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Renewables portfolio standards (RPS) encourage large-scale
deployment of wind and solar electric power. Their power output
varies rapidly, even when several sites are added together.
In many locations, natural gas generators are the lowest cost
resource available to compensate for this variability, and
must ramp up and down quickly to keep the grid stable, affecting
their emissions of NOx and CO2. We model a wind or solar
photovoltaic plus gas system using measured 1-min time-resolved
emissions and heat rate data from two types of natural gas
generators, and power data from four wind plants and one solar
plant. Over a wide range of renewable penetration, we find
CO2 emissionsachieve∼80%oftheemissionsreductionsexpected
if the power fluctuations caused no additional emissions.
Using steam injection, gas generators achieve only 30-50%
of expected NOx emissions reductions, and with dry control NOx

emissions increase substantially. We quantify the interaction
between state RPSs and NOx constraints, finding that states with
substantial RPSs could see significant upward pressure on
NOx permit prices, if the gas turbines we modeled are
representative of the plants used to mitigate wind and solar
power variability.

Introduction
Renewable electricity generated by sources whose output
varies rapidlyswind and solar photovoltaicsprovided 0.79%
of the United States’ 2007 net electricity generation (1), but
these sources are growing. Renewables portfolio standards
(RPSs) enacted by 25 states, along with federal subsidies,
have encouraged renewable energy sources (2-4). California
requires that 20% of its electric power be generated from
renewables by 2010, New Jersey requires 12% by 2012, and
Texas requires ∼3% by 2015 (5-7).

When these sources provide a significant fraction of
electricity, other generators or rapid demand response must
compensate when their output drops (8, 9). Renewable energy
emissions studies (10-12) have not accounted for the change
in emissions from power sources that must be paired with
variable renewable generators such as wind and solar. In
many locations, natural gas turbines will be used to com-
pensate for variable renewables. When turbines are quickly
ramped up and down, their fuel use (and thus CO2 emissions)
may be larger than when they are operated at a steady power
level. Systems that mitigate other emissions such as NOx

may not operate optimally when the turbines’ power level
is rapidly changed.

Renewables that substitute for fossil generators avoid
emissions (emissions displacement). Life cycle assessments
(LCAs) estimate the emissions attributed to producing,
constructing, operating, maintaining, and decommissioning
a given technology (13). Although integration studies have
discussed increased reserve requirements for variable re-
newable sources, Weisser notes the resulting ancillary
emissions are not typically included in LCAs (13).

Two methods used to identify the displaced generators
are economic dispatch analysis and generation portfolio
analysis (11). Economic dispatch analysis assumes the
displaced generators are those with the highest marginal
costs of operation (transmission constraints are considered
in a few studies). Typically these generators are natural gas
and oil fired turbines, although coal plants are on the margin
at times (14). In portfolio analysis the emissions displaced
are the differences in a system’s generation portfolio before
and after variable renewable power is added. That approach
assumes a renewable plant displaces generation equally from
all assets, not solely from the generators operating on the
margin (10).

LCAs and emissions displacement studies use emissions
factors (kg of pollutant per MWh) to calculate produced or
displaced emissions. When fossil-fuel generators are used to
compensate for renewables’ variability, their emissions are
likely to be underestimated by emissions factors calculated
for full-power steady-state operations.

Denny and O’Malley (15) modeled emissions reductions
from wind power penetration using an economic dispatch
model for Ireland and an emissions factor that varies with
turbine power for a natural gas combined-cycle turbine
(NGCC) and a simple-cycle natural gas combustion turbine
(CT), concluding that CO2 would be reduced 9% for a wind
penetration factor of 11% (82% of the expected reduction for
that penetration of wind) and NOx emission reductions would
be 90% of the expected reductions. Their model uses hourly
data sets that are not able to capture a portion of the rapid
fluctuations of wind (8) and does not depend on ramp rate;
they did not examine the effects of different NOx mitigation
methods.

Model
To estimate emissions from fossil fuel generators used to
compensate for variable wind and solar power, we model
the combination of variable renewable power with a fast-
ramping natural gas turbine to provide baseload power. We
use a regression analysis of measured emissions and heat
rate data taken at 1-min resolution from two types of gas
turbines to model emissions and heat rate as a function of
power and ramp rate (Supporting Information). The required
gas turbine power and ramp rate to fill in the variations in
1-min data from four wind farms and one large solar
photovoltaic (PV) plant are determined, then the emissions
are computed from the regression model. The system
emissions are compared to the emissions of a natural gas
plant of the same size, and to the emissions reductions
expected from displacement analysis.

Data
We obtained 1-min resolution emissions data for seven
General Electric LM6000 natural gas combustion turbines
and two Siemens-Westinghouse 501FD natural gas combined-
cycle turbines. The LM6000 CTs have a nameplate power
limit of 45 MW and utilize steam injection to mitigate NOx

emissions. A total of 145 days of LM6000 emissions data was
* Corresponding author phone: (412)268-3003; fax: (412)268-7357;

e-mail: apt@cmu.edu.

Environ. Sci. Technol. 2009, 43, 253–258

10.1021/es801437t CCC: $40.75  2009 American Chemical Society VOL. 43, NO. 2, 2009 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 9 253

Published on Web 12/19/2008



used in the regression analysis. The Siemens-Westinghouse
501FD NGCC turbines have a nameplate power limit of 200
MW with GE’s Dry Low NOx system (lean premixed burn)
and an ammonia selective catalytic reduction system for NOx

control. Emissions data for 11 days were obtained for the
501FD NGCC.

The renewables data includes 1-s, 10-s, and 1-min
resolution and are from four wind farms and one large solar
photovoltaic facility located in the following regions in the
United States: Eastern Mid-Atlantic, Southern Great Plains,
Central Great Plains, Northern Great Plains, and Southwest
(Supporting Information Table S6).

Approach
The objective of the model plants is to maintain a constant
power output by minimizing the error ε between the expected
output and the realized output of the model plant at time
i (eq 1). The gas turbine model is subject to physical operating
constraints: the upper and lower power limits (eq 6) and
how quickly the turbine can change its power output (eq 7).
As discussed in the Supporting Information, the emission
and heat rate data we obtained for the gas turbines did not
cover all combinations of power and ramp rate. We therefore
further constrain the model to operate only in regions of the
power-ramp rate space for which we have data. Here we
focus on estimating the additional emissions caused by
variability, and caution that we have made no attempt to
ensure the stability of an electrical grid. Grid dynamic
response may somewhat change our results.

Min εP,i )Min|PA,i -PI,i - εP,i-1| (1)

where εP,i t error in power plant output, PI,i t ideal power
plant output

PA,i ≡ PW,i +n ·PGT,i

≡ wind power + natural gas power
≡ actual power generated

i ≡ time index
n ≡ number of gas turbines (2)

ṖGT ≡
dPGT

dt
≡ ramp rate of gas turbine (3)

Subject to:

PA ) constant (4)

Max(PW))Max(n ·PGT) (5)

PMin < PGTePMax (6)

ṖMine ṖGTe ṖMax (7)

We average the wind data to 1-min resolution to match
the time resolution of the natural gas generator emissions
data and scale each wind or PV data set’s maximum observed
power generated during the data set to the nameplate capacity
of the paired natural gas turbine. From each renewable data
set we calculate the required power levels and ramp rates of
the natural gas turbine needed to keep the output of the
baseload power plant constant. The operating and data
constraints of the natural gas turbine are applied, causing
the model gas generator’s output power to differ slightly from
this ideal power profile, as it would in practice.

The power level and ramp rate of the turbine are used as
inputs for an emissions model based on a multiple regression
analysis of the measured emissions of two types of natural
gas turbines. We model only NOx and CO2 emissions from
the turbine. Power plant CO emissions account for less than
1% of CO emissions in the United States and are not
considered in our analysis (16).

We calculate CO2 emissions from the measured heat rate
of the generator and the type of fuel used. Assuming complete
combustion, the CO2 emission rate can be derived from the
heat rate by multiplying by EIA’s natural gas conversion factor
of 0.053 t of CO2 per MMBTU (17). Although operating a
turbine at low or medium power loads generally results in
incomplete combustion, assuming complete combustion is
a reasonable approximation for calculating CO2 emissions,
since most CO and hydrocarbon radicals are oxidized to CO2

in the atmosphere (18). Using 1-min resolution emissions
data obtained from an electric generation company for two
types of gas turbines, we modeled CO2 emission rates as a
function of power level and ramp rate. We use the emissions
models to calculate the mass emitted during a given time
interval and sum over all time intervals to obtain the mass
emitted during a simulation:

M)∑
t)1

T dMt

dt
∆t (8)

where:

M) total mass of pollutant emitted
dMt

dt
) f(PGT,t, PGT,t))mass emission rate of gas turbine

for time period t
∆t) time interval of data set
T) time length of data set

(9)

Results
If a given level of penetrationRof wind or solar energy causes
no additional emissions from gas generators, we can define
the mass of expected emissions (�) in terms of the mass of
emissions from the gas units (MGT) as

�)MGT*(1-R) (10)

The expected emissions reductions are MGT *R. That is,
emissions are expected to be displaced linearly according to
the penetration factor of the renewables, an assumption we
refer to as equivalent displacement. Dividing eq 10 by the
energy produced, we define the emissions expected predicted
by an equivalent displacement model:

�F )� ⁄ ∑
time

P (11)

If the actual system mass emissions are MA then the fraction
of expected emissions reductions (η) that are achieved is

η)(MGT -MA) ⁄ (MGT - �) (12)

We define the difference between the expected emissions
and the actual emissions of a system as

MV )MA -� (13)

Consider a system with generators that emit 2 tons of CO2

per MWh without renewables in the system. Suppose with
10% variable renewables in the system, system emissions
are 1.8 tons per MWh. Then η would be (2 - 1.8)/0.2 ) 100%
and MV would be 0. On the other hand, if the emissions were
1.9 tons per MWh with 10% renewables, η would be 50% and
MV would be 0.1 tons per MWh. This framing allows an
assessment of the degree to which the introduction of variable
renewables displaces emissions from fossil generators, and
of the equivalent displacement assumption.

Table 1 summarizes results for the five variable power
data sets when used in their entirety (without nights for the
solar data). A system with renewables that uses LM6000
turbines for fill-in power achieves 76-79% of the expected
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CO2 emissions reductions and 20-45% of the expected NOx

emissions reductions. An emissions displacement analysis
would have overestimated emissions reductions by ∼23%
for CO2 emissions and by 55-80% for NOx emissions. Similar
penalties of 24% are incurred for 501FD CO2 emissions
reductions, but NOx emissions increase by factors of 2-6
times the amount emissions were expected to be reduced,
because of the unoptimized NOx performance of the 501FD
system below 50% power.

To investigate the dependence of system emissions on
the penetration of renewable energy, we select time periods
in our long data sets that have different capacity factors. For
wind power data, a sliding window of 1,000 min was used.

We note the high correlation between the nth data subset
and the n+1 data subset, which differ by only 2 data points,
but this method allows us to explore a wide range of
penetration of renewable power. For solar data, each day
was treated as a data subset (night periods are removed from
the data). The solar data was 732 days in length, yielding 732
different capacity factor results. We combined the results
from each analysis and in penetration factor intervals of 1%
plot the mean and area encompassed by two standard
deviations in Figure 1a-d.

Our model predicts that CO2 emission factors decrease
linearly with renewable penetration at a slope of -0.5
(compared to the expected -0.65, the negative of the

TABLE 1. Baseload Power Plant Model Results for 5 Variable Renewable Power Plant Data Sets (Note That with Night Periods
Removed, the Day-Only Capacity Factor for the Solar PV Plant Was 45%; the 95% Prediction Intervals Are Shown for a Least
Squares Multiple Regression Analysis) (19)

energy produced NOx CO2

renewable
(MWh)

natural
gas (MWh)

baseload
total (MWh)

percent of expected
emissions

reduction (η)

variability
emissions
(MV, in kg)

percent of
expected
emissions

reduction (η)

varibility
emissions

(MV, in tonnes)

LM6000
Eastern Wind 1,300 9,600 11,000 45% ( 4 270 79% ( 1 160
Northern Great Plains Wind 660 450 1,100 20% ( 3 350 76% ( 1 88
Central Great Plains Wind 3,400 2,800 6,200 33% ( 4 820 76% ( 1 440
Southern Great Plains Wind 7,700 9,000 17,000 22% ( 3 2,300 77% ( 1 1,000
Southwest PV (days) 170,000 210,000 380,000 23% ( 3 36,000 78% ( 1 15,000

501FD
Eastern Wind 6,000 42,000 48,000 -220 (+300, -120) 1,000 76% ( 1 770
Northern Great Plains Wind 2,900 2,000 4,900 -620% ( 100 1,100 76% ( 1 400
Central Great Plains Wind 15,000 13,000 28,000 -500% (+150, - 10) 4,500 76% ( 1 1,900
Southern Great Plains Wind 34,000 38,000 72,000 -600% ( 100 13,000 76% ( 1 4,800
Southwest PV (days) 730,000 930,000 1,700,000 -640% ( 100 230,000 77% ( 1 70,000

FIGURE 1. Mean renewable plus natural gas emission factors vs renewable energy penetration levels (r) (solid black line); area
shown represents 2 standard deviations of all five data sets (shaded brown area); see Figure 2 for representative single data set
variability. The expected emissions factor (green, lower line in each figure) is shown for comparison. (a) LM6000 CO2. (b) LM6000
NOx. (c) 501FD CO2. (d) 501FD NOx.
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emissions factor, eq 11) for LM6000s and -0.48 compared
to -0.64 (expected) for 501FDs (Figure 1a and c). At
penetration levels of 1, predicted emissions are not eliminated
because the natural-gas turbine is modeled as a spinning
reserve.

Below 65% renewable penetration, the LM6000 NOx

emission factor is roughly constant. Thus, adding renewables
is not effective in reducing NOx for such a system (Figure
1b).

A threshold effect is observed for the 501FD turbine: for
penetration values below ∼15%, the predicted NOx emission
factor nearly matches the expected emission factor (Figure
1d). Since the dry low NOx control system is optimized for
constant high power operations, it is not surprising that this
turbine design exhibits high NOx emissions as the penetration
of wind or solar energy increases to the point that the turbine
must cycle to low power. Limiting the 501FD’s Pmin limit to
>50% nameplate capacity avoids the poor NOx regions of
the DLN system (discussed in the Supporting Information),
and results in NOx emissions reductions. This approach is
applicable only if the ratio of energy provided by natural gas
generators with DLN to variable power plants is greater than
2:1.

Viewed in terms of η, as the penetration of variable power
increases the fraction of expected emissions reductions
achieved from a system with LM6000 turbines decreases from
∼87% to 78% for the Eastern wind data and from 80% to 76%
for the Southern and Central Great Plains wind data sets
(Figure 2a). Increasing the penetration factor of variable
power effectively reduces the natural gas turbine from steady-
state full power conditions to transient-state cycled power
conditions and results in higher NOx emissions. NOx reduc-
tions from a system using LM6000 turbines are roughly half
the expected value at 10% penetration, reaching a minimum
of 10-30% at a penetration of ∼50% (Figure 2b).

Emissions of CO2 from a system with 501FD turbines are
∼76% of that expected with no significant dependence on
penetration (Figure 2c). The large inertia of the 501FD

combined-cycle plant results in a heat rate that depends
only on power (Supporting Information Figure S6), and the
deviations from a constant fraction of achieved expected
emissions are caused by the constraints we impose on
operating the turbine to stay within the limits of the data. As
more variable renewable power is added, the NOx emission
factor (Figure 2d) increases because the 501FD is forced to
spend a higher percentage of its time operating in high NOx

emissions regions (as discussed previously).

Interactions between RPSs and CAIR
We examine the implications of our results by analyzing the
potential interaction between state RPSs and the Clean Air
Interstate Rule (CAIR). The District of Columbia Circuit Court
of Appeals vacated CAIR in July 2008 (20), but here we examine
the interactions between an RPS and CAIR, under the
assumption that a similar NOx emission rule will come into
force in the future. CAIR was designed to reduce annual NOx

emissions 60% by 2015 (21). States with large RPSs may
experience NOx emissions from gas turbines used to fill in
the variable renewable power that can make it more difficult
to meet CAIR requirements. We estimate what percentage
these ancillary emissions could consume of a state’s CAIR
annual NOx emissions allocation in 2020 (22) (most RPSs are
fully phased in by 2020; here we assume that the 2020 NOx

limits are the same as those in 2015).
We assume all RPSs in CAIR states are fulfilled and that

all RPS targets that can be met by wind are. We convert RPSs
that are specified by a percentage to MWh of wind generation
in 2020 by using the EIA assumption that load will grow
linearly to 3% above 2008 load (23). We also assume all
displaced and fill-in generators are similar to either LM6000s
or 501FDs. We estimate the expected emission reductions
(MGT – �) by using NOx emission factors of 0.2 kg/MWh for
LM6000s and 0.15 kg/MWh for 501FDs obtained from EPA’s
AP-42 database (24). For each state, we average the estimated
η for the four wind farm data subsets and use eq 12 to estimate

FIGURE 2. Renewable plus gas generator system mean expected emission reductions (η) vs variable energy penetration factors (r). 95%
prediction intervals (dashed lines) are shown only for the Eastern Wind plant. (a) LM6000 CO2. (b) LM6000 NOx. (c) 501FD CO2. (d) 501FD
NOx.
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MA. Finally, we use eq 13 to derive the mass of NOx emissions
attributed to variability that are not currently included in
most emissions displacement studies.

Table 2 summarizes the CAIR analysis. When LM6000
turbines are used, the potential emissions associated with
variability are significant for Illinois, Minnesota, and New
Jersey: countering wind’s variability could consume 2-3%
of each state’s annual CAIR allocations. If 501FDs are used,
7 of the 12 states could have 2-8% of their annual CAIR
allocations used to provide fill-in power for wind or PV power
plants.

In states like New Jersey, careful selection of the NOx

controls used for wind compensation may be warranted to
avoid upward pressure on NOx permit prices, similar to when
the NOx budget was first implemented (25). Using the
emissions from Table 2 and assuming an annual NOx

emission permit price of $2,800 per ton, the costs associated
with degraded emissions performance can be as high as 0.24
cents per kWh of renewable energy for NOx emissions. With
a carbon price of $50 per ton carbon dioxide, the added costs
can be as high as 0.50 cents/kWh for CO2 emissions. These
costs do not include the additional maintenance costs that
may arise from cycling the gas turbines to compensate for
the renewables’ variability.

As part of their NOx control strategy, states may choose
to award NOx allowances to eligible renewable energy and
energy efficiency projects. These awards range from a few
percent of the NOx allowances to as much as 15%. New
Jersey’s set-aside is 5%, and Minnesota has proposed a 15%
renewable set-aside (26). Our results caution that annual
average emissions factors may not be appropriate for the
summer ozone control months, since the character of the
variability of both wind and solar PV is dependent on the
season.We note that the awards are based on the equivalent
displacement assumption, and states that use gas generators
to compensate for wind or solar PV variability may find that
assumption is not warranted.

The calculations above assume that variability in renew-
able generation results in similar variability in the natural
gas generators used to compensate. There are several reasons
this may not be correct, including use of coal and oil
generators for compensation and interaction between re-
newable variability and load variability (8), so the estimates
in Table 2 are likely to provide an upper bound on estimates
of the emissions increase associated with wind and solar
generation’s variability. Storage systems other than pumped
hydroelectric are presently not cost-effective (27), but may
reduce the need for ramping generators should their costs
fall.

Discussion
Carbon dioxide emissions reductions from a wind (or solar
PV) plus natural gas system are likely to be 75-80% of those
presently assumed by policy makers. Nitrous oxide reduction
from such a system depends strongly on the type of NOx

control and how it is dispatched. For the best system we
examined, NOx reductions with 20% wind or solar PV
penetration are 30-50% of those expected. For the worst,
emissions are increased by 2-4 times the expected reductions
with a 20% RPS using wind or solar PV.

The fraction of expected emissions reduction, η, is
calculated assuming that the emissions predicted to be
displaced originate from the same generator type that
provides fill-in power: Figure 2a and b assume a LM6000 is
displaced and a LM6000 is providing compensating power;
Figure 2c and d assume 501FDs. Realistically, displaced
generators will differ from the generators providing fill-in
power and would produce different results. We have shown
that the conventional method used to calculate displaced
emissions is inaccurate, particularly for NOx emissions. A
region-specific analysis can be performed with knowledge
of displaced generators, dispatched compensating generators,
and the transient emissions performance of the dispatched
compensating generators. The results shown here indicate
that at large scale variable renewable generators may require
that careful attention be paid to the emissions of compen-
sating generators to minimize additional pollution.

If system operators recognize the potential for ancillary
emissions from gas generators used to fill in variable
renewable power, they can take steps to produce a greater
displacement of emissions. By limiting generators with GE’s
DLN system to power levels of 50% or greater, ancillary
emissions can be minimized. Operation of DLN controls with
existing (but rarely used) firing modes that reduce emissions
when ramping may be practical. On a time scale compatible
with RPS implementation, design and market introduction
of generators that are more appropriate from an emissions
viewpoint to pair with variable renewable power plants may
be feasible.
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