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Project Overview (1/2)

HEER Project Goals

� Develop a High Efficiency and Environmentally-friendly Nuclear 

Reactor (HEER) to address the needs of electricity, drinkable water, 

and hydrogen production

� Project supported by Masdar Institute of Science and Technology 
(Abu Dhabi, UAE) from 2007-2009

� Medium-sized reactor (1000 MWt) 

Ready for deployment worldwide �� Ready for deployment worldwide �

additional proliferation resistance                                          

(infrequent refueling)

� Concepts:

� Liquid Salt Thermal Reactor

� Annular-Fueled Superheat BWR

� High power density IRIS
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The Future MIST campus (rendered image)



Project Overview (2/2)

Liquid Salt Thermal Reactor
� Cool with liquid salt to avoid pressurized primary side

� Self-moderating hydride fuel to avoid additional moderator 

volume, i.e. graphite rods

� Medium enrichment (19.9 wt%) U for ~10 yr cycle length

� Supercritical CO2 secondary side for high efficiency (45.7%)
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Power Rating 1000 MWt (457 MWe)

Cycle Efficiency 45.7%

Peak Fuel Temperature 720ºC

Coolant Outlet Temperature 570ºC

Primary Coolant Liquid Salt (NaF-BeF2)

Secondary Coolant Supercritical CO2

Fuel Type Hydride (U0.31ZrH1.6) 

Flow Type Integral (Dual-Free Level)



Material Selection
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Material Selection (1/4)

Salt Selection Criteria
� Set up property importance criteria and weighting factors

� Point system based on rankings for each property among fluoride 

salts from LS-VHTR study [Ingersoll, 2006]

� Chloride salts discounted due to high thermal capture of  Cl (30.5 b)

Weighting 
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Desired property 

Weighting 

factor 

1. low melting temperature 2

2. high heat capacity 1.5

3. low viscosity 1.5

4. high thermal conductivity 1

5. low thermal capture cross section 1

6. high moderation 1

7. low volume expansion coefficient 1

[Forsberg et al., 2003]

[Williams et al., 2006]



Material Selection (2/4)

Fluoride Salt Properties at 700ºC

Salt

MP 

[°C]

ρ*Cp 

[cal/cm3°C]

Visc. 

[cP]

K 

[W/mK]

n Cap. 

Ratio1

Mod. 

Ratio2

Vol. Exp. 

Coeff.

total 

score

LiF-BeF2 460 1.12 5.6 1 8 60 2.52E-04 25.5

NaF-BeF2 340 1.05 7 0.87 28 15 1.84E-04 23

LiF-NaF-BeF2 315 0.98 5 0.97 20 22 2.25E-04 32

LiF-ZrF4 509 0.9 >5.1 0.48 9 29 2.99E-04 9

NaF-ZrF4 500 0.88 5.1 0.49 24 10 2.96E-04 5

Scoring

5 best
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3

2

1

� LiF-NaF-BeF2 winner but NaF-BeF2 much cheaper (avoids Li7 enr.)
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KF-ZrF4 390 0.7 <5.1 0.45 67 3 3.17E-04 9

RbF-ZrF4 410 0.64 5.1 0.39 14 13 3.11E-04 9.5

LiF-NaF-ZrF4 436 0.84 6.9 0.53 20 13 3.12E-04 3

LiF-NaF-KF 454 0.91 2.9 0.92 90 2 3.61E-04 12

LiF-NaF-RbF 435 0.63 2.6 0.62 20 8 3.01E-04 12.5

water (300°C) 0 0.986 0.09 0.54 75 246 3.30E-03

1

1 per unit volume, relative to graphite
2 as calculated in [Williams et al., 2006]

[Williams et al., 2006]



Material Selection (3/4)

SiC Cladding
� Solid monolith surrounded by reinforced SiC fibers to add strength

� CVD carbon coating for salt compatibility [Sridharan, 2008]

� Strength loss saturates quickly below 1000ºC (max fuel temp = 720ºC)

� Thermal conductivity drops to 4 W/mK at high burnup (this was the assumed K

for conservatism)
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[Peterson, 2003]

Triplex SiC cladding tube (monolith, fiber 

composite, and barrier coating are all SiC)

[Carpenter, 2006]



Material Selection (4/4)

Supercritical CO2
� Recompressive SCO2 Brayton cycle

� Core outlet temperature of 570ºC (set to minimize ∆P), 20 MPa 

compressor outlet pressure � 45.7% cycle efficiency 

� Very compact turbine (1.5 m rotor for 300 MWe), lower capital costs
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[Dostal, 2004]
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Core Design (1/4)

Computational Tools
� Reactivity: 

MCNP + CASMO

� Burnup: 

MCODE (MCNP + ORIGEN)

USER

MCODE (MCNP-ORIGEN Depletion program)

Container, coupling MCNP & ORIGEN

o
n

s

� Thermal Hydraulics: 

iterative MATLAB scripts based on 

existing correlations
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MCNP-4C ORIGEN2.1
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Core Design (2/4)

U0.31ZrH1.6 Fuel Pins
� TRIGA fuel – large prompt negative Tfuel feedback, high thermal 

conductivity (18 W/mK)

� Hydrogen diffuses out of fuel as Tfuel  increases beyond limit

� 750ºC recommended TCL design limit [Simnad, 1981], set TCL = 720ºC

� Thin fuel pins (0.7 cm diam) to reduce maximum TCL
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[Olander, 2007]

[Simnad, 1981]
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Core Design (3/4)

Assembly and Core
� Pins per assembly limited by assembly mass (500 kg)

� Wire wrap with Hastelloy cans to keep orificing option

� 18 B4C control rods yield roughly same worth as 24 Ag-In-Cd rods 

in PWR assembly (1.02 assembly ppf)

� Integral burnable poison to control excess reactivity and core radial 

power profile – 0.25 wt% Gd had least BU penalty (~3-4 MWd/kg)
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Core Design (4/4)

Pool Design
� Integral design to protect against LOCAs

� Vessel diameter small enough to be built 

off-site and transported via rail or barge

� Dual-free level design allows CO2 to 

escape in the event of IHX tube rupture
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Performance (1/2)

Burnup Performance
� Single batch � less frequent refueling (fixed 10 EFPYs)

� Infinite pin lattice (poison-free) � BUd = 98.5 MWd/kg, Q’’’ = 47 kW/L

� For 1000 MWt core, BUd ~ 70 MWd/kg, Q’’’ = 26.4 kW/L mainly due to highly-

absorptive Hastelloy cans

� Using spacers (no cans) or SiC cans yields BUd ~ 95 MWd/kg, Q’’’~ 36 kW/L  

� smaller core diameter (8.5 m � 7.2 m)
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Performance (2/2)

Conclusions
� Proposal of a more traditional design with fluoride salt using 

hydride fuel rods

� Spectrum similar to low enriched PWR (can use similar reactivity 

control methods)

� 10 year single batch cycle feasible with power density ~36 kW/L 

and ~20 wt% enrichment

� With traditional fuel pin design, Hastelloy cans are a huge neutronic � With traditional fuel pin design, Hastelloy cans are a huge neutronic 

penalty, should consider spacers (which precludes orificing) or inert 

can material (SiC)

� More data is needed on salt/cladding corrosion, multilayer cladding 

performance, materials for SCO2, fabrication feasibility of SiC cans, 

high burnup hydride fuel performance modeling

� Bottom line: one of many options for high temperature salt 

application
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P/D 1.08

Pitch [cm] 0.756

Pin Diameter [cm] 0.700

Clad Thickness [cm] 0.057

Rings per Asse. 11

Pins per Asse. 331

Can Thickness [cm] 0.3

Inter-Assembly Gap [cm] 0.1

Active Fuel Height [cm] 400

Fuel Assemblies per Core 511

Linear Power [kW/m] 1.57

Volumetric Power [kW/L] 26.35

Specific Power [kW/kgHM] 18.01

1/12 Core Fuel Volume [L] 1244.3

Backup Slides (1/8)

Geometry

Pin
Assembly Core
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Gap [cm] 0.020

Fuel Diameter [cm] 0.546

Wire Wrap Diameter [cm] 0.056

Active Fuel Height [cm] 400

Inner Duct Flat-to-flat [cm] 13.85

Outer Duct Flat-to-flat [cm] 14.45

Inter-Assembly pitch [cm] 14.65

Assembly Area (incl. duct) [cm2] 180.84

Power (1/12 core) [MWt] 83.44

Power (full core) [MWt] 1001.23

Discharge Burnup [MWd/kg] 69

Cycle Length [EFPY] 10.49



Backup Slides (2/8)

Core Thermal Hydraulics
� Core geometry, TCL, and q’(z) fixed

� Varied outlet temperature (To) and to minimize ∆P 

Competing effects:

� For a fixed q’(z) and TCL, a higher To � ∆P increases

� But salt viscosity decreases with To � ∆P decreases
R

TT
zq bulkCL −

=′ )(
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For TCL = 720ºC

Toutlet � 570ºC



Backup Slides (3/8)

IHX and Vessel Diam. Optimization
• For this optimization, the core inlet and outlet 

temperature and salt mass flow rate were held 
constant at the values determined by the core 
optimization

• Vessel Diameter was varied, as was the IHX 
tube outer diameter and pitch to diameter ratio 
(P/D) 

• Tube thickness in the IHX was adjusted to 
maintain safe material stress limits
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maintain safe material stress limits

• Heat exchanger length was determined using 

ε-NTU method

• This length was used to determine many 
important parameters such as:

– Total pressure drop

– Pump diameter

– Vessel Length

– Power Cycle Efficiency

– SCO2 pressure drop through IHX

• Using these techniques, a design was 
selected, described on next slide



System Optimization Results 

Parameter Value 

Optimized Parameters:  

Vessel inner diameter 8.5 m 

IHX P/D 1.2 

IHX tube outer diameter 1 cm 

  

Code Outputs:  

Vessel length 15.31 m 

Margin to IHX voiding 4.1 m 

Net Power Output 456.5 MW 

SCO2 pressure drop in IHX 19.6 kPa 

Total salt-side pressure drop 1.10 MPa 

Backup Slides (4/8)

Optimized System Properties
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Total salt-side pressure drop 1.10 MPa 

  

Reactor vessel thickness 5.5 cm 

Pump diameter (for 2 pumps) 0.63 m 

IHX tube length 6.89 m 

IHX tube thickness 1.7 mm 

Net Cycle Efficiency 45.65% 

  

Salt heat transfer coefficient in IHX 645.3 W/m
2
K 

Salt velocity in IHX 0.26 m/s 

Salt Reynolds number in IHX 140 

  

SCO2 heat transfer coefficient in IHX 2881 W/m
2
K 

SCO2 velocity in IHX 4.92 m/s 

SCO2 Reynolds number in IHX 1.31E5 
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SiC Cladding Performance
� Pb-Sn-Bi gap wide enough to prevent FCMI at desired burnups 

[Olander-UC Berkeley]

� FG release main cause of internal stress, unknown for high burnups

� With careful manufacturing tensile strength should be 2-300 MPa 

minimum; enough to withstand stress intensities of 15-20 MPa
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• Given assembly dimensions and linear heat rate, core 
flow rate is set

• To select the flow rate, core outlet temperature and fuel 

temperature limit were varied.  

• Coolant velocity was increased until the peak fuel 
temperature was below the limit during normal 

operation.

• Coolant inlet temperature was simultaneously varied to 

maintain desired core outlet temperature.

• Results for core pressure drop is shown at top right.  

Backup Slides (6/8)

Minimizing Core Pressure Drop
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• Results for core pressure drop is shown at top right.  

Given a fuel temperature limit, there is a core outlet 
temperature that minimizes pressure drop.  The plot for 

720°C fuel temperature limit is shown at bottom-right.

• Pressure drop is minimized due to temperature 
dependence of salt viscosity.  Higher outlet temperature 
means higher flow rates but also reduced viscosity.  

These factors compete.

• For the HEER LSR, 720°C was selected as the 
maximum fuel temperature, and 570°C as the core 
outlet temperature.

R

TT
zq bulkCL −

=′ )(



• Since salt properties have not been 
extensively studied, sensitivity tests were 
performed.

• Thermal Conductivity was assumed in the 
previous design to be 0.51 W/mK.  Now it is 
varied between 0.52 and 0.96 W/mK

• Heat Capacity was assumed to be 2186 
J/kgK.  For the sensitivity study it is varied 

Backup Slides (7/8)

Salt Property Sensitivity
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J/kgK.  For the sensitivity study it is varied 
between 1650 and 2400 J/kgK

• The plots on the right show the effect on core 
pressure drop and vessel length.  

• Vessel length is still within the goals of the 
design.  Worst case is about 18.2m

• Core Pressure Drop suffers more drastically.   
Worst case is just under 1.5 MPa, 50% 
greater than the design goal.

• This points to the need for further study of the 
salt in order to determine the actual values of 
these properties.
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Correlations Used
NaF-BeF2

property correlation

k Kokhlov

Nu 4.36 for Re < 2300

Gnielinsky for Re > 2300

Nu interpolation VDI-Warmeatlas

f Cheng and Todreas

SCO
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SCO2

property correlation

Nu Gnielinsky for smooth wall

Bergles et al. for ribbed design

f Todreas and Kazimi


