm] 0.3 Inter-Assembly Gap [cm] 0.1 Active Fuel Height [cm] 400 Inner Duct Flat-to-flat [cm] 13.85 Outer Duct Flat-to-flat [cm] 14.45 Inter-Assembly pitch [cm] 14.65 Assembly Area (incl. duct) [cm²] 180.84

Core

Fuel Assemblies per Core	511
Linear Power [kW/m]	1.57
Volumetric Power [kW/L]	26.35
Specific Power [kW/kgHM]	18.01
1/12 Core Fuel Volume [L]	1244.3
Power (1/12 core) [MWt]	83.44
Power (full core) [MWt]	1001.23
Discharge Burnup [MWd/kg]	69
Cycle Length [EFPY]	10.49

Backup Slides (2/8)

0.08

0.07

0.01

0 └─ 400

450

500

550

600

Salt Temperature (C)

650

Core Thermal Hydraulics

- Core geometry, T_{CL}, and q'(z) fixed
- Varied outlet temperature (T_o) and to minimize ΔP Competing effects:

700

450

- For a fixed q'(z) and T_{CL} , a higher $T_o \rightarrow \Delta P$ increases
- But salt viscosity decreases with $T_o \rightarrow \Delta P$ decreases

500

Core Outlet Temperature (C)

550

600

Backup Slides (3/8) IHX and Vessel Diam. Optimization

- For this optimization, the core inlet and outlet temperature and salt mass flow rate were held constant at the values determined by the core optimization
- Vessel Diameter was varied, as was the IHX tube outer diameter and pitch to diameter ratio (P/D)
- Tube thickness in the IHX was adjusted to maintain safe material stress limits
- Heat exchanger length was determined using ε -NTU method
- This length was used to determine many important parameters such as:
 - Total pressure drop
 - Pump diameter
 - Vessel Length
 - Power Cycle Efficiency
 - SCO₂ pressure drop through IHX
- Using these techniques, a design was selected, described on next slide

Backup Slides (4/8)

Optimized System Properties

System Optimization Results			
Parameter	Value		
Optimized Parameters:			
Vessel inner diameter	8.5 m		
IHX P/D	1.2		
IHX tube outer diameter	1 cm		
Code Outputs:			
Vessel length	15.31 m		
Margin to IHX voiding	4.1 m		
Net Power Output	456.5 MW		
SCO ₂ pressure drop in IHX	19.6 kPa		
Total salt-side pressure drop	1.10 MPa		
Reactor vessel thickness	5.5 cm		
Pump diameter (for 2 pumps)	0.63 m		
IHX tube length	6.89 m		
IHX tube thickness	1.7 mm		
Net Cycle Efficiency	45.65%		
Salt heat transfer coefficient in IHX	$645.3 \text{ W/m}^2\text{K}$		
Salt velocity in IHX	0.26 m/s		
Salt Reynolds number in IHX	140		
SCO. hast transfer coefficient in HIV	$2881 W/m^2 V$		
SCO ₂ near transfer coefficient in IHX	2001 W/III K		
SCO ₂ velocity in IHA	4.92 III/8		
$5CO_2$ keynolds number in IHA	1.31E3		

Backup Slides (5/8)

SiC Cladding Performance

- Pb-Sn-Bi gap wide enough to prevent FCMI at desired burnups [Olander-UC Berkeley]
- FG release main cause of internal stress, unknown for high burnups
- With careful manufacturing tensile strength should be 2-300 MPa minimum; enough to withstand stress intensities of 15-20 MPa

Backup Slides (6/8)

Minimizing Core Pressure Drop

- Given assembly dimensions and linear heat rate, core flow rate is set
- To select the flow rate, core *outlet* temperature and fuel temperature limit were varied.
- Coolant velocity was increased until the peak fuel temperature was below the limit during normal operation.
- Coolant inlet temperature was simultaneously varied to maintain desired core outlet temperature.
- Results for core pressure drop is shown at top right. Given a fuel temperature limit, there is a core outlet temperature that minimizes pressure drop. The plot for 720° C fuel temperature limit is shown at bottom-right.
- Pressure drop is minimized due to temperature dependence of salt viscosity. Higher outlet temperature means higher flow rates but also reduced viscosity. These factors compete.
- For the HEER LSR, 720° C was selected as the maximum fuel temperature, and 570° C as the core outlet temperature.

Backup Slides (7/8)

Salt Property Sensitivity

- Since salt properties have not been extensively studied, sensitivity tests were performed.
- Thermal Conductivity was assumed in the previous design to be 0.51 W/mK. Now it is varied between 0.52 and 0.96 W/mK
- Heat Capacity was assumed to be 2186 J/kgK. For the sensitivity study it is varied between 1650 and 2400 J/kgK
- The plots on the right show the effect on core pressure drop and vessel length.
- Vessel length is still within the goals of the design. Worst case is about 18.2m
- Core Pressure Drop suffers more drastically. Worst case is just under 1.5 MPa, 50% greater than the design goal.
- This points to the need for further study of the salt in order to determine the actual values of these properties.

Backup Slides (8/8) Correlations Used

NaF-BeF ₂		
property	correlation	
k	Kokhlov	
Nu	4.36 for Re < 2300	
	Gnielinsky for Re > 2300	
Nu interpolation	VDI-Warmeatlas	
f	Cheng and Todreas	
SC	20,	
property	correlation	
Nu	Gnielinsky for smooth wall	
	Bergles et al. for ribbed design	
f	Todreas and Kazimi	