Fukushima Nuclear Accident Interim Report:

Effects of the Earthquake and Tsunami on the Fukushima Daiichi and Daini Nuclear Power Stations, especially on electric and I&C systems and equipments

July 27, 2011

@IEEE Nuclear Power Engineering Committee Akira Kawano Tokyo Electric Power Company

What I will present

- 1. What occurred at Fukushima Daiichi (1F) & Daini (2F) in Japan ?
- Earthquake Tsunami
- 2 . What made the difference between 1F and 2F?
- Electric equipment Instrumentation & Control
- Transmission lines
- 3. How we responded ?
 - What difficulties existed
 - What were effectively utilized
- 4. Current status and Roadmap
- 5. Summary
- 6. References
 - Damage status of electric equipments Restoration process

- Measures to ensure safe shutdown - Chronology

Tokyo electric power company

1. What occurred at Fukushima Daiichi (1F) & Daini (2F) in Japan?

- Earthquake - Tsunami

Overview of Fukushima Daiichi (1 F) **NPS**

Location	Unit	In operation since	Plant type	Power Output (MW)	Main Contractor	Pre-earthquake status
Ohkuma	1	1971.3	BWR-3	460	GE	Operating
	2	1974.7	BWR-4	784	GE/Toshiba	Operating
	3	1976.3	BWR-4	784	Toshiba	Operating
	4	1978.10	BWR-4	784	Hitachi	Shutdown for maintenance
Futaba	5	1978.4	BWR-4	784	Toshiba	Shutdown for maintenance
	6	1979.10	BWR-5	1100	GE/Toshiba	Shutdown for maintenance

Overview of Fukushima Daini (2 F) NPS

Location	Unit	In operation	Dlant type	Power Output	Main	Pre-earthquake status	
Location	UIIIt	since	r faitt type	(MW)	Contractor		
Naraha	1	1982.4	BWR-5	1100	Toshiba	Operating	
	2	1984.2	BWR-5	1100	Hitachi	Operating	
T 1	3	1985.6	BWR-5	1100	Toshiba	Operating	
Tomioka	4	1987.8	BWR-5	1100	Hitachi	Operating	
TOKYO ELECTRIC POWER COMPANY							

Tohoku Pacific Ocean Earthquake

- **Time:** 2:46 pm on Fri, March 11, 2011.
- Place: Offshore Sanriku coast (northern latitude of 38 degrees, east longitude of 142.9), 24km in depth, Magnitude 9.0
- Intensity: Level 7 at Kurihara in Miyagi Miyagi prefecture
 Upper 6 at Naraha, Tomioka, Okuma, and Futaba in Fukushima pref.
 Lower 6 at Ishinomaki and Onagawa in Miyagi pref., Tokai in Ibaraki pref.
 Lower 5 at Kariwa in Niigata pref.

Level 4 at Rokkasho, Higashidori, Mutsu and Ohma in Aomori pref., Kashiwazaki in Niigata pref.

Safe shutdown: Unit 1-3 of 1F and Unit 1-4 of 2F were successfully shut down by control rods insertion after the earthquake.

Scram set point by acceleration @ basement of reactor building: Horizontal=135-150 gal, Vertical=100gal

Damages by the earthquake: not fully inspected (Ex.inside PCV) but **safety related systems might not be damaged significantly**.

No functional failure of safety related systems was found through plant walk down @2F, that was also proven by the fact that plant parameters were within ordinary range and the dynamic function of equipments was intact.

Seismic Observed Data

Comparison between Basic Earthquake Ground Motion and the record of intensity

Observation Point (The lowest basement of reactor buildings)		Obse	erved data (*inte	erim)	Maximum Response Acceleration against Basic Earthquake Ground Motion (Gal)		
		Ma A	aximum Respor	ıse ıl)			
		Horizontal (N-S)	Horizontal (E-W)	Vertical	Horizontal (N-S)	Horizontal (E-W)	Vertical
	Unit 1	460 ^{%2}	447 ^{%2}	258 ^{×2}	487	489	412
	Unit 2	348 ^{%2}	550 ^{%2}	302 ^{%2}	441	438	420
Fukushima	Unit 3	322 ^{×2}	507 ^{%2}	231 ^{×2}	449	441	429
Daiichi	Unit 4	281 ^{×2}	319 ^{×2}	200 ^{×2}	447	445	422
	Unit 5	311 ^{※2}	548 ^{%2}	256 ^{×2}	452	452	427
	Unit 6	298 ^{×2}	444 ^{%2}	244	445	448	415
	Unit 1	254	230 ^{×2}	305	434	434	512
Fukushima	Unit 2	243	196 ^{%2}	232 ^{×2}	428	429	504
Daini	Unit 3	277 ^{×2}	216 ^{×2}	208 ^{×2}	428	430	504
	Unit 4	210 ^{%2}	205 ^{×2}	288 ^{%2}	415	415	504

*1: The data above is interim and is subject to change.

*2: The recording time was about 130-150 seconds

Tsunami Attack to Fukushima Daiichi NPS (Point1)

Tsunami Attack to Fukushima Daiichi NPS (Point2)

All Rights Reserved ©2011The Tokyo Electric Power Company, Inc.

Pictures before / after Tsunami @1F

Damages by Tsunami @ 1F (1/3)

51

.

Damages by Tsunami @ 1F (2/3)

Damages by earthquake @ Shinfukushima substation

- About 10 km away from both 1F and 2F site
- Important switchgear station from which electricity of 1F & 2F is transmitted to Tokyo area

500kV Disconnector

275kV Circuit Breaker

Damage status of transmission line

2 . What made the difference between 1F and 2F ?

- Electric equipment
- Instrumentation & Control
- Transmission lines

Flooded & Run up Area @ 1F v.s. 2F

C GeoEye

Tsunami Height @1F v.s. 2F

- The new design basis Tsunami height for 1F & 2F were evaluated based on the JSCE Tsunami assessment methodology. (1F: O.P.+5.7m, 2 F: O.P.+5.2m)
- The countermeasures were implemented at both NPSs, such as pump motor elevation raised @1F and openings sealed @2F, that were all equivalent from the viewpoint of resistance against Tsunami hazard.
- The 15m class Tsunami caused by M9.0 class earthquake that accidentally attacked 1F was far beyond design basis and whatever evaluation and whatever countermeasures did not matter at this time.

Fukushima Daini

Flooding caused by the Tsunami

Tokyo electric power company

(2)Tsunami damage in lowlying areas (shallow draft quay)

(3) No damage to the Unit 3 and 4 Turbine Building

Tsunami damage at Fukushima Daini NPS

Differences in Tsunami that hit 1F and 2F

Power supply of Unit 1-4 @ 1F before earthquake

Power supply of Unit 1-4 @ 1F after Tsunami

Power supply of Unit 5/6 @ 1F before earthquake

Unit 5/6 during outage

All Rights Reserved ©2011The Tokyo Electric Power Company, Inc.

TEPCO

Power supply of Unit 5/6 @ 1F after Tsunami

Outline of water injection systems @1F3 (1/2)

All Rights Reserved ©2011The Tokyo Electric Power Company, Inc.

What made the difference between 1F and 2F

- Tsunami height
 - 1F: 14-15m in average
 - 2F: **6.5-7m** in average, except on the southern side of unit 1 (run-up height was 14-15m)
- Offsite Power
 - 1F: all lost
 - 2F: one of the offsite power lines survived and the stepdown transformer between 500kv/66kv existed
- Location and elevation of M/C switchgear and D/G
 - 1F1-5 D/G & M/C: T/B B1F flooded
 - 1F6 D/G & M/C: R/B B1F &1F survived but sea water pump-motor flooded (loss of cooling function)
 - 1F2-4 air-cooled D/G: Shared pool 1F, M/C: B1F flooded
 - 1F6 air-cooled D/G: independent building 1F survived, M/C: R/B B1F survived
 - 2F D/G & M/C: R/B B1F & B2F
 - D/G & M/C of Unit 1: damaged by flooding
 - D/G 3B, 3H and 4H: in stand-by condition
 - the other D/Gs: out of function because of loss of cooling function (pump-motor flooding)

3. How we responded ?

- What difficulties existed
- What were effectively utilized

Fukushima Daijchi Units 1 - 4 Fukushima Daini Units 1 - 4 Fukushima Daiichi Units 5 & 6 Units 1-3 in operation In operation Outage in progress Unit 4: outage in progress [Power supply] One off-site power supply system secured [Power supply] Total loss of off-site Emergency DG 6B [Power supply] [Sea water system] Total loss apart power supply and DG start up from Unit 3 [Sea water system] [Sea water system] Total loss Total loss Water injection using RCIC Water injection using IC, RCIC, HPCI Increase in spent fuel pool temperature to near 70°C 3/12 PCV Venting, SRV operation Unit 3 cold shutdown & Sea water injection Units 1, 2, 4 Installation of temporary RHRS Water injection using MUWC Switch to freshwater Installation of temporary power supply RHRC motor was replaced Heat removal route has been Installation of temporary power 3/19 continuously improved supply Alternative RHRS was **Currently the closed cycle** started and the spent fuel cooling is in function 3/14 pool and reactor were cooled **RHR startup** Sea water was initially injected into 3/20 the spent fuel pool; currently Units 1, 2 cold 3/14 injecting freshwater Units 5, 6 cold shutdown shutdown FORMAR TORYO ELECTRIC POWER COMPANY All Rights Reserved ©2011The Tokyo Electric Power Comp 3/1,5nc. Unit 4 cold shutdown

Progress made by each plant towards cold shutdown (outline)

Status of 1F 1-3 immediately after the tsunami (1)

Fallen into the Station Black Out (SBO):

- All safety and non-safety systems driven by electricity were unavailable.
- No lights in the control rooms, R/Bs, T/Bs, etc.
- No important instrumentations for Unit 1 &2 due to loss of AC power sources and DC 125V batteries; the reactor water level/ pressure, drywell pressure, wet-well (S/C) pressure, etc.; Operators were totally blind!
- The instrumentation of Unit 3 was available immediately after the tsunami but only lasted for about 30hours because the DC 125V battery charger was flooded.

No communication media between the Emergency Response Room and workers at the field: only one wired telephone was All Rights Reserved ©2011 The Tokyo Electric Power Company, Inc. 33

Status of 1F 1-3 immediately after the tsunami (2)

- The sea water systems were totally destroyed: no ultimate heat sink
- Status of cooling and flooding of the reactors were as follows:
 - Operation of the isolation condenser of Unit 1 was unclear.
 - The RCIC system of Unit 3 tripped after about 21hours since the tsunami. Then the HPCI system was activated but worked only for about 14 hours.
 - The RCIC system of Unit 2 worked for about three days after the tsunami but the actual status could not be confirmed at the control room.

What 1F site focused on during March 11-15

- Establishing an alternative method to inject water into the reactor pressure vessel (RPV)
- Venting of the primary containment vessel (PCV)
- Recovery of the most important instrumentations:
 - reactor water level
 - reactor pressure
 - drywell pressure
 - wet-well (suppression chamber: S/C) pressure
- Recovery of the lights in the control rooms and other power supply sources

What were available for the recovery work after the tsunami?

There were only the following limited number of devices and tools available !

- Fire Engines: only a few people knew how to operate them.
- Flashlights
- Cable
- Tools (screwdrivers, etc.)
- Batteries taken from cars
- Engine driven Generators*
- Engine driven Air Compressors*
- *They were in the warehouses of the affiliated companies and difficult to find.

Human Resource Issues after the Tsunami @1F

- After the tsunami, approximately 400 people (about 130 for operation, about 270 for maintenance) were available for the recovery process.
- The number of the operations personnel was totally insufficient for the recovery operation of six units.
- About 70 TEPCO employees (maintenance) and about 40 people from affiliated companies were engaged in the initial field work to recover Unit 1-3; most of the work was recovery of instrumentations and power supply.
- Number of electric and I&C maintenance personnel was also insufficient.
- High radiation dose made the above human resource problem more serious.

Alternative water injection into the reactors @1F

- 1. Tried to inject fresh water using the diesel driven fire protection pump (DDFP): failed.
 - Unit 1: mechanical problem of the DDFP
 - Unit 2: the DDFP was flooded
 - Unit 3: the RPV pressure was too high
- Injection of fresh water from underground water tank (16units/site×40m3/site) using the fire engine pumps : succeeded but did not last for long time due to insufficient water supply.
- 3. Injection of sea water using the fire engine pump.
- Hurdles for the work:
 - Suspensions due to aftershocks and tsunami alarms
 - Damages of the fresh water lines due to the earthquake
 - Debris and damages of the gates caused by the tsunami
 - Hydrogen explosions (rubble, damage of fire engines and other
 - devices, injury of field workers and fear of another explosion)

Mo lights. Problem with the PHS telephone and radio communication

Venting of the PCV @1F

It was extremely difficult to achieve the venting line without supply of the electricity and instrumentation air. High radiation dose in R/B also impeded the work.

Initial recovery of instrumentations and power supply @1F

- Used batteries taken from cars for recovery of important instrumentations.
- Put Engine-Generators to provide power for the control room lightings.
- Tried to connect a power supply cart to P/C 2C with temporary cable. The hydrogen explosion of Unit 1 caused damage of the temporary cable.
- Hurdles for the work:
 - Darkness and suspensions due to aftershocks, tsunami alarms,
 - Puddles, openings of manholes, debris and other obstacles caused by the tsunami,
 - Influence of the hydrogen explosions

Batteries brought into the control room

Image of a power supply cart

Factors disturbing the recovery work (outside the buildings) @1F

- The initial recovery work after the tsunami was dangerous due to aftershocks, openings of manholes, cracks and holes on the roads. Especially work during night was in complete darkness and very dangerous.
- Many obstacles such as rubble and damaged cars disturbed the access to equip. & comp..

<u>Cracks and holes on</u> <u>the roads</u>: dangerous even for walking, especially during night.

Obstacles on access routes: needed not to pass on the fire protection hose. After the explosions, damaged fire engines, rubble disturbed the access.

Setting up a temporary power source (1): Destroy the shutter of the delivery entrance by a construction machine. Setting up a temporary power source (2): Laying of cable was

All Rights Reserved ©2011The Tokyo Electric Power Company, Inc.

done by man power

Factors disturbing the recovery work (inside the buildings) @1F

- Activities were done in complete darkness due to lack of power sources.
- In some places, radiation dose level was very high.

Work in complete darkness

In the service building. Many scattered objects were also on the floor.

Temporary power supply Connect temporary batteries to recover instrumentations.

TEPCO

Supervising (1) Check indicated values only with a flashlight in complete darkness

Supervising (2)

Supervising at a deputy supervisor's desk wearing a full face mask in complete darkness

All Rights Reserved ©2011The Tokyo Electric Pov

Efforts to recover the status of 1F5

- Unit 5 also lost the all AC power supply (Only one train of the DC125V battery was available: Temporary AC power had been supplied to the charger before the battery was exhausted).
- Status of Unit 5 was just after the RPV leak test: the reactor pressure and temperature were certainly high.
- The reactor temperature of Unit 5&6 once exceeded 100°C.
- Key success stories:
 - Prompt supply of power from DG 6B to selected components of Unit 5 by directly connecting with temporary cables,
 - Prompt acquisition and utilization of general industrial grade underwater pumps as an alternative of the RHRS pumps.
- Information exchange with Fukushima Daini NPS and supports from Kashiwazaki Kariwa NPS were very useful and helpful during the recovery process.

Power Supply from 1F6 to 1F5

Alternative RHRS pump for 1F5

Temporary Power Supply and Motor Replacement @2F

All Rights Reserved ©2011The Tokyo Electric Power Company, Inc.

4. Current Status and Roadmap

Plant Parameters (Fukushima Daiichi)

as of July 20th at 6:00

*We are judging the plant status by utilizing data obtained from multiple instruments including their changing trend in a comprehensive manner considering that some of them possibly are showing inaccurate data due to the irregular condition for use

Pressure conversion: Gauge pressure (MPa-g)=absolute pressure (MPa-abs)-atmospheric pressure(0.1013Mpa) H

TOKYO ELECTRIC POWER COMPANY

All Rights Reserved ©2011The Tokyo Electric Power Company, Inc.

51

Evacuation

TOKYO ELECTRIC POWER COMPANY

Monitoring Data (at Site Boundary of Fukushima Daiichi)

Schematic Diagram of Current Water Supply System

as of July 7th

Temporary Storage Tank① Concentrated water Concentrated water receiving tank storage tank Coagulating Buffer, Tank **Cesium Adsorption** Sedimentation By valve operations, the order of water treatment can be changed to Temporary Storage Tank ② Storage Tank RPV: coagulating sedimentation first and Fresh Water Receiving Tank Desalination Cesium adsorption second. Plant Ρ Incineration rocess SPT(B) Tank Main **Preparation Building Oil Separator** Building Cesium Ρ Filtrate Adsorption Water Device Chemicals Feeder Treated Water Tank Pressure Floatation Separator Coagulating (P Sedimentation P P Ρ **Treated Water Tank** Device Ρ Treated SPT(A) Tank Waste Receiving Treated Site Banker Tank Water Water Ρ Building Tank Tank Sludge Tank Process Main Building Oil Separator Cesium Adsorption Device Coagulating Sedimentation Device Desalination Plant All Rights Reserved ©2011The Tokyo Electric Power Company, Inc.

Outline of Water Treatment Facility System (Highly Contaminated Water)

55

Water Flow of Overall Water Treatment Facility

varient otatus or mountap tomaras mestoration nom the resident

at Fukushima Daiichi Nuclear Power Station, TEPCO" (Revised on July

1 Set bibred: newly added to the previous version, *: already reported to the government

at Fukushima Daiichi Nuclear Power Station, TEPCO" (Revised on July

Register: newly added to the previous version, *: already reported to the government

lss	sues	As of April 17	Step 1 (around 3 months)	Step 2 (around 3 to 6 months after achievin current status (as of July 17)	g Step1)	Mid-term issues (around 3 years)
III. Monitoring/ Decontamination	() Measurement, Reduction and Announcement	Expansion, enhanc	cement and announcement of radiation dose monitoring in an	Id out of the power station	Decontamination	Continuous environmental monitoring Continuous decontamination
IV. Countermeasures against aftershocks, etc	(∽) Tsunami, Reinforcement, etc		Enhancement of countermeasures against aftershocks and t preparation for various countermeasures for radiation shie (Unit 4 spent fuel pool) Installation of supporting structure *	sunami, Iding ration / implementation of ement work of each Unit	Mitigate disasters	Continue various countermeasures for radiation shielding Reinforcement work of each Unit
V. Environ	(∞) Life/work environment		Improvement of workers' life / work e	nvironment	Enhancement of environment Improvement	Improvement of workers' life / work environment
ment improvement	() Radiation control / Medical care		Improvement of radiation contro	ol / medical system	Enhancement of Healthcare	Improvement of radiation control / medical system
Mea for M is:	isures id-term sues		All Rights Reserved © 2011 The Tokyo P	Government's concept of securing safety Establishing plant operation based on the safety conce	plan pt	Response based on the plant operation plan

Overview of Major Countermeasures in the Power Station Red frame: deleted countermeasures, red colored: newly added countermeasures, %: already reported to the government

5. Summary

1. The accident at Fukushima Daiichi and Daini was caused by Tsunami far beyond the design basis. (No significant damage by earthquake)

• The current design of external barriers were not enough to cope with hydrodynamic forces of flooding and large debris impact.

• The current design of safety-related electric and I&C equipment might not be robust enough to prevent common cause failure by severe external flooding and their layout, diversity and internal barriers for separation need to be reviewed.

2. Several implementable countermeasures/modifications that could have lessened the damage at the unforeseeable accident have been identified.

 Mobile power vehicles could be considered as redundant measures against extended SBO situation from the defense in depth viewpoint.

• Emergency water injection and cooling capability, against extended SBO situation, such as fire engines and air cylinders, should be considered.

• Better preplanning, staging and logistics of emergency and spare equipment would make a quicker recovery possible.

 Greater consideration should be given to redundant communication measures for organized actions.

FORMAR ELECTRIC POWER COMPANY

3. Without newly built Emergency Response Center, the post-accident activities could not have been carried out.

- Emergency response center in robust building (Seismic isolation,
- Shielding, Communication, etc.)
- Underground water tank (16 units/site×40 m3/site) and Fire Engines (3/site)
 - Emergency Response Drills

6. References

- Damage status of electric equipments
- Restoration process
 - Electric equipment I&C
- Measures to ensure safe shutdown @2F
- Chronology

Damage Status of Unit 1 & 2 Emergency DG and Emergency High Voltage Switchboard (Immediately after the Tsunami)

		U	Init 1			Unit 2						
	Equipm ent	Installed building	Installe d floor	Possi bility of use	Status	Equipme nt	Installed location	Installed floor	Pos sibili ty of use	Status		
	DG 1A	T/B	B1FL	FL × Submerged		DG 2A	DG 2A T/B		×	Submerged		
DG	DG 1B	T/B	B1FL	×	Submerged	DG 2B	Shared pool	1FL	×	M/C submerged cannot be used		
	-	-	-	-	-	-	-	-	-	-		
(M/C)	M/C 1C	T/B	1FL	×	Water damage	M/C 2C	T/B	B1FL	×	Submerged		
ncy high voltage	M/C 1D	T/B	1FL	×	Water damage	M/C 2D	T/B	B1FL	×	Submerged		
switchb oard	-	-	-	-	-	M/C 2E	Shared pool	B1FL	×	Submerged		

Tokyo Electric Power Company

Damage Status of Unit 3 & 4 Emergency DG and Emergency High Voltage Switchboard (Immediately after the Tsunami)

		U	nit 3	_		Unit 4						
	Equipme nt	Installed location	Installe d floor	Possi bility of use	Status	Equipme nt	Installed location	Install ed floor	Pos sibili ty of use	Status		
	DG 3A T/B		B1FL	×	Submerge d	DG 4A	T/B	B1FL	×	Submerged (Construction in progress)		
DG	DG 3B	T/B	B1FL	×	Submerge d	DG 4B	Shared pool	1FL	×	M/C submerged cannot be used		
	-	-	-	-	-	-	-	-	-	-		
(M/C) Emerge	M/C 3C T/B		B1FL	× Submerg		M/C 4C	T/B	B1FL	×	Submerged (Inspection in progress)		
ncy high voltage	M/C 3D	T/B	B1FL	×	Submerge d	M/C 4D	T/B	B1FL	×	Submerged		
switch board	-	-	-	-	-	M/C 4E	Shared pool	B1FL	×	Submerged		

Damage Status of Unit 5 & 6 Emergency DG and Emergency High Voltage Switchboard (Immediately after the Tsunami)

		U	nit 5)			Uı	nit 6		
	Equipme nt	Installed location	Install ed floor	Po ssi bilit y of use	Status	Equipment	Installed location	Install ed floor	Pos sibili ty of use	Status
	DG 5A	T/B	B1FL	×	Related equipment Water damage	DG 6A	R/B	B1FL	×	Related equipment Water damage
DG	DG 5B	T/B	B1FL	×	Related equipment Water damage	DG 6B	DG building	1FL	0	-
	-	-	-	-	-	HPCSD/G	R/B	B1FL	×	Related equipment Water damage
(M/C)	M/C 5C	T/B	B1FL	×	Submerged	M/C 6C	R/B	B2FL	0	-
ncy high voltage	M/C 5D	T/B	B1FL	×	Submerged	M/C 6D	R/B	B1FL	0	-
			-	-	-	HPCS DG M/C	R/B	1FL	0	-
	EUTHU PUWEK	All R	ights Res	erved	©2011The Toky	yo Electric Powe	er Company,	inc.		67

Fukushima Daiichi: DG System Outline

Integrity of electricity supply system after the tsunami attack

		Fukushma Daiichi												FukushimaDaini							
		Unit 1		Unit 2		Unit 3		Unit 4		Unit 5		Unit 6		Unit 1		Unit 2		Unit 3		Unit 4	
		Powerpanel	Can/can not be used	Powerpanel	Can/can notbe used	Powerpanel	Can/can notbe used	Powerpanel	Can/can not be used	Powerpanel	Can/can notbe used	Powerpanel	Can/can not be used	Powerpanel	Can/can notbe used	Powerpanel	Can/can not be used	Powerpanel	Can/can not be used	Powerpanel	Can/can not be used
	Ēme	DG 1A	×	DG 2A	×	DG 3A	×	DG 4A	×	DG 5A	×	DG 6A	×	DG 1A	×	DG 2A	×	DG 3A	×	DG 4A	×
	mency	DG 1B	×	DG 2B	×	DG 3B	×	DG 4B	×	DG 5B	×	DG 6B		DG 1B	×	DG 2B	×	DG 3B		DG 4B	×
	ο Γ	-	I	-		-	ŀ	-	1	-	I	HPCS DG	×	DG 1H	×	DG 2H	×	DG 3H		DG 4H	
	Eme	M/C 1C	×	M/C 2C	×	M /C 3C	×	M/C 4C	×	M /C 5C	×	M /C 6C		M /C 1C	×	M/C 2C		M /C 3C		M/C 4C	
	rgency	M/C 1D	×	M /C 2D	×	M /C 3D	×	M/C 4D	×	M /C 5D	×	M/C 6D		M /C 1D		M/C 2D		M/C 3D		M/C 4D	
	' use	-	-	M /C 2E	×	-	1	M/C 4E	×	-	-	HPCSDG M/C		M /C 1H	×	M /C 2H		M/C 3H		M/C 4H	
2		M /C 1A	×	M/C 2A	×	M /C 3A	×	M /C 4A	×	M /C 5A	×	M/C 6A-1	×	M/C 1A-1		M/C 2A-1		M/C 3A-1		M/C 4A-1	
1/C		m70 I/	M/CIA X		Â	iii 7 0 07 (Ŷ		Â		^	M/C 6A-2	×	M/C 1A-2		M/C 2A-2		M/C 3A-2		M/C 4A-2	
	Rec	M/C 1 B	×	× M/C 2B	×	M /C 3B	×	M /C 4B	×	M /C 5B	×	M /C 6B-1	×	M/C 1B-1		M/C 2B-1		M/C 3B-1		M/C 4B-1	
	ju la											M/C 6B-2	×	M/C 1B-2		M/C 2B-2		M /C 3B-2		M/C 4B-2	
	r use		M/C 2SA	×	M/C 3SA	×			M /C 5SA-1	×	_		M /C 1SA -1				M /C 3SA-1		4		
		M/C 1S	×					· -		M/C 5SA-2			×	M/C 1SA-2		-		M /C 3SA-2		-	
				M/C 2SB	×	M/C 3SB	×			M/C 55B-1	×			M/C 1SB-1		1		M /C 3SB-1			
	Ē	P/C 1C	~	P/C 2C		P/C 3C	~	P/C 4C		M/C 55B-2	×	P/C 6C		M/C 15B-2	~	P/C 2C 1	1	M/C 35B-2		P/C 4C 1	
	ne rg	P/C 1D	Ŷ	P/C 2D		P/C 3D	Ŷ	P/C 4D		P/C 5D	~	P/C 6D		P/C 1C-2	Ŷ	P/C 2C - 2	×	P/C 3C - 2	×	P/C 4C -2	×
	ency	-	-	P/C 2E	×	-	-	-	-	-	-	P/C 6F		P/C 1D-1	^	P/C 2D-1	^	P/C 3D -1	^	P/C 4D - 1	
				P/C 2A		P/C 3A	×	P/C 4A		P/C 5A	×	P/C 6A-1	×	P/C 1D-2	×	P/C 2D-2	×	P/C 3D-2		P/C 4D-2	×
		P/C 1A	×	P/C 2A-1	×	HVAC P/C 3A		HVAC P/C 4A		P/C 5A-1		P/C 6A-2	×	P/C 1A-1		P/C 2A-1		P/C 3A-1		P/C 4A-1	
P,	_	P/C 1B	×	P/C 2B		P/C 3B	×	P/C 4B		P/C 5B	×	P/C 6B-1	×	P/C 1A-2		P/C 2A-2		P/C 3A-2		P/C 4A-2	
Ċ	egu	-	-	-	-	HVAC P/C 3B		HVAV P/C 4B		P/C 5B-1		P/C 6B-2	×	P/C 1B-1		P/C 2B-1		P/C 3B-1		P/C 4B-1	
	ılar	P/C 1S	×	-	•	P/C 3SA	×	-	-	P/C 5SA	×	-	•	P/C 1B-2		P/C 2B-2		P/C 3B-2		P/C 4B-2	
	use	-	-	-	-	-	-	-	-	P/C 5SA-1	×	-	-	P/C 1SA				P/C 3SA			
		-	-	P/C 2SB	×	P/C 3SB	×	-	-	P/C 5SB	×	-	-	P/C 1SB		-		P/C 3SB		-	
		-	-	-	-	-	-	-	-	-	-	-	-	equipment	×			equipment	×		
DC p	125V	DC125V main bus panel A	×	DC125V P/C 2A	×	DC125V main bus panel 3A		DC125V main bus panel 4A	×	DC125V P/C 5A		DC125V DIST CENTER 6A		DC125V main bus panel A		DC125V main bus panel A		DC125V main bus panel A		DC125V main bus panel A	
ower iply	DC	DC125V main bus panel B	×	DC125V P/C 2B	×	DC125V main bus panel 3B		DC125V main bus panel 4B	×	DC125V P/C 5B		DC125V DIST CENTER 6B		DC125V main bus panel B		DC125V main bus panel B		DC125V main bus panel B		DC125V main bus panel B	
Sea v sys	Α	CCS A	×	RHRS A	×	RHRS A	×	RHRS A	×	RHRS A	×	RHRS A	×	RHRS A	×	RHRS A	×	RHRS A	×	RHRS A	×
water tem	В	CCS B	×	RHRS B	×	RHRS B	×	RHRS B	×	RHRS B	×	RHRS B	×	RHRS B	×	RHRS B	×	RHRS B		RHRS B	×

tokyo electric power company

Power Access/Restoration Status Immediately after 1F-1,2 Shutdown

Date	Operation and Restoration Status
March 11	Temporary MCR lighting on (Temporary small engine generator)
	Power source for Unit 1 Instrument restored (Temporary small engine generator)
March 12	Power source for Unit 1 Instrument restored (power source cart)
	Temporary small engine generator destroyed by H2 explosion
	Temporary MCR lighting on (another temporary small engine generator)
March 19	Backup transformer ~ Unit 1 & 2 temporary M/C (A) cable laid
March 20	Off-site power restored (P/C2C power received)

Power Access/Restoration Status Immediately after 1F-3,4 Shutdown

Date	Operation and Restoration Status					
March 11	Temporary MCR lighting on (Temporary small engine generator)					
March 13	P/C 4D restored (power source cart)					
	Yonomori Line 1L step-down transformer cart (66/6.9kW) connected to the Shin-Fukushima Substation					
March 14	Yonomori Line 1L ~ Okuma Line 3L connected					
	Power source for Unit 1 Instrument restored (power source cart) The power source cart destroyed by H2 explosion					
March 18	Unit 3 & 4 MC, Switch installation location					
March 22	Off-site power restored (P/C4D power received)					
Power Access/Restoration Status Immediately after 1F-6 Shutdown

Date	Operation and Restoration Status
March 11	DG6B startup (6A and 6H were shut down by the tsunami, 6B is an air-cooled type)
	SGTS(B) startup, DC125V/250V (B system) restoration
March 12	DC125V/250V (A system) restoration
March 13	MUWC(B) startup
March 19	RHR 6B startup, temporary RHRS alternative pump startup (power source cart)
	DG6A startup (March 21 shutdown)
March 20	Cold shutdown condition
March 22	Off-site power restored (M/C6C, 6D power received)
March 23	Temporary RHRS alternative pump switched to off-site power
kyu electric power compan	IY

H TO

Power Access/Restoration Status Immediately after 1F-5 Shutdown

Date	Operation and Restoration Status
March 12	DC125V/250 restoration
March 13	MUWC(A), SGTS(A) startup
March 18	Temporary RHRS alternative pump startup (power source cart)
March 19	RHR 5C startup
March 20	Cold shutdown condition
March 22	Off-site power restored (M/C6C, 6D power received)
March 23	Temporary RHRS alternative pump switched to off-site power

Recovery Process of I&C equipments @1F (1/2)

• After tsunami \rightarrow Total loss of instrumentations due to loss of offsite power and DC 125V

 March 11-14: to install temporary batteries to important instrumentations, such as reactor water level, reactor pressure, D/W pressure, S/C pressure etc. (1F-1-3: March 11, 1F-5/6: March 14) and to start to obtain plant data

March 22-25: to recover AC 120V bus for I&C (1F1: March 23, 1F2: March 25, 1F3/4: March 22)

 ~ Present: to prioritize the recovery of redundant instrumentations for their reliability and to change step by step from temporary battery to original power source

Recovery Process of I&C equipments @1F (2/2)

- May 9: to go into R/B to calibrate the D/W pressure instrument @1F1
- May 10-12: to calibrate the fuel zone reactor water level instrument @1F1
 - water level assumed as lower than -500cm of TAF

 June 3-4: to install the temporary reactor pressure and Δpressure instrument at the test line of fuel zone reactor water level instrument @1F1, to obtain more precise data on reactor pressure and water level

 June 22-24: to install the temporary reactor pressure and Δpressure instrument at the test line of fuel zone reactor water level instrument @1F2

- not successful due to rapid evaporation of water inside instrumentation line by high PCV temperature

Current status of important instrumentations @1F

Paramete r/unit	1F1	1F2	1F3	1F4	1F5	1F6
Reactor water level	A : ◎ B : △	A : △ B : △	A : △ B : △	N/A	0	0
Reactor pressure	A : ◎	A : •	A : △ B : △	N/A	0	0
Reactor water temp.	Not sampled	Not sampled	Not sampled	N/A	0	0
Temperatur e around RPV	0	0	0	N/A	N/A	N/A
D/W pressure	۵	Δ	0	N/A	N/A	N/A
S/C pressure	0	×	0	N/A	N/A	N/A
CAMS rad monitor	IS rad D/W : × D/W : nitor S/C : ○ S/C :		D/W : ○ S/C : ○	N/A	N/A	N/A
S/C temparature	0	0	0	-	-	-

 \circ : calibrated, \circ : assumed to be intact, \triangle : under continuous observation, × : failure

Measures to ensure Safe Shutdown @2F

- Tsunami Accident Management Guideline / Procedures and Drills
- Emergency Power Supply Capability under Tsunami SBO
 - Mobile power trucks with a total capacity of 8250 kVA for cooling system. (Required capacity: 6880 kVA)

- Emergency Water Injection and Cooling Capability under Tsunami SBO
 - Five fire engines with a total capacity of 120 m³/h at 0.85 MPa as back-up injection capability. (Required capacity: 30 m³/h at 0.7 MPa)
 - Spare air cylinders to drive AO valves for PCV venting
- Spare Motors and Bearings for Cooling Pumps
- Wheel Loader and Excavator to clear Debris
- Embankment

Prior to earthquake In rated power operation March 11, 2011 14:46 Great East Japan Earthquake occurred, Scram reactor automatically scrammed response **SHUTDOWN** Station black out due to tsunami 15:37 strike Deteriorating Water injection Vestein gvater systems also operability [COOLING] CONTAINMENT lost) due to the March 11 17:12 tsunami March 12 0:06 Superintendent directed As D/W pressure might have exceeded consideration for injection of water Preparations 600kPa abs, Station Director directed into reactors using fire protection for water preparations for PCV venting lines and vehicles injection Preparations 10:17 for venting March 12 5:46 Containment vessel venting commenced Fire-fighting vehicle started 14:30injection of fresh water Water D/W pressure decreased. (water source: fire cistern) injection Containment vessel venting successful started March 12 15:36 Explosion Occurred Venting TOKYO ELECTRIC POMARGANY12 19:04 Injection of sea water started

<u>Chronology at Fukushima Daiichi Unit 1</u>

	Prior to earth	quake	In rated power operation
Scram response	March 11, 2011 14:46		Great East Japan Earthquake occurred, reactor automatically scrammed
Deteriorating		14:47	Due to loss of offsite power, emergency D/G started up
operability		14:52	Isolation condenser (IC) started up ¹
due to the tsunami			1: Cooling system for emergencies which cools steam from the reactor and returns it to the reactor.
Preparations for water injection Preparations for venting Water injection started Venting		Plant shutdo DG & IC star Plant resp	own ("Shutdown" function operated normally) of-ups ("cooling" function operated normally) Sonse to the earthquake was normal
TEPCO IUKYU ELEC	iric Puwer Company — All F	Rights Reserved ©2	2011The Tokyo Electric Power Company, Inc. 79

Scram response	March 11, 2011 16:36	Reactor water level could not be maintained and water injection status became unclear. Accordingly, it was determined that failure of the emergency core cooling system to inject cooling water had occurred.
Deteriorating operability due to the	17:12	Site superintendent directed considering injection of water into reactors using fire protection lines and vehicles
tsunami		
	Coolant injection	means predetermined for use in an operation
	e e e la la la je e la	
Proparationa	at the	time of an accident cannot be used
Preparations for water	at the Use of fire-fighting	time of an accident cannot be used vehicles also evaluated as a practical operation
Preparations for water injection	at the Use of fire-fighting	time of an accident cannot be used vehicles also evaluated as a practical operation
Preparations for water injection Preparations for venting	at the Use of fire-fighting 21:19	time of an accident cannot be used vehicles also evaluated as a practical operation Reactor water level determined, top of active fuel + 200mm
Preparations for water injection Preparations for venting	at the Use of fire-fighting 21:19 23:00	time of an accident cannot be used vehicles also evaluated as a practical operation Reactor water level determined, top of active fuel + 200mm Rise in radiation dose in turbine building
Preparations for water injection Preparations for venting Water injection	at the Use of fire-fighting 21:19 23:00	time of an accident cannot be used vehicles also evaluated as a practical operation Reactor water level determined, top of active fuel + 200mm Rise in radiation dose in turbine building
Preparations for water injection Preparations for venting Water injection started	at the Use of fire-fighting 21:19 23:00 Rise in do	time of an accident cannot be used vehicles also evaluated as a practical operation Reactor water level determined, top of active fuel + 200mm Rise in radiation dose in turbine building
Preparations for water injection Preparations for venting Water injection started Venting	at the Use of fire-fighting 21:19 23:00 Rise in do	time of an accident cannot be used vehicles also evaluated as a practical operation Reactor water level determined, top of active fuel + 200mm Rise in radiation dose in turbine building se on site, deteriorating work environment, and frequent aftershocks

March 12, 2011 0:06 As D/W pressure might have exceeded 600kPa abs, Site superintended directed preparations for PCV venting

Deteriorating operability due to the tsunami

Preparations

for water injection

Preparations

for venting

Water injection

started

Venting

Scram response

> Pressure in the containment vessel increased and venting operation became unavoidable

Around 1:30 Venting operation proposed by TEPCO, and approved by the government

Preparation for venting Confirmation of venting procedures Confirmation of dose rate of the working environment Confirmation of necessary working time in the building Assessment of exposure dose to surrounding area during venting, etc.

In addition to the above, impact on residents in surrounding area was considered and the status of evacuation of residents in proximity to the station were checked TOKYO ELECTRIC POWER COMPANY

<u>Major Activities at Fukushima Daiichi Unit 1</u> ~ Containment Vessel Venting Operation (2) ~

Scram	March 12	5:46	Fire-fighting vehicle commenced injection of fresh water (water source: fire cistern)			
response		10:17	Containment vessel venting commenced			
Deteriorating operability due to the tsunami	N	14:30	D/W pressure decreased. Containment vessel venting succeeded			
Preparations for water injection Preparations for venting Water injection started Venting	Without any power source and in a very poor working environment with continuing aftershocks, "venting successful" and "alternative injection of cooling water into reactor commenced"					
TOKYO ELECTR	RIC POWER COMPANY	Pighte Deserve	ad ©2011The Takyo Electric Power Company, Inc. 86			

~ Fresh Water and Sea Water Injection ~

March 12 14:53 80,000L (total) of fresh water injection completed

• Fresh water injections were initially conducted using a fire cistern and the water was repeatedly

• Rubbles and debris due to the earthquake and tsunami prevented fire engines from moving

back and forth. Therefore a long fire hose was used to form a continuous water injection line

Line constructed and fresh water injected

14:54 Site superintendent **directed sea water injection** into the reactor

[Fresh water injection]

Scram

response

Deteriorating operability due to the tsunami

Preparations for venting

Water

injection started

Venting

[Sea water injection]

between the fire-protection system water outlets and the fire cistern.

injected through the fire-protection system water outlets.

- Prior to the direction by the superintendent, preparations for injecting sea water have been conducted since the amount of fresh water in the fire cistern was limited.
- Judging from the condition of the roads and the distance between Unit 1and the sea, it was decided not to take sea water directly from the sea, but to use a pit in front of the Unit 3 turbine building as the water source, in which sea water was accumulated due to the tsunami,.
- Three fire engines were lined in a series in order to inject sea water into the reactor.

Preparation for injecting sea water undertaken at an early stage

Tokyo Electric Power Company

Chronology at Fukushima Daiichi Unit 2

	Pric	or to earthquake	In rated power operation	
	Ма	rch 11, 2011 14:46	Great East Japan Earthquake occurred	
Scram response		14:47	Reactor automatically scrammed, and loss of offsite power supply caused emergency D/G start up	
		15:39	RCIC manually started	
		15:41	Tsunami caused station black out	
Deteriorating	×	17:12	Site superintendent directed considering cooling water injection using fire protection lines and vehicles	
operability	ater i	21:02	Due to uncertainty about the water level and RCIC operating status, the authorities were informed that TAF might be reached	
tsunami	nject	22:00	Reactor water level confirmed to be TAF+3400mm, so it was judged that it would some take time to reach TAF	
	tio	tion	March 12	2:55 RCIC was confirmed to be operating
Preparations for water	L D	17:30	Site superintendent directed preparation for venting operation	
injection	guisr	Ising	March13	10:15 Site superintendent directed for venting operation
Preparations for venting	RCIO		11:00 Construction of a venting line was completed except for a ruptured disk	
Water	Mai		12:05 Site superintendent directed preparation for sea water injection	
injection started		March 14	11:01 Due to explosion at Unit 3, vent valves were closed and water injection line became unusable	
Venting			19:54 Injection of sea water was commenced using fire-fighting vehicles from the fire-extinguishing system	
TOKYO ELEC	tric pov	VER COMPANY All Rights Reserved	d ©2011The Tokyo Electric Power Company, Inc. 89	

Chronology at Fukushima Daiichi Unit 3

	Prior	r to earthquake	In rated p	power operation		
Scram response	Marc	ch 11, 2011 14:46	Great Ea	Great East Japan Earthquake occurred		
			14:47	Reactor automatically scrammed		
		Approx. 14:48	Loss of	offsite power supply caused emergency D/G to start	up	
		15:38	Tsunami	caused station black out		
	\leq		16:03	RCIC manually started		
	at	March 12	11:36	RCIC tripped		
Deteriorating	er ir		12:35	HPCI automatically started (low react	or	
due to the	Ŋe	47.00	water lev	'el)		
tsunami	Ct	17:30	Site supe	erintendent directed preparation for venting operation	1	
	Q	March13 2:42		HPCI tripped		
Proparations	u U		5:15	Site superintendent directed venting I	line	
forwater	Sir		to be cor	istructed except for a ruptured disk		
injection	DL		8:41	Construction of a venting line was		
njeoton	지	R		complete	a except for the ruptured disk	
Preparations	\Box	Approx. 9:20	Venting of	operation confirmed decrease in the D/W pressure		
for venting			9:25	Injection of fresh water commenced		
			using fire	e-tighting vehicles from fire-extinguishing line (~12:00))	
Water	Ô		13:12	Injection of sea water commenced using fire-		
injection				fighting v	ehicles from fire-extinguishing line	
started		March 14	11:01	Explosion in the reactor building (fire-	-	
			fighting v	rehicles and hoses damaged)		
Venting	J	Approx. 16:30	Fire-fight	ing vehicles and hoses were replaced and injection or recommenced	of	
TOKYO ELEC	tric pov	VER COMPANY				