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1 Introduction 

EPA is proposing regulations implementing Section 316(b) of the Clean Water Act (CWA) to address the 
environmental impacts of cooling water intake structures (CWISs). The withdrawal of cooling water from 
streams, rivers, estuaries and coastal marine waters by CWISs causes adverse environmental impacts 
(AEI) to aquatic biota and communities in these waterbodies. These impacts are caused through several 
means, including impingement mortality (where fish and other aquatic life are trapped on equipment at 
the entrance to the CWIS) and entrainment mortality (where aquatic organisms, including eggs, and 
larvae are taken into the cooling system, passed through the heat exchanger, then discharged back into the 
source body). Additional adverse effects are often associated with CWIS operation, including nonlethal 
effects of impingement, thermal discharges, chemical effluents, flow modifications caused by these 
plants, and other impacts of variable and unknown magnitudes.  

The Proposed Section 316(b) Regulation would establish national performance requirements for the 
location, design, construction, and capacity of CWISs (Clean Water Act 1972). This regulation is 
designed to minimize the adverse environmental impacts caused by CWIS through reduction of volume, 
frequency, and/or seasonality of water withdrawals. The proposed regulations will significantly reduce 
impingement and entrainment (I&E) mortality, as well as reduce the magnitude of other impacts (i.e., 
thermal, chemical, and flow alteration) on aquatic ecosystems. Thus, changes in CWIS design or 
operation resulting from Section 316(b) regulation are likely to result in enhanced ecosystem function and 
increased ecological services provided by affected waterbodies. 

The two broad categories of existing facilities are considered to be within the Proposed rule’s scope 
include: (1) electric generators and (2) manufacturers. In-scope 316(b) facilities include existing electric 
generators and manufacturers with a design intake flow (DIF) of at least 2 million gallons per day (MGD) 
that use at least 25 percent of the water they withdraw (measured on an average annual basis for each 
calendar year) exclusively for cooling purposes. 

EPA is required to conduct a benefit-cost analysis under Executive Order 12866 for economically 
significant rules. This report presents the methods EPA used for the environmental assessment and for the 
benefits analysis of the regulatory options. EPA’s analysis had three main objectives: (1) to develop a 
national estimate of the baseline magnitude of I&E mortality at in-scope facilities; (2) to estimate changes 
in the I&E mortality of fish and invertebrates as a result of regulation; and (3) to estimate the national 
economic benefits of reduced I&E mortality.   

This report describes the regulatory options that EPA considered, and the study design. It identifies the 
types of economic benefits that are likely to be generated by improved ecosystem functioning under 
different regulatory options for in-scope facilities. The report also presents the basic concepts involved in 
analyzing these economic benefits—including benefit categories and benefit taxonomies associated with 
market and nonmarket goods and services likely to flow from reduced I&E mortality. Specific chapters of 
the report detail the methods used to estimate values for reductions in I&E mortality. 

The organization of this report is described in Section 1.3. 
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1.1 Summary of the Proposed Regulation and Other Evaluated Options 

EPA is considering three regulatory options for existing facilities based on two technologies. The three 
options would regulate only existing facilities with a DIF for cooling water of 2 MGD or greater. Each 
option evaluated in developing this proposed regulation is described below. 

 Option 1: I Everywhere. Establish Impingement Mortality Controls at All Existing Facilities 
that Withdraw over 2 MGD; Determine Entrainment Controls for Facilities Greater than 2 MGD 
DIF On a Site-specific Basis. 

 Option 2: I Everywhere and E for Facilities > 125 MGD. Establish Impingement Mortality 
Controls at All Existing Facilities that Withdraw over 2 MGD DIF; Require Flow Reduction 
Commensurate with Closed-cycle Cooling By Facilities Greater Than 125 MGD DIF. 

 Option 3: I&E Mortality Everywhere. Establish Impingement Mortality Controls at All 
Existing Facilities that Withdraw over 2 MGD DIF; Require Flow Reduction Commensurate with 
Closed-Cycle Cooling at All Existing Facilities over 2 MGD DIF. 

1.2 Study Design 

EPA’s analysis of the regulatory options examined CWIS impacts and regulatory benefits in seven study 
regions (California,1 North Atlantic, Mid-Atlantic, South Atlantic, Gulf of Mexico, Great Lakes, and 
Inland). The study regions were chosen based on regional similarities within ecosystems, aquatic species, 
and characteristics of commercial and recreational fishing activities. Regional results were then combined 
to develop national estimates. The geographical extent of the seven regions, and the water body types 
within each region, are described below in Section 1-3. Table 1-1 presents the number of in-scope 
facilities and total actual intake flow by study region. 

EPA has determined that 158 in-scope facilities currently use closed-cycle cooling water systems that 
minimize entrainment losses by greatly reducing the total volume of cooling water withdrawn from 
nearby waterbodies. Of these facilities, 59 also meet water intake velocity requirements that minimize 
impingement mortality. Although these 59 facilities would be subject to the requirements of the Proposed 
Rule, they would not be required to install additional technologies to reduce I&E mortality under the 
Proposed Rule. Thus, these facilities do not influence the occurrence and magnitude of benefits. 

 

 
 
 
 

                                                      
1  Includes four in-scope facilities in Hawaii. 
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Table 1-1: In-Scope Facilities and Actual Intake Flow (AIF) by Region (billions of gallons per 
day) 

Region

Number of In-Scope 

Facilitiesa
Flow Without 
Recirculation Recirculated Flow Total Flow

Californiab 8 1.19 0.00 1.2
Great Lakes 67 18.81 0.24 19.0

Inlandc 669 134.87 3.89 138.8
Mid-Atlantic 54 28.10 0.07 28.2
Gulf of Mexico 30 12.89 0.00 12.9
North Atlantic 26 7.04 0.00 7.0
South Atlantic 17 7.42 0.05 7.5
All Regions 871 210.30 4.25 214.5
a This table presents the unweighted number of facilities because weighted facilities counts are
not estimated separately by benefits region. The estimated total weighted number of potentially regulated facilities is 1152 (including 
baseline closures).
b The California region includes manufacturing facilities in the state of California and four facilities in Hawaii. It excludes coastal 
electric generating facilities in the state of California due to state regulation of cooling water intakes for these facilities. There are no 
coastal facilities in Oregon and a single facility in Washington classified as a baseline closure.
c A facility in Texas has intakes located in both the Inland and Gulf of Mexico regions. It is included within the Inland region within the 
current table  to prevent the double counting of facilities.
Source: U.S. EPA analysis for this report.

 

1.2.1 Coastal Regions 

The five coastal regions (California, North Atlantic, Mid-Atlantic, South Atlantic, and Gulf of Mexico) 
correspond to those of the National Oceanic and Atmospheric Administration’s (NOAA) National Marine 
Fisheries Service (NMFS). These regions include facilities that withdraw cooling water from estuaries, 
tidal rivers and ocean facilities within the NMFS regions. All facilities that withdraw cooling water from 
non-coastal waterbodies, such as lakes, rivers, and reservoirs, regardless of geographical location, are 
included in the Inland Region (Section 1.2.3) 

Coastal regions are defined as follows: the California region includes all estuary/tidal river and ocean 
manufacturing facilities in California.2 plus four facilities in Hawaii. The North Atlantic region 
encompasses coastal facilities in Maine, New Hampshire, Massachusetts, Rhode Island, and Connecticut. 
The Mid-Atlantic region includes coastal facilities in New York, New Jersey, Pennsylvania, Delaware, 
Maryland, the District of Columbia, and Virginia. The South Atlantic region includes coastal facilities in 
North Carolina, South Carolina, Georgia, and the east coast of Florida. Finally, the Gulf of Mexico region 
includes coastal facilities in Texas, Louisiana, Mississippi, Alabama, and the west coast of Florida. 
Coastal regions include a total of 152 facilities. 

1.2.2 Great Lakes Region 

The Great Lakes region is defined in accordance with the Clean Water Act to include facilities 
withdrawing cooling water from Lake Superior, Lake Michigan, Lake Huron (including Lake St. Clair), 
Lake Erie and Lake Ontario, and the connecting channels (Saint Mary’s River, Saint Clair River, Detroit 

                                                      
2 The California region includes manufacturing facilities in the state of California and four facilities in Hawaii, It excludes coastal 

electric generating facilities in the state of California due to state regulation of cooling water intakes for these facilities. 
There are no coastal facilities in Oregon and a single facility in Washington classified as a baseline closure. 
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River, Niagara River, and Saint Lawrence River to the Canadian border) (Great Lakes 1990).  The Great 
Lakes region is comprised of 67 facilities.  

1.2.3 Inland Region 

The Inland region includes all in-scope facilities that withdraw water from all inland waterbodies 
(excluding those included within the Great Lakes Region) regardless of geographical location. There are 
669 such facilities in 39 states (including states with both coastal and inland facilities).  

1.3 Organization of the Document 

Chapter 2 provides information on the baseline conditions of the water bodies affected by in-scope 
facilities. To obtain regional I&E mortality estimates, EPA extrapolated loss rates from facilities for 
which I&E mortality data are available (hereafter model facilities), to all in-scope facilities within the 
same region. EPA’s methods for, and results from, regional I&E mortality models are described in 
Chapter 3. 

Chapters 4 through 9 describe EPA’s analysis of the regional economic benefits of Section 316(b) 
regulatory options. EPA provides an overview of all benefits (Chapter 4) and investigates several benefit 
categories in detail, including: benefits from improved protection of threatened and endangered (T&E) 
species (Chapter 5), commercial fishing benefits (Chapter 6), recreational fishing benefits (Chapter 7), 
nonuse benefits (Chapter 8), EPA also assesses I&E mortality losses and benefits using habitat 
equivalency analyses (Chapter 9), and summarizes total national benefits for in-scope facilities based on 
the results of the regional analyses (Chapter 10). Chapter 11 presents results for a fourth regulatory option 
not documented in previous chapters. 

Additional details regarding EPA’s benefits analysis are presented in Appendix A through Appendix J. 
Appendix A presents the extrapolation methods used by EPA to analyze the benefits from reducing I&E 
mortality at in-scope facilities; Appendix 2.1.1.1AB describes potential ecological effects due to thermal 
discharges; Appendix C presents detailed output from I&E mortality models; Appendix D discusses 
economic discounting and the expected timing of benefits; Appendix E presents a list of T&E species 
likely impacted by I&E mortality; Appendix F provides extra details on the methodologies used to 
estimate the effects of I&E mortality on T&E species, and the benefits from proposed 316(b) regulation; 
Appendix G presents EPA’s analysis of the potential for I&E mortality reductions to impact the market 
price of commercially fished species; Appendix H presents details of the benefits of I&E mortality on 
commercial fishing by region; Appendix I presents detailed regional results of the effects of I&E 
mortality on recreational fishing benefits; and Appendix J presents extra details on the habitat based 
methodology for estimating nonuse values of I&E mortality. 
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2 Baseline Impacts  

2.1 Introduction 

This chapter provides a brief summary of adverse environmental impacts from the impingement and 
entrainment (I&E) mortality of fish and invertebrates in cooling water intake structures (CWISs) used by 
electric power plants and manufacturing facilities subject to regulation under Section 316(b) of the Clean 
Water Act (CWA).  

CWIS impacts do not occur in isolation from other ongoing physical, chemical, and biological stressors 
on aquatic habitats and biota in the receiving waterbody. Additional anthropogenic stressors may include, 
but are not limited to: degraded water and sediment quality, low dissolved oxygen (DO), eutrophication, 
fishing activities, channel or shoreline (habitat) modification, hydrologic regime changes, invasive 
species, etc. For example, many aquatic organisms subject to the effects of cooling water withdrawals 
reside in impaired (i.e., CWA 303(d) listed) waterbodies. Accordingly, they are potentially more 
vulnerable to cumulative impacts from other anthropogenic stressors (USEPA 2006a). The effect of these 
anthropogenic stressors on local biota may contribute to or compound the local impact of I&E mortality, 
depending on the influence of location-specific factors. In addition to multiple stressors acting on biota 
near a single CWIS, multiple facilities and CWISs located in close proximity along the same waterbody 
may have additive or cumulative effects on aquatic communities (USEPA 2006a).  

Although it is difficult to measure, EPA believes that an aquatic population's compensatory ability—the 
capacity for a species to increase survival, growth, or reproduction rates in response to decreased 
population —is likely compromised by impingement and entrainment (I&E) mortality losses and the 
cumulative impact of other stressors in the environment over extended periods of time (USEPA 2006a). 
These cumulative impacts may lead to subtle, less-easily observed changes in aquatic communities and 
ecosystem function. These secondary impacts are difficult to isolate from background variability, partly 
because of the limited scope and inherent limitations of the data available to characterize I&E mortality. 

Since the aquatic habitat quality and health of the biotic community are shaped by the cumulative effect 
of many factors, it is important to characterize the environmental context of baseline impacts. This will 
permit comparisons between the relative influences of CWIS-related stressors and other factors, and result 
in a more accurate estimate of the environmental impact of the Section 316(b) regulation.   

This chapter provides a qualitative description of baseline I&E mortality impacts and anthropogenic 
stressors found in aquatic environments affected by CWISs. 

2.2 Major Anthropogenic Stressors in Aquatic Ecosystems  

All ecosystems and their biota are subject to natural variability in environmental conditions (e.g., seasonal 
perturbations), as well as periodic large-scale disturbances in environmental settings (e.g., drought, flood, 
fire, disease). Indigenous aquatic species and communities are adapted to this natural variability, such that 
large-scale events elicit a predictable loss, response and recovery cycle.  Conversely, anthropogenic 
stressors tend to be more chronic in nature and often do not lead to recognizable recovery phases. Instead 
these stressors often lead to long-term environmental degradation associated with lowered biodiversity, 
reduced primary and secondary production, and a lowered capacity or resiliency of the ecosystem to 
recover to its original state in response to natural perturbations (Rapport and Whitford 1999). 
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Anthropogenic stressors are present to some degree in all major waterbodies of the United States, and are 
the result of many different impacts (Table 2-1). Four of the more important stressors include: (i) habitat 
loss; (ii) degraded water quality and sediment contamination; (iii) extractive uses of aquatic resources; 
and (iv) invasion by non-indigenous species (Rapport and Whitford 1999). CWIS-related impacts are 
considered here as a separate, fifth category of anthropogenic stress, one with many apparent similarities 
to overharvesting. Other large-scale stressors, such as change in watershed land use and engineering 
diversions, may be present. Thus, the true impact of CWISs on an aquatic community may be partly 
masked, or difficult to detect, due to the influence of other stressors on the receiving water. 

The remainder of this section summarizes effects of these four anthropogenic stressors on the waterbodies 
affected by in-scope 316(b) facilities. CWIS impacts on the aquatic ecosystems are summarized in 
Section 2.3. 

 

Table 2-1:  Anthropogenic Stressors Impacting Aquatic Ecosystems Potentially Affected, Both 
Directly and Indirectly, by 316(b) Option Scenarios 

Anthropogenic Stressor 

Impacted by Regulation 

Scale of Stressor Option 1 Option 2 Option 3 

CWIS  Yes: Direct Yes: Direct Yes: Direct Local/Regional/National 

Habitat loss     

Development No No No Local 

Eutrophication Yes: Indirect Yes: Indirect Yes: Indirect Local/Regional 

Climate change No No No Regional/National/Global 

Engineering (below) No  Yes: Direct  Yes: Direct  Local/Regional 

Engineering diversions     

Re-routing No No No Local/Regional 
Flow adjustments/removals/ 
modifications No Yes: Direct Yes: Direct Local/Regional 

Water impoundments/damming No No No Local/Regional 

Water quality     

Eutrophication Yes: Indirect Yes: Indirect Yes: Indirect Local/Regional 

Loss of riparian buffer zones No No No Local/Regional 

Sedimentation No Yes: Direct Yes: Direct Local/Regional 
Chemical pollution (organics, 
heavy metals, etc.) No Yes: Direct Yes: Direct Local/Regional 

Non-native / invasive species Yes: Indirect Yes: Indirect Yes: Indirect Local/Regional 

Extractive uses (e.g. fishing) Yes: Indirect Yes: Indirect Yes: Indirect Local/Regional 
Note: Option 1 is I Everywhere, Option 2 is I Everywhere and E for Facilities > 125 MGD, and Option 3 is I&E Mortality 
Everywhere. 

 

2.2.1 Habitat Loss 

Structural aquatic habitat is generally recognized as the most significant determinant of the nature and 
composition of aquatic communities. Human occupation and restructuring of shorelines; construction and 
maintenance of harbors; installation of dams, canals, and other navigational infrastructure; draining of 
wetlands for agriculture and residential uses; and degradation of critical fish habitats have all taken a 
heavy toll on the numbers and composition of local fish and shellfisheries.  Most 316(b) facilities have 
been built on shoreline locations where power-generation buildings, roadways, CWISs, canals, 
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impoundments, and other water storage or conveyance structures have often been constructed at the cost 
of natural habitat, including terrestrial, aquatic, and wetlands.  

The loss of coastal and estuarine wetlands that serve as important fishery spawning and nursery areas is 
particularly severe, with an estimated historical loss of 100 million acres of wetlands since the late 1700s 
(Bromberg and Bertness 2005; USEPA 2010b). Critical fishery habitat loss is not restricted to nearshore 
environments. Decades of fishing activities have degraded offshore bottom habitats (Auster and Langton 
1999; Turner et al. 1999). 

The main impact of aquatic habitat loss is a reduction in the number of fish in the environment, a 
concentration of fishery spawning and nursery areas to fewer locations, shifts in species dominance based 
on available habitat, and local extirpation of historical fish species. Habitat loss in adjacent shoreline 
areas exacerbates the effect of CWIS losses, since many fish species affected by I&E mortality (e.g., bay 
anchovy, winter flounder) rely on coastal wetlands as nursery areas.  

In riverine environments, the effects of channelization and navigation can also lead to habitat loss. For 
example, Tondreau et al. (1982) conducted a 10-year study of the aquatic ecosystem of the Missouri River 
near the Neal Generating facility, Sioux City, IA. The investigators found that the combined effects of 
channelization, heavy barge traffic, and high river flow rates had resulted in a significant loss of fish 
habitat. As a result, reported I&E mortality losses were relatively minor, because local fish populations 
were already greatly diminished.  

2.2.2 Water Quality  

Water quality is a major stressor of aquatic biota and habitats. Degraded surface water and sediment 
contaminants reflect current and historical industrial, agricultural and residential land use as well as 
discharges from wastewater treatment plants. Poor water quality can limit the numbers, composition, and 
distribution of fish and invertebrates; reduce spawning effort and growth rates; select for pollution-
tolerant species; cause periodic fishkills; or result in adverse effects to piscivorous wildlife.  

CWA Section 303(d) listings inventory, on a state-by-state basis, the locations of impaired waters not 
meeting designated uses and the known or suspected source(s) of impairment. Figure 2-1 identifies 316(b) 
facilities that are within two miles of a 303(d)-listed waterbody (blue shapes), as well as those that are 
impaired for temperature (red shapes). The map clearly shows that facilities along the coasts, Great Lakes, 
and major waterways such as the Mississippi, Missouri, and Ohio rivers are located in the vicinity of 
impaired waterbodies. 
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Figure 2-1: Map of Facilities Located on 303(d) Waters and Those Listed for Temperature 
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EPA’s analysis of the 316(b) facilities location demonstrated that the majority of facilities, including 71 
percent of generators and 79 percent of sampled manufacturing facilities, are within two miles of a 
303(d)-listed waterbody (Abt Associates 2010b). Table 2-2 summarizes the number of 316(b) facilities on 
waterbodies impaired by any cause, by region. These include impairment due to chemical, physical, and 
biological factors, categorized into biological stressors, nutrients, organic enrichment/loading, 
bioaccumulation, toxics, unknown causes, and general water quality impairment. 

The most common causes of impairment for waterbodies serving as 316(b) source waters are 
polychlorinated biphenyls (PCBs), pathogens, mercury, as well as organic enrichment/oxygen depletion 
and nutrients. The entire universe of all 303(d) water quality impairment causes is much too diverse to 
cover fully in this section. However, below we discuss some of the more common and important physico-
chemical impairments in aquatic environment where 316(b) facilities potentially draw cooling water from 
and discharge to 303(d) listed waters. 

 An oversupply of nutrients can result in excessive algal production, reduced light clarity, more 
frequent outbreaks of harmful algal blooms (HABs), high internal loads of biochemical oxygen 
demand (BOD), and spatial and temporally variable DO levels. In addition, eutrophication can 
reduce or eliminate habitat-formers such as coral reefs and submerged aquatic vegetation (SAV), 
and create other adverse ecological effects. Thermal discharges from 316(b) facilities can 
increase receiving water temperature, which may favor formation of blue-green algal blooms. 

 Low levels of dissolved oxygen (hypoxia) may be present in many estuaries and coastal waters 
(IWG 2010), in the hypolimnia of eutrophic lakes, and in areas of high organic loading (e.g., 
below wastewater treatment plant outfalls). DO concentrations may be further decreased in or 
downstream of thermal plumes arising from cooling water return discharges from 316(b) 
facilities. Low DO can limit the distribution of fish and macroinvertebrates, reduce growth rates, 
and alter nutrient and carbon recycling. 

 Persistent, bioaccumulative and toxic substances (PBTs) such as mercury or PCBs may be present 
in waterbodies near 316(b) facilities, due to atmospheric deposition of local air emissions or from 
historical uses of PCBs in electrical transformer units, in addition to other urban or industrial 
sources.  These PBTs can impair water uses by regulatory restrictions or advisories regarding 
acceptable ingestion of fish consumption (see below), as well as affecting higher trophic level 
predators in the food chain.   

 Toxic pollutants, such as metals, polycyclic aromatic hydrocarbons (PAHs), pesticides, 
biofouling chemicals, or chlorine may be present in the discharge of 316(b) facilities.  This could 
lead to local extirpation of sensitive species, or to greatly altered biological communities due to 
chronic impacts on viability, growth, reproduction, and resistance to other stressors. 

In addition to the 303(d) listings, many of the waterbodies in which the CWIS are located are subject to 
fish advisories. Fish advisories are issued by States to protect their citizens from the risk of eating 
contaminated fish or wildlife (USEPA 2009a). Fish advisories are recommendations and do not carry 
regulatory authority, but they indicate the presence of bioaccumulative chemicals which may pose risk for 
humans and piscivorous wildlife and which may also interfere with reproduction and survival of lower 
taxa as well.  
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Table 2-2: Number of 316(b) Facilities on 303(d)-listed Waterbodies, by Impairment and Region 

Impairment California
Great 
Lakes Inland 

Mid-
Atlantic

Gulf of 
Mexico 

North 
Atlantic 

South 
Atlantic Total 

Biological Stressors 

Noxious Aquatic Plants     2         2 

Nuisance Exotic Species 2 9           11 

Pathogens 1 15 99 5 1 12 6 139 

Nutrients 

Algal Growth     1         1 

Nutrients   15 47 3 1 2 9 77 

Organic Enrichment / Loading 

Organic Enrichment/Oxygen Depletion  7 56 1 5 4 9 82 

Sediment  9 18 2       29 

Persistent, Bioaccumulative, Toxic (PBTs) 

Dioxins 1 14 13     2   30 
Fish Consumption Advisory - Pollutant 
Unspecified    8       1 9 

Mercury 2 28 96   4 2 3 135 

PCBs 3 57 142 13   2 1 218 

Pesticides 8 12 16         36 

Physical Alterations 

Flow Alteration     7         7 

Habitat Alteration   6 12         18 

Temperature     9     3   12 

Turbidity     27   1   3 31 

Toxics 

Ammonia    3     1   4 

Chlorine     2         2 

Metals (Other Than Mercury) 3 4 43 7   1   58 

Total Toxicity 2   5 2   1   15 

Toxic Inorganics     1     1   2 

Toxic Organics   3 12     3   18 

Unknown / Other Causes 

Cause Unknown     11     1   12 

Cause Unknown - Fish Kills     1         1 

Cause Unknown - Impaired Biota 1 3 14 2       20 

Other Cause    1         1 

Water Quality Use Impairments (General) 

Oil And Grease     6     3   9 

pH   3 8         11 

Salinity/TDS/Sulfates/Chlorides 1 1 7         9 

Taste, Color And Odor     4     1   5 

 
 



 

March 28, 2011  2-7 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

EPA’s 2008 National Listing of Fish Advisories (NLFA) database indicates that 97% of the advisories are 
due (in order of importance) to: mercury, PCBs, chlordane, dioxins, and DDT (USEPA 2009a). Fish 
advisories have been issued for 39 percent of the total river miles (approximately 1.4 million river miles) 
and 100 percent of the Great Lakes and connecting waterways (USEPA 2009a). Fish advisories have been 
steadily increasing over the NLFA period of record (1993-2008), but these increases are interpreted to 
reflect the increase in the number of waterbodies being monitored by States and advances in analytical 
methods rather than in increasing levels of these problematic chemicals.  
 

The water quality impacts arising from the combination of operations and/or discharges of 316(b) 
facilities and other anthropogenic sources (as indicted by the presence of widespread fish advisories) 
could result in highly degraded or altered aquatic communities that may be further reduced by I&E 
mortality.  

2.2.3 Overharvesting 

Overharvesting is a general term given to describe the exploitation of an aquatic population (e.g., fish, 
shellfish, and kelp) in an unsustainable fashion to the point of reducing or even eliminating much of the 
population. Stocks of commercial and recreationally important species are reduced as a result of fishing, 
but such fish catches may be sustainable if sufficient recruitment of juveniles into the fishery can replace 
population losses from fishing and other stressors. Unfortunately for many aquatic species, overharvesting 
has a long history and in many instances has preceded impacts by other competing anthropogenic 
stressors by several centuries (Jackson et al. 2001).  

Given that many fisheries are being overfished on a continual basis, overharvesting continues to be a 
problem when considering stocks subject to I&E mortality. For example, the NMFS 2009 status report 
indicated that 15 percent of federally monitored fish stocks were being fished at rates above the maximum 
sustainable yield (“overfishing”), while 23 percent of species are considered over-exploited 
(“overfished”) (NMFS 2010a). Table 2-3 lists 21 groups of overfished, depleted, or rebuilding 
commercial fish stocks occurring in I&E mortality data reported from a subset of in-scope facilities 
(NMFS 2010a). Further, this assessment does not include many important fishery species not subject to 
federal regulation that may be subject to high I&E mortality such as shad, menhaden, and American 
lobster. Moreover, this assessment does not consider any threatened and endangered (T&E) species. 

Severe overfishing can drive species to ecological insignificance, where the overfished populations no 
longer interact meaningfully in the food web with other species in the community, or even to extinction 
(Jackson et al. 2001). The collapse of the Great Lakes whitefish fisheries has been shown to be principally 
due to overfishing, although habitat alteration and introduction of a non-indigenous (exotic) invader (sea 
lamprey) were also contributory (Rapport and Whitford 1999).  

2.2.4 Invasive Species 

Non-indigenous, invasive species (NIS) are a significant and increasingly prevalent stressor in both 
freshwater and marine environments (Cohen and Carlton 1998; Ruiz et al. 1999). Approximately 300 NIS 
are established in marine and estuarine habitats of the continental U.S., and that rate of invasion is rapidly 
increasing (Ruiz et al. 2000). Aquatic NIS are taxonomically diverse and include: plants, fish, crabs, 
snails, clams, mussels, bryozoans, and nudibranchs.  Analysis of freshwater NIS indicated that between 
10-15 percent are nuisance species with undesirable effects (Ruiz et al. 1999). The adverse implications 
of marine and coastal NIS are generally not as well-characterized as those in freshwater settings.  
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Interactions between NIS and other anthropogenic stressors are likely to affect the colonization and 
distribution of native species subject to CWIS impacts. Thermal discharges from 316(b) facilities may 
extend the seasonal duration of non-resident organisms, allowing transient summer species to become 
permanently established in geographic areas beyond their historical range. For example, in Mount Hope 
Bay, increased water temperature due to the Brayton Point Station facility led to an increase in abundance 
of the predacious ctenophore Mneimiopsis leidyi as well as increased overwintering in the Bay for this 
formerly seasonal resident (USEPA 2002b). 

2.3 CWIS Impacts to Aquatic Ecosystems 

EPA has determined that multiple types of adverse environmental impacts may be associated with CWIS 
operations at 316(b) regulated facilities, depending on site-specific conditions at an individual facility’s 
site. Many of these facilities employ once-through cooling water systems that impinge fishes and other 
aquatic organisms on intake screens if the intake velocity exceeds these organisms’ locomotive ability to 
move away. Impinged organisms may be killed, injured or weakened, depending on the nature and 
capacity of the plant’s filter screen configuration, cleaning and backwashing operations, and fish return 
system used to return organisms back to the source water. In addition, early life stage fish or planktonic 

Table 2-3: Depleted Commercial Fish Stocks Subject to I&E Mortality  
Stock or Stock 

Complex Overfishing a Overfished b 
Approaching 
Overfishedc Rebuilding Stock Region 

American Plaice No Yes   Yes North/Mid-Atlantic 

Atlantic Cod Yes Yes  Yes North/Mid-Atlantic 

Atlantic Sturgeon No Yes  Yes Atlantic 

Black Sea Bass Yes Yes  Yes South Atlantic 

Boccacio No No No Yes California 

Butterfish No Yes  Yes Mid-Atlantic 

Gag Yes No Yes No South Atlantic/Gulf of Mexico 

Grouper species Yes Yes  Yes Gulf of Mexico 

Haddock No Yes  Yes North/Mid-Atlantic 

Ocean Pout No Yes  Yes North/Mid-Atlantic 

Pink Shrimp No Yes  No South Atlantic 

Pollock No No No Yes North/Mid-Atlantic 

Porgy No Yes  Yes South Atlantic 

Rockfish species Yes Yes  Yes California 

Skate species No Yes  Yes North/Mid-Atlantic 

Spiny Dogfish No No No Yes North/Mid-Atlantic 

Summer Flounder No No No Yes Mid-Atlantic 

Tautog Yes Unknown Unknown N/A Atlantic 

White Hake Yes Yes  Yes North/Mid-Atlantic 

Windowpane No Yes  Yes North/Mid-Atlantic 

Winter Flounder Yes Yes  Yes North/Mid-Atlantic 

Yellowtail Flounder Yes Yes  Yes North/Mid-Atlantic 
a Fishing mortality exceeds sustainable levels. 
b Stock size is below a sustainable biomass threshold. 
c Estimated that the stock will be in an overfished condition by the 4th quarter of 2010. 
d Stock is rebuilding to attain a level consistent with maximum sustainable yield (MSY).  
Source: National Marine Fisheries Service (NMFS) (2010a). 
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organisms can be entrained by the CWIS and subjected to death or damage due to high velocity and 
pressure, increased temperature, and chemical anti-biofouling agents in the system. This I&E mortality 
can act in concert with the other stressors identified above. 

The magnitude and regional importance of I&E mortality is generally a function of the operational intake 
volumes and the characteristics of the aquatic community in the region (see Chapter 3 for details).  I&E 
mortality can contribute to: impacts to T&E species (Chapter 5); reductions in ecologically critical aquatic 
organisms, including important elements of an ecosystem’s food chain; diminishment of organism 
populations’ compensatory reserves; losses to populations, including reductions of indigenous species 
population levels, commercial fisheries (Chapter 6), and recreational fisheries (Chapter 7); and stresses to 
overall communities and ecosystems, as evidenced by reductions in diversity or other changes in 
ecosystem structure or function. In addition, fish and other species affected directly and indirectly by 
CWIS can provide other valuable ecosystem goods and services, including nutrient cycling and ecosystem 
stability. 

The impacts of I&E mortality occur at many levels of ecological organization and across a wide range of 
environmental scales. Table 2-4 presents a summary of direct and indirect impacts of CWISs and I&E 
mortality. The effects are identified as direct, indirect, or a combination. This table also indicates the 
relative scale (local, regional, national) of the particular effect. In most cases, EPA was unable to estimate 
the magnitude of these effects due to a lack of data.  In this section, we discuss a subset of these effects.  

2.3.1 Losses of Fish from I&E Mortality 

The most visible direct impact of I&E mortality is the loss of large numbers of aquatic organisms, 
distributed non-uniformly among fish, benthic invertebrates, phytoplankton, zooplankton, and other 
susceptible aquatic taxa (e.g., sea turtles). This has immediate and direct effects on the population size 
and age distribution of affected species, and may cascade through food webs. The direct impacts on 
populations and age structure are described for commercially (Chapter 6) and recreationally important 
fish species (Chapter 7).  

Populations of aquatic organisms decline when recruitment rates are lower than mortality rates. Natural 
sources of mortality for fish species include predation, food availability, injury, climatic factors and 
disease. Anthropogenic sources of fish mortality, both proximate and ultimate, include fishing, habitat 
modification, pollution, and I&E mortality at CWISs. EPA believes that reducing I&E mortality will 
contribute to the health and sustainability of fish populations by lowering the total mortality rate for these 
populations.  

In some cases, I&E mortality has been shown to be a significant source of anthropogenic mortality to 
depleted stocks of commercially targeted species (see Table 2-2). For example, I&E mortality (expressed 
as age-1 equivalents) equal approximately 10 percent of the average annual recruitment to the Southern 
New England/Massachusetts stock of winter flounder (Pseudopleuronectes americanus) (I&E mortality 
values from Chapter 3; recruitment data from Terceiro (2008)).  
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Table 2-4:  CWIS Effects on Ecosystem Functions/Cumulative Impacts Potentially Affected, Both 
Directly and Indirectly, by 316(b) Regulations 

Category  Direct/Indirect Local/Regional/National 
A. Impingement and Entrainment (direct and indirect effects)   

Effects on Individuals   

Loss of billions of individuals (direct effects) Direct Regional/National 

Phytoplankton Direct Local/Regional/National 

Zooplankton (excluding fish larvae/eggs) Direct Local/Regional/National 

Invertebrates Direct Local/Regional/National 

Fish Direct Local/Regional/National 

Non-fish vertebrates Direct Local/Regional/National 
   

Species and Population-Level Effects   

Alteration of phenology of system (function of % water reduction in stream) Direct Local/Regional/National 

Altered distribution of populations Direct  Local 

Altered niche space Direct Local/Regional 

Altered stable age distributions of populations Direct Regional 

Loss of keystone species Direct Local 

Loss of T&E species Direct Regional 

Novel selection pressure (e.g., negatively buoyant or stationary eggs)  Direct & Indirect Local 

Reduced/altered genetic diversity Direct & Indirect Regional/National 

Reduced lifetime ecological function of individuals Direct Local/Regional 
   

Community and Trophic Relationships    

Altered competitive interactions Direct & Indirect Local 

Disrupted trophic relationships Direct & Indirect Local 

Disrupted control of disease-harboring insects (e.g., mosquito larvae, etc.) Indirect & Direct Local/Regional 

Increased quantity of detritivores Indirect Local 

Loss of ecosystem engineers (due to trophic interactions) Indirect & Direct Local 

Reduced potential for energy flows (e.g. trophic transfers) Indirect Local/Regional 

Species diversity and richness Direct & Indirect Local/Regional/National 

Trophic cascades Indirect & Direct Local/Regional 
   

Ecosystem Function   

Altered ecosystem succession Indirect & Direct Local/Regional 
Decreased ability of ecosystem to control nuisance species (algae, 
macrophytes) Indirect Local 
Disrupted cross-ecosystem nutrient exchange (e.g., up/downstream, 
aquatic/terrestrial) Indirect Regional 

Disrupted nutrient cycling Indirect & Direct Local/Regional 

Reduced compensatory ability to deal with environmental stress (resilience) Direct & Indirect Regional 

Reduced ecosystem resistance Indirect Local/Regional 

Reduced ecosystem stability (alternate states) Indirect Local/Regional 

Sediment regulation Indirect Local/Regional 

Substrate regulation Indirect Local 
   

B. Thermal Effects (direct and indirect)   

Novel selection pressure (e.g., thermal optima, location of breeding, etc.)  Direct & Indirect Regional/National 

Altered phenology Direct Local/Regional 

Links between temperature and metabolism   

Dissolved oxygen (physical) Direct Local 

Dissolved oxygen (bacterial, respiratory rates) Indirect Local 
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Table 2-4:  CWIS Effects on Ecosystem Functions/Cumulative Impacts Potentially Affected, Both 
Directly and Indirectly, by 316(b) Regulations 

Category  Direct/Indirect Local/Regional/National 
Ecological energetic demands Indirect Local/Regional 

Ecological nutrient demands Indirect Local/Regional 

Altered algal productivity Direct & Indirect Local/Regional 

Shifted nutrient cycling Indirect & Direct Local/Regional 

   

C. Chemical Effects (anti-foulants, etc.)   

Altered survival/growth/production Indirect & Direct Local 

Altered food web dynamics Indirect Local 

   

D. Altered Flow Regimes (local and system-wide)   

Altered flow velocity Direct & Indirect Local/Regional 

Altered turbulence regime Direct & Indirect Local/Regional 

   

E. Cumulative Impacts (as a concentrated number of facilities)   

May push systems over the edge of nonlinearities in the system Direct/Indirect Local/Regional 

Intensified CWIS effects (as above, Section B.) Direct/Indirect Local/Regional 

Intensified thermal effects (as above, Section B.) Direct/Indirect Local/Regional 

 

In addition to its impact on stocks of marine commercial fish species, I&E mortality increases the 
pressure on native freshwater species, such as lake whitefish (Coregonus clupeaformi) and yellow perch 
(Perca flavescens), whose populations have seen dramatic declines in recent years (USDOI 2008; 
Wisconsin DNR 2003). Although recovery of these species is greatly affected by fisheries policy (e.g., 
NFSC 2008), I&E mortality represent an additional source of mortality to fish populations being 
harvested at unsustainable levels.  

Overall, EPA believes that I&E mortality is likely to contribute to reduction in the population sizes of 
species targeted by commercial and recreational fishers, particularly for stocks that are undergoing 
rebuilding. Although these reductions may be small in magnitude compared to fishing pressure (Lorda et 
al. 2000), and often difficult to measure due to the low statistical power of fisheries surveys, a reduction 
in mortality rates on overfished populations is likely to increase the rate of stock recovery. Thus, reducing 
I&E mortality may lead to more-rapid stock recovery, a long-term increase in commercial fish catches, 
increased population stability following periods of poor recruitment and, as a consequence of increased 
resource utilization, an increased ability to minimize the invasion of exotic species3 (Shea and Chesson 
2002; Stachowicz and Byrnes 2006).  

For many fish species, I&E mortality may not lead to measurable reductions in adult populations. These 
losses, however, are likely to reduce the compensatory ability of populations to respond to environmental 
variability, including temperature extremes, heavy predation, disease, or years with low recruitment. 
Additionally, since predation rates are often directly related to the concentration of available prey, I&E 
mortality may lead to indirect population effects, whereby reductions in a prey fish may indirectly result 
in reductions to predator species or increases to species in apparent competition (Holt 1977). 

                                                      
3 For the last response, there is evidence to support the theory that biodiversity deceases the probability of invasion by an NIS, 

particularly in resource-limited environments (Stachowicz and Byrnes 2006).  
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Moreover, I&E mortality represents a novel selective pressure for fish populations. Consequently, 
populations may be selected for resistance to I&E mortality (through behavioral or physiological changes) 
at the expense of other, more “natural” evolutionary pressures. Although this may help sustain 
populations in the short term, it may reduce genetic diversity and population stability in the long-term. 

2.3.2 I&E Mortality Effects on T&E species 

T&E species are species vulnerable to future extinction or at risk of extinction in the near future, 
respectively. Due to low population sizes, I&E mortality from CWISs may represent a substantial portion 
of the annual reproduction of T&E species. Consequently, I&E mortality may either lengthen population 
recovery time, or hasten the demise of these species. For this reason, the population-level and social 
values of T&E losses are likely to be more important than the absolute number of losses that occur. 

Adverse effects on T&E species due to water withdrawals by CWISs may occur in several ways: 

 Populations of T&E species may suffer increased mortality as a consequence of I&E mortality. 

 T&E species may suffer indirect harm if the CWIS substantially alters the food web in which 
these species interact. 

 T&E species may suffer indirect harm if the CWIS substantially alters habitat that is critical to 
their long-term survival.  

Chapter 5 provides detail on CWIS impacts on T&E species. 

2.3.3 Thermal Effects 

One byproduct of once-through cooling water systems is a release of a heated effluent. Concerns about 
the impacts of heated effluents are addressed by provisions of CWA Section 316(a) regulations. Most of 
the facilities subject to 316(b) I&E mortality concerns have also been required to address the impact of 
thermal pollution in the discharge-receiving waters (Abt Associates 2010b).  

Thermal pollution has long been recognized as having effects upon the structure and function of 
ecosystems (Abt Associates 2009a). Numerous studies have shown that thermal discharges may 
substantially alter the structure of the aquatic community by modifying photosynthetic (Bulthuis 1987; 
Chuang et al. 2009; Martinez-Arroyo et al. 2000; Poornima et al. 2005), metabolic, and growth rates 
(Leffler 1982), and reducing levels of DO. Thermal pollution may also alter the location and timing of 
fish behavior including spawning (Bartholow et al. 2004), aggregation, and migration (USEPA 2002b), 
and may result in thermal shock-induced mortality for some species (Ash et al. 1974; Deacutis 1978; 
Smythe and Sawyko 2000). Thus, thermal pollution is likely to alter the ecological services provided by 
ecosystems surrounding facilities returning heated cooling water into nearby waterbodies.  

Adverse temperature effects may also be more pronounced in aquatic ecosystems that are already subject 
to other environmental stressors such as high biochemical oxygen demand (BOD) levels, sediment 
contamination, or pathogens. Thermal discharges may have indirect effects on fish and other vertebrate 
populations through increasing pathogen growth and infection rates. Langford (1990) reviewed several 
studies on disease incidence and temperature, and while he found no simple, causal relationship between 
the two, he did note that it was clear that warmer water enhances the growth rates and survival of 
pathogens, and that infection rates tended to be lower in cooler waters. 

The magnitude of thermal effects on ecosystem services is related to facility-specific factors, including 
the volume of the waterbody from which cooling water is withdrawn and returned, other heat loads, the 
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rate of water exchange, the presence of nearby refugia, and the assemblage of nearby fish species. In 
addition to reducing total I&E mortality, cooling towers reduce thermal pollution. Consequently, the 
installation of closed-system cooling towers could have geographically variable effects on ecosystems, 
ranging from comprehensive changes in community structure and habitat type (Schiel et al. 2004), to 
localized changes in the relative proportion of species adapted to warm and cold water (Millstone 
Environmental Laboratory 2009). Further information on thermal discharges is provided in Appendix 
12.1.1.1B1. 

 

2.3.4 Chemical Effects 

One of the environmental impacts associated with power plant operations is the release of chemicals in 
the discharge of once-through cooling waters. These chemicals include metals from internal corrosion of 
pipes, valves and pumps (e.g., chromium, copper, iron, nickel, and zinc), additives (anti-fouling, anti-
corrosion, and anti-scaling agents) and their byproducts, and materials from boiler blowdown and 
cleaning cycles.   

EPA used the beta version of the Discharge Monitoring Report Pollutant Loading Tool (DMR-PLT)4 to 
obtain estimated annual pollutant loadings for facilities regulated under Section 316(b).  EPA extracted 
data for all facilities in selected Standard Industry Classification (SIC) codes: manufacturing (SIC 20 
through 39), electric power generation (SIC 4911), and selected other sectors to which 316(b) facilities 
have been assigned. Of the 871 facilities in the 316(b) master list, 707 have annual loading estimates in 
DMR-PLT; of these, nearly 85 percent are electric power generators. A summary table was generated of 
total annual loads for all in-scope facilities.  Table 2-5 lists the top 20 pollutants discharged by 316(b) 
facilities in 2007, sorted by mass. These chemicals represent pollutants generated by the operation and 
maintenance of the facility and other location-specific activities.  The most common pollutants include: 
total suspended solids, oil & grease, BOD5, total iron and fecal coliform. 

In addition to these pollutants, facilities also discharge anti-fouling agents. Biofouling is also a serious 
operational concern for power plants. Microbial biofouling on surfaces in cooling water systems can 
accelerate metal corrosion, increase resistance to heat transfer energy, and increase fluid frictional 
resistance (Cloete et al. 1998). Sessile macrofouling-organisms such as algae, insects, hydroids, 
polychaetes, barnacles, mussels and tunicates can colonize intake pipes, bulkheads, and filter screens, and 
may clog pipes and reduce intake flows or filter-screen effectiveness. Further, some of these infestations 
produce larvae, which can colonize downstream equipment including pipelines, valves, and heat 
exchangers. Severe macrofouling-associated problems can include intake flow reduction, increased 
pressure drop across heat exchangers, and equipment breakdown. 

                                                      
4  http://app6.erg.com/icisloader/dmrLoadingsAdvSearch.cfm. Note that DMR-PLT is currently in beta testing and there is 

only limited documentation on how the loading estimation methodology is implemented in the tool. This tool does not 
currently provide discharge estimates categorized by the North American Industry Classification System (NAICS).  
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Table 2-5. Top 20 pollutants discharged by 316(b) facilities, by total 
annual loadings in 2007. 
 

Parameter 
Number of 

facilities 
Total Loading 

(‘000 pounds/yr) 

1  Solids, total dissolved  46 5,416.4 

2  Hardness, total (as CaCO3)  48 2,842.6 

3  Solids, total suspended  619 1,100.6 

4  Solids, total dissolved (at 180 deg. C)  13 922.5 

5  Residue, total filterable (at 105 C)  6 527.8 

6  Sulfate, total (as SO4)  54 416.2 

7  Chloride (as Cl)  47 403.5 

8  Calcium Chloride  1 175.8 

9  BOD, 5-day, 20 deg. C  227 111.6 

10  Chemical Oxygen Demand (COD)  33 105.6 

11  Oil & grease  274 84.5 

12  Carbon, total organic (TOC)  76 45.1 

13  Oxygen demand, chem. (high level) (COD)  45 44.7 

14  Oil and grease, hexane extraction method  80 42.0 

15  Sulfate (as S)  11 41.1 

16  Iron, total (as Fe)  220 33.9 

17  Fluoride, total (as F)  34 29.9 

18 Coliform, fecal MF, MFC broth, 44.5 C 19 26.0 

19 Oxygen demand, chem. (low level) (COD) 11 25.5 

20 Coliform, fecal general 108 21.2 

Source: Discharge Monitoring Report Pollutant Loading Tool (DMR-PLT) 

 

These anti-fouling and cleaning chemicals potentially pose a risk to organisms downstream of the CWIS 
discharge. Adverse effects to aquatic organisms may include acute and residual effects of biocides used as 
anti-fouling agents in condenser tubes, or from chemicals resulting from corrosion or use in cleaning of 
either stream or cooling cycles (Kelso and Milburn 1979). A typical biofouling procedure is continuous 
low-level chlorination at chronic toxicity levels with an occasional high (“shock”) dose. The use of 
oxidants (chlorine, bromide) can give rise to residuals and/or disinfection byproducts (DBPs) such as 
trihalomethanes, haloacetic acid, bromoform, and others (Taylor 2006). Concentrations of released 
chemicals are variable among facilities, and are a function of treatment dose, CWIS design, rates of 
degradation, and the volume and flushing rate of the receiving water. 

With the exception of chlorination impacts (Taylor 2006), the potential effects of chemicals in power 
plants’ cooling water discharges on local aquatic ecosystems are not well-characterized. In most cases, 
chemical effects are considered, along with thermal and mechanical effects, as a component of the 
cumulative stress of entrainment on organisms.  Little information is available on the chronic or low-level 
effects of these discharge chemicals on local ecosystems or in concert with other anthropogenic stressors.   

Review of the effects of chemical treatment and discharge into the environment suggests that direct 
ecotoxicity in discharge plumes is relatively rare beyond the point of discharge or mixing zone near the 
pipe outlet (Poornima et al. 2005; Taylor 2006).  However, concentrations of these chemicals may be 
additive to low-level chronic adverse effect with other anthropogenic stressors identified above. 
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2.3.5 Effects of Flow Alteration 

The operation of CWISs and discharge returns significantly alter patterns of flow within receiving waters 
both in the immediate area of the CWIS intake and discharge pipe, and in mainstream waterbodies, 
particularly in inland riverine settings. In ecosystems with strongly delineated boundaries (i.e., rivers, 
lakes, enclosed bays, etc.), CWISs may withdraw and subsequently return a substantial proportion of 
water available to the ecosystem. For example, of the 521 facilities that are located on freshwater streams 
or rivers, 31 percent (164) of these facilities have average intake greater than 5 percent of the mean 
annual flow of the source waters. Even in situations when the volume of water downstream of in-scope 
facilities changes relatively little, the flow characteristics of the waterbody, including turbulence and 
water velocity, may be significantly altered. This is particularly true in locations with multiple CWISs 
located close to each other.  

Altered flow velocities and turbulence may lead to several changes in the physical environment, including 
sediment deposition (Hoyal et al. 1995), sediment transport (Bennett and Best 1995), and turbidity 
(Sumer et al. 1996), each of which play a role in the physical structuring of ecosystems. Biologically, 
flow velocity is a dominant controlling factor in aquatic ecosystems. Flow has been shown to alter 
feeding rates, settlement and recruitment rates (Abelson and Denny 1997), bioturbation activity (Biles et 
al. 2003), growth rates (Eckman and Duggins 1993), and population dynamics (Sanford et al. 1994). 

In addition to flow rates, turbulence plays an important role in the ecology of small organisms, including 
fish eggs and larvae, phytoplankton, and zooplankton. In many cases, the turbulence of a waterbody 
directly affects the behavior of aquatic organisms, including fish, with respect to swimming speed 
(Lupandin 2005), location preference with a waterbody (Liao 2007), predator-prey interactions (Caparroy 
et al. 1998; MacKenzie and Kiorboe 2000), recruitment rates (MacKenzie 2000; Mullineaux and Garland 
1993), and the metabolic costs of locomotion (Enders et al. 2003). The sum of these effects may result in 
changes to the food web or the location of used habitat, and thereby substantially alter the aquatic 
environment. 

Climate change is predicted to have variable effects on future river discharge in different regions of the 
United States, with some rivers expected to have large increases in flood flows while other basins will 
experience water stress. For example, Palmer et al. (2008) predict that mean annual river discharge is 
expected to increase by about 20 percent in the Potomac and Hudson River basins but to decrease by 
about 20 percent in Oregon's Klamath River and California's Sacramento River. Thus, the adverse effects 
of flow alteration may increase or decrease over longer periods for larger rivers, depending on their 
national location.  

2.4 Community-level or Indirect Effects of CWISs  

In addition to the direct effects of CWISs, I&E mortality may alter a wide range of aquatic ecosystem 
functions and services at the community-level (Table 2-4).  Most of these impacts to aquatic community 
function and service are poorly characterized, given the limited scope of I&E mortality studies and an 
incomplete knowledge of baseline or pre-operational conditions within affected waters. 

For example, fish are essential for energy transfer in aquatic food webs (Summers 1989), and for the 
regulation of food web structure.  Fish play important roles in nutrient cycling (Wilson et al. 2009) and 
sediment processes, and are known to play key roles in the maintenance of aquatic biodiversity 
(Holmlund and Hammer 1999; Peterson and Lubchenco 1997; Postel and Carpenter 1997; Wilson and 
Carpenter 1999). 
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While I&E mortality losses of commercially or recreationally important fish species can be quantified and 
monetized (Chapters 3, 6 and 7), the accompanying loss of other aquatic organisms may be poorly 
characterized (e.g., lumped into broad taxa such as “forage fish” or “other”) or simply not reported. In 
addition, I&E mortality on species of lower concern may create unrealized ripples of ecological effect 
within the aquatic community. Species may respond to altered ecological circumstances such as reduced 
predation, altered food concentrations, or slower nutrient recycling, etc.  Therefore, the removal of 
selected fish species or considerable biomass by I&E mortality may substantially affect these processes.   

Several examples of ecological services indirectly affected by I&E mortality are described below, 
although others listed in Table 2-4 may be of equal importance for individual ecosystems. 

2.4.1 Altered Community Structure and Patchy Distribution of Species 

The role of some aquatic species may be more critical in shaping the structure and composition of the 
community than that of others. These keystone species are species that have an effect on community 
structure disproportionate to their population (Paine 1966; Paine 1969). Consequently, the loss or 
reduction of keystone species may lead to substantial changes in aquatic food webs, and decrease overall 
ecosystem stability. Thus, the potential for ecosystem impacts resulting from, for example, the loss of an 
important predator fish due to I&E mortality may not be strictly proportional to the number or biomass of 
lost fish or foregone fish production.  

The operation of CWISs by generating facilities can lead to localized areas of depressed fish and shellfish 
abundance. Power plants (and the intake volume they represent) are distributed in a non-uniform manner 
along coastlines and rivers, and may be clustered (Section 2.5), such that I&E mortality and the 
populations they affect are geographically heterogeneous. This can result in a highly localized and patchy 
distribution of aquatic organisms in regional areas. A secondary effect is increased probability of 
colonization and establishment by NIS due to niche space availability caused by a local reduction in the 
density of native organisms (Byrnes et al. 2007; Ovaskainen and Cornell 2006). 

2.4.2 Altered Food Webs 

Sources of mortality, including I&E mortality, may disrupt established predator-prey relationships and the 
niche space available to species through direct pathways (i.e., mortality of the organism) or indirectly 
(i.e., alterations to the food web). The loss of young-of-year (YOY) predators (e.g., striped bass) or 
important forage fish (e.g., menhaden and bay anchovy) is likely to affect trophic relationships and alter 
food webs. These changes may alter the realized species niche and life history traits due to alterations in 
inter- and intra-specific interactions (e.g., predator-prey, competition, mate selection, etc.) (Fortier and 
Harris 1989; Hixon and Jones 2005; Jirotkul 1999). These alterations in trophic interactions and food 
webs, combined with other CWIS-related impacts such as thermal pollution (Section 2.2.3) or flow 
alteration (Section 2.3.5), may lead to rapid changes in life history strategies as a consequence of 
facultative (Ball and Baker 1996) or evolutionary changes (Hairston et al. 2005; Reznick and Endler 
1982). 

2.4.3 Reduced Taxa and Genetic Diversity 

I&E mortality may lead to reductions in local community biodiversity (due to destruction of selected 
species) or in a loss of genetic diversity in individual fish populations. I&E mortality represents a novel 
selective pressure on early life stages that may reduce the genetic diversity of resident fish and prevent the 
recovery of depleted stocks (Stockwell et al. 2003; Swain et al. 2007; Walsh et al. 2006). Since many 
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populations stocks are differentiated by oceanic region and/or timing of migratory movements, I&E 
mortality could alter the seasonal timing and movement (i.e., phenology) of overall fish populations, 
which could have ramifications for predator species.  

2.4.4 Nutrient Cycling Effects 

I&E mortality impacts may alter the pace of nutrient cycling, and energy transfer through food webs. Fish 
species have been shown to have substantial effects on nitrogen, phosphorous, and carbon cycling due to 
storage effects (i.e., large quantities of nutrients are found within fish biomass) and translocation effects 
(i.e., fish migrate, moving large quantities of nutrients to new ecosystems) (Kitchell et al. 1979; Vanni et 
al. 1997).  These alterations in nutrient cycling could lead to redirection of nutrient flows to other 
components of the ecosystem including water column phytoplankton, benthic macroalgae and attached 
epiphytes, with subsequent changes to the condition of critical ecosystem habitats, such as submerged 
aquatic vegetation. Juvenile (age-0) Atlantic menhaden (Brevoortia tyrannus) are capable of significantly 
grazing down plankton concentrations in Chesapeake Bay, leading to more-rapid regeneration of nutrients 
and enhanced primary production. Removal of the age-0 menhaden by I&E mortality would lead to 
reduced grazing and turnover of nutrients and increased algal density in the water column (Gottlieb 1998). 
The amount of nitrogen and phosphorus regenerated in facility discharge water due to nutrient recycling 
of I&E mortality biota might also lead to areas of localized nutrient enrichment near outfalls (Abt 
Associates 2010a).  Additionally, the preferential removal of upper water column species by I&E 
mortality could increase energy flow to benthic organisms, and thereby increase the relative importance 
of detritivores in bottom communities. 

2.4.5 Reduced Ecological Resistance 

The effect of long-term or chronic I&E mortality may lead to a decrease in ecosystem resistance and 
resilience (i.e., ability to resist and recover from disturbance including invasive species) (Folke et al. 
2004; Gunderson 2000). That is, I&E mortality is likely to reduce the ability of ecosystems to withstand 
and recover from adverse environmental impacts, whether those impacts are due to anthropogenic effects 
or natural variability.  

2.5 Cumulative Impacts of Multiple Facilities  

Cumulative effects of CWISs are likely to occur if multiple facilities are located in close proximity such 
that they impinge or entrain aquatic organisms within the same source waterbody, watershed system, or 
along a migratory pathway of a specific species (e.g., striped bass in the Hudson River)  (USEPA 2004c). 
The cumulative impacts of CWISs may be exacerbated by the presence of other anthropogenic stressors 
discussed above (Section 2.2). 

EPA analyses suggest that approximately 20 percent of all in-scope facilities are located on waterbodies 
with multiple CWISs (USEPA 2004c). Inspection of geographic locations of 316(b) facilities 
(approximated by CWIS latitude and longitude) indicates that facilities in inland settings are clustered 
around rivers to a greater extent than marine and estuarine facilities (see Figure 2-1).  

2.5.1 Clustering of Facilities and CWISs on Major Rivers 

To illustrate the potential for cumulative impacts, data from five major U.S. rivers with clustered 
concentrations of facilities were reviewed (Table 2-6).  Based on the non-uniform distribution of 
facilities, locations were noted where the potential for cumulative impacts is high (Abt Associates 2010b).  
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Table 2-6: U.S. Rivers with Largest Withdrawals by In-scope Facilities 

River 
Avg. Annual* 
Flow (MGD) Facilities 

Cumulative 
DIF (MGD) 

DIF as % Avg. 
Annual Flow 

Cumulative 
AIF (MGD) 

AIF as % Avg. 
Annual Flow 

Mississippi 383,266 57 22,436 5.9 13,170 3.4 

Ohio 181,615 47 19,315 10.6 13,384 7.4 

Missouri 49,249 23 10,718 21.8 6,598 13.4 

Illinois 8,079 11 6,259 77.5 1,605 19.9 

Delaware 7,562 11 3,585 47.4 1,485 19.6 

* Source: (USGS 1990) 

 

For example, the Mississippi River provides source water for cooling water for 57 facilities along its 
length, with 27 facilities located in Louisiana upstream of the Mississippi River delta. Using facility 
intake coordinates as location markers, the relative distances between facilities were estimated (Abt 
Associates 2010b). In upper Louisiana, facilities are typically separated by tens of miles; inter-facility 
distance decreases downstream of Baton Rouge, LA. Several locations along the Mississippi River have 
clusters of facilities: 

 Between Ascension and St. James Parishes, a 13-mile span of the river hosts six manufacturing 
facilities, three of which have intakes located within the same mile. These facilities have a 
combined DIF of nearly 270 MGD. 

 Fifteen miles downstream, near Garyville, LA, there is a cluster of three facilities within six miles 
of the river stretch. 

 Seven miles further downstream near Laplace, LA, six facilities occur on a six-mile stretch of the 
river. Four of these facilities, with a combined DIF exceeding 5 BGD (three generators and one 
manufacturer), are located within a 1.7 mile section of river. 

 Further downstream in Chalmette, LA (just east of New Orleans), three manufacturers, capable of 
withdrawing up to 457 MGD, are clustered within four river miles.  

Therefore, the potential for cumulative impacts is high, and investigating ecosystem effects by 
extrapolating results on a per facility basis may likely underestimate the true effects. 

2.5.2 Implications of Clustered Facilities for Cumulative Impacts 

The cumulative impact of clustered facilities may be significant, due to the concentrated I&E mortality, 
combined intake flows, and the potential for other impacts such as thermal discharges. It should also be 
noted that power generation demand and cooling intake water volume is typically at its annual maximum 
during mid-late summer, which is also a period of seasonal low flows and highest in-stream temperatures. 
The effect of cumulative impacts may be greater in inland or Great Lakes waters due to the following 
factors: 

 The majority of national AIF is associated with freshwater CWISs. 

 Freshwater plants use a greater relative volume of available fish habitat than marine or estuarine 
counterparts. 

 Seasonal variation in power demand and river flow may increase entrainment potential during 
low-flow periods of the year (NETL 2009). Although low flows are traditionally in late summer 
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to early fall, drought conditions and manipulations of water levels may lead to low flow during 
other periods. This may be locally significant if periods of low flow overlap with seasonal 
concentrations of eggs, developing YOY, and migrating juveniles. 

 Freshwater facilities are more likely to be clustered along a waterbody, and pose a greater risk of 
cumulative impacts. This is exacerbated by the presence of numerous impoundments associated 
with navigational lock and dam structures located on larger river (e.g., Mississippi, Missouri, 
Ohio, etc).  These impoundments result in slow or slack water conditions with a lower effective 
volume than free-flowing reaches or periods of higher flow.   

2.6 Case Studies of Facility I&E Mortality Impacts 

While the information provided in this chapter provides a broad overview of potential impacts associated 
with CWISs, it is highly informative to evaluate these impacts in the context of actual facilities to see how 
and to what extent these impacts and I&E mortality are realized, how site-specific factors come into play, 
the effects of cumulative impacts, and what has been learned with regard to community-level effects. 
Case studies provide useful, detailed information for evaluating I&E mortality and major stressors in the 
context of a specific waterbody or region. 

As part of the Phase II regulations, review and analyses of I&E mortality data and environmental 
information was presented in case studies in EPA’s 2002 Case Study Analysis for the Proposed Section 
316(b) Phase II Existing Facilities Rule. The document provided detailed analyses of CWIS impacts in 
major regional waterbodies throughout the U.S.  These cases studies included: 

 Delaware Estuary Watershed 

 Ohio River Watershed 

 Tampa Bay Watershed 

 San Francisco Bay/Delta Estuary 

 Brayton Point Facility 

 Seabrook and Pilgrim Facilities 

 J.R. Whiting Facility 

 Monroe Facility 

These regional case studies provide a set of information describing the variety of CWIS impacts under 
marine, coastal, and riverine environmental settings.  The following sections present three additional case 
studies to provide examples of facility-specific CWIS impacts in settings including freshwater coastal 
(Bay Shore, Oregon, OH), estuarine (Indian Point, Buchanan, NY), and estuarine-coastal (Indian River, 
Sussex County, DE) environments. These brief case studies also illustrate the quantitative levels of I&E 
mortality, the indirect effects of I&E mortality on local aquatic ecosystems, and the cumulative effects of 
combined effects (I&E mortality and thermal). Additional information is available each of these 
examples.  

2.6.1 Bay Shore Power Station  

The Bay Shore power station is a 631 megawatt (MW) facility located on the south shore of Lake Erie 
near the confluence of the Maumee River and Maumee Bay, OH. Cooling water for the four coal-fired 
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steam-electric units is withdrawn from Maumee River/Maumee Bay via an open intake channel of 
approximately 3,700 ft in length, and enters the plant via a shoreline surface CWIS. Approximately 749 
million gallons per day (MGD) is withdrawn, including once-through cooling water and sluice water used 
for transporting bottom ash from the boilers to ash settling ponds (OEPA 2010). Major environmental 
concerns for the facility include I&E mortality and thermal impacts.  

 
In addition to I&E mortality effects, concerns have also been raised regarding the size and impact of the 
thermal discharge plume—a focus of concern for local residents and commercial fishermen. Depending 
on wind patterns and hydrological factors, the thermal plume extends to the south shore of Maumee Bay 
(over 1 mile from the facility). The Ohio Environmental Protection Agency (OEPA) assessed the results 
from a 2002 thermal mixing zone study, and concluded that the thermal discharge exceeded Ohio water 
quality standards for temperature within the thermal plume (>85oF in Maumee Bay), but that the impacts 
on aquatic life and designated uses in Maumee River/Bay did not justify reduction of the thermal mixing 
zone. However, it did find that the thermal activity could restrict recreational activities in certain areas of 
the plant and required the plant owners to conduct a two-year study of the benthic community within the 
mixing zone (OEPA 2010). 

2.6.2 Indian Point Nuclear Power Plant  

The Indian Point nuclear power plant is a 2,045 MW facility located in Buchanan, Westchester County, 
New York, on the east shoreline of the Hudson River. Cooling water (up to 2,500 MGD) for the two 
nuclear-fired steam-electric units (Units 2 and 3) is withdrawn from the estuarine portion of the Hudson 
River through three intake structures on the shoreline (NYSDEC 2003a). The heated non-contact cooling 
water is discharged through sub-surface diffuser ports in a discharge canal located downstream of the 
intake structures.  

Due to concerns regarding impact to fish, particularly anadromous striped bass populations, as well as a 
high level of involvement and litigation from local stakeholder groups, the Indian Point power generation 
plant (along with other Hudson River power plants) has been particularly well-characterized in terms of 
I&E mortality impacts. Accordingly, the Hudson River aquatic community has been sampled and studied 
over many decades, with detailed investigation starting in the 1970s.  

Results suggest that I&E mortality impacts to the local and transient anadramous fish species are 
substantial. For example, studies of fish entrainment in 1980 predicted fish class reductions ranging from 
6 to 79 percent, depending on fish species (Boreman and Goodyear 1988). Subsequent sampling work 
predicted year-class reductions due to I&E mortality of 20 percent for striped bass, 25 percent for bay 
anchovy, and 43 percent for Atlantic tomcod.  The Final Environmental Impact Statement (FEIS) 
prepared by the New York State Department of Environmental Conservation (NYSDEC) concluded these 

Bay Shore Power Station I&E Mortality Losses: Medium-sized Plant with Large-Scale Impacts 
A comprehensive demonstration study, conducted in 2005-2006, estimated annual impingement at 
greater than 46 million fish per year, the majority of which were forage fish species—emerald shiner 
and gizzard shad. Annual estimates for entrainment were equally impressive—209 million fish eggs, 
2,247 million fish larvae, and 14 million juvenile fish (OEPA 2010). As noted on the NDPES fact 
sheet, “It is likely that Bay Shore Station impinges and entrains more fish than all other power 
stations in Ohio combined.” Notably, the plant does not currently employ any technologies to 
reduced I&E mortality (OEPA 2010). 
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levels of mortality “could seriously deplete any resilience or compensatory capacity of the species needed 
to survive unfavorable environmental conditions” (USEPA 2004a). 

 

The FEIS considered the role of other major environmental factors currently or historically present in the 
Hudson River. These factors have the capacity to affect fish populations either positively (enhancements) 
or negatively (stressors). Relevant factors include, but are not limited to: improvements to water quality 
due to upgrades to sewage treatment plants, invasions by exotic species (e.g., zebra mussel), chemical 
contamination by toxins (e.g., PCBs and heavy metals), global climate shifts such as increases in annual 
mean temperatures and higher frequencies of extreme weather events (e.g., the El Nino-Southern 
Oscillation), and stricter management of individual species stocks such as striped bass (USEPA 2004a). 

Recently (April 2010), the NYSDEC denied a request by Indian Point for a CWA Section 401Water 
Quality Certificate. The CWA requires that, prior to any federal agency issuing a license or permit for a 
particular project (in this case, the approval of the State Discharges Permit Elimination System [SPDES] 
permit), it must certify that the project meets State water quality standards. The NYSDEC denial letter 
cited, among other concerns, continuing concerns over I&E mortality including potential impacts to two 
sensitive species—the Shortnose Sturgeon (currently listed as endangered) and the Atlantic Sturgeon 
(under consideration for endangered species status).  

2.6.3 Indian River Power Plant  

The Indian River Generating Station (IRGS) is a 784 MW facility located in Sussex County, Delaware, 
on the south shore of the Indian River. Cooling water for three of the IRGS’s four coal-fired steam-
electric units is withdrawn upstream from the freshwater portion of Indian River via an intake canal at a 
maximum rate of 411 MGD, or 21 times the average flow rate of Indian River. Heated return water is 
discharged via a canal into the upper reaches of Island Creek, a small tributary of Indian River, entering at 
Ward Cove. Island Creek and Ward Cove are part of a large estuarine stretch (approximately 150 acres) 
of Indian River that provides important fish and crab habitat. Its lower salinity and location in the estuary 
make it attractive to important species such as bay anchovy, spot, menhaden larvae, and young blue crabs.  
 
 
 
 
 
 
 
 

Indian Point Final Environmental Impact Statement (FEIS) details cumulative effects: 

The FEIS estimated, from samples collected between 1981 and 1987 for three facilities (Indian Point, 
Roseton, Bowline Point), that the average annual entrainment losses from these plants included 16.9 
million American shad, 303.4 million striped bass, 409.6 million bay anchovy, 468 million white 
perch, and 826.2 million river herring (NYSDEC 2003b). The loss of such large numbers of forage 
fish species and the potential impact on higher level piscivores is of high concern. The FEIS also 
viewed the overall effect of the CWIS impacts on the aquatic community as analogous to habitat 
degradation rather than overfishing. This judgment was based on evidence that the entire aquatic 
community was affected rather than only specimens of higher trophic level species.   

Indian River Power Plant has impact on important local species: 
The 2003 316(b) Comprehensive Demonstration Study for the Indian River Power Plant reported 
I&E mortality for a number of important species (Entrix 2003, as described in Bason 2008). This 
I&E mortality has been recalculated by a local stakeholder group as age-1 equivalents for bay 
anchovy (1.6 million), blue crab (300,000), croaker (270,000), and menhaden (60,000) (Bason 2008). 
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Due to the size of the heated discharge relative to the receiving water, thermal effects of the plant were 
also investigated. Based upon monitoring data collected from 1998-1999, the 316(a) report assessed the 
effects of elevated water temperatures on ecosystem communities with a focus on eight important fish 
species: bay anchovy, menhaden, winter and summer flounder, croaker, spot, striped bass, and weakfish. 
This report determined that juvenile and adult target species, although able to avoid areas of high water 
temperature, were not permanently restricted from most stretches of the Indian River, nor did they suffer 
loss of habitat services associated with these segments. The study concluded an overall condition of no 
adverse effect, or no appreciable harm, on the fish and shellfish populations in the Indian River and 
Delaware Bay (Entrix 2001).  

Despite the overall conclusion of no adverse effect, there were documented localized thermal impacts of 
consequence. For example, during warmer months, the thermal discharge reached potential adverse levels 
in Island Creek, often extending downstream to Ware Cove (Entrix 2001). The mortality associated with 
sub-adult stages of fish and crabs and the avoidance of the area by sub-adult and adult fish were 
substantial issues. In addition to direct thermal impacts to biota, temperature-related reductions in DO 
were observable (mean reduction = 0.6 mg/l) in the discharge canal. These reductions contributed to the 
amplitude of the day-night (diel) cycle of DO concentrations, already widely fluctuating due to 
cumulative effects of eutrophication in the river (Bason 2008).  

2.7 Conclusions  

Considerable information is available on the direct effects of CWISs and I&E mortality (Chapter 3) on 
commercially (Chapter 6) and recreationally important (Chapter 7) species derived from the accumulated 
data from facility-specific basis 316(b) studies and investigations. This has allowed EPA to monetize the 
potential environmental benefits that would arise as reduction in water withdrawals occur based of future 
316(b) regulations.  

However, as demonstrated in this section, there is much less information and high uncertainty regarding 
the magnitude and importance of indirect and/or cumulative impacts of CWISs, particularly effects on 
lower trophic organisms or ecosystem functions.  This condition is due to the limitations of 316(b) 
sampling programs, as well as the failure of permitting process to consider the additive or cumulative 
effects of other major anthropogenic stressors.  While EPA can identify and hypothesize regarding the 
direction and relative importance of impacts of CWISs on the totality of the aquatic ecosystem (i.e., not 
just focused on selected higher trophic level predator species and common prey), EPA is currently unable 
to connect these effects with quantifiable environmental benefits.  Thus, it is highly likely that the total 
environmental and monetary impacts of CWISs are significantly underestimated, and that characterization 
of the fuller spectrum of benefits arising from reducing or eliminating I&E mortality will await future, 
targeted research efforts.
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3 Assessment of Impingement and Entrainment Mortality 

3.1 Introduction 

This chapter discusses the methods EPA used to convert results from impingement and entrainment 
mortality (I&E mortality) sampling studies into metrics suitable as inputs for EPA’s Section 316(b) 
benefits analysis.5 Section 3.2 provides a brief overview of impingement and entrainment (I&E) loss 
metrics, and outlines how they were used in benefits analysis. Section 3.3 presents I&E mortality losses, 
by region, under baseline conditions, and the reductions in these losses under alternative regulatory 
options. Section 3.4 discusses limitations and uncertainties in the I&E mortality analysis.  

EPA’s I&E mortality assessment methods are discussed in detail in Chapter A-1 of the Regional Benefits 
Analysis for the Final Section 316(b) Phase III Existing Facilities Rule (Regional Benefits Analysis) 
(USEPA 2006b). Changes in methodology since EPA’s Phase III analysis include: (1) the addition of new 
I&E mortality data for several California facilities, (2) engineering reductions for power generators were 
estimated for sample facilities that received the detailed questionnaire rather than for all in-scope 
generators, and (3) changes in the proportionate reduction in I&E mortality under new regulatory options 
were estimated. Other modifications are identified in relevant portions of Section 3.2. 

3.2 Methods 

3.2.1 Objectives of I&E Mortality Analysis 

EPA’s evaluation of I&E mortality data had four main objectives: 

 To develop regional and national estimates of the magnitude of I&E mortality  

 To standardize I&E mortality rates using common biological metrics that allow comparison 
across species, years, facilities, and geographical regions 

 To provide I&E mortality metrics suitable for use in national economic benefits analysis 

 To estimate changes in metrics as a result of estimated reductions in I&E mortality under 
alternative regulatory options. 

EPA’s use of these methods for national rulemaking does not imply that these methods are the best or 
most suitable for studies of single facilities. In many cases, site-specific details on local fish populations 
and waterbody conditions may make other assessment approaches, such as population or ecosystem 
modeling, possible.  

                                                      
5  For the purposes of its national analysis, EPA assumed 100 percent impingement mortality and 100 percent entrainment 

mortality. This assumption is discussed at length in Chapter A7 of the Regional Analysis Document for the Final Section 
316(b) Existing Facilities Rule (USEPA 2004b). Briefly, EPA assessed 37 entrainment survival studies and found them 
variable, unpredictable, unreliable, and not defensible. As such, these studies support an assumption of 0 percent survival for 
entrained organisms in benefits assessments. 
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3.2.2 I&E Mortality Loss Metrics 

Three loss metrics were derived from facility I&E mortality monitoring data available to EPA: (1) age-1 
equivalents, (2) forgone fishery yield, and (3) production forgone. These metrics are described briefly 
below. Equations used to calculate metrics and other details are provided in Chapter A-1 of EPA’s 
Regional Benefits Analysis (USEPA 2006b). 

3.2.2.1 Age-1 Equivalents 

The Equivalent Adult Model (EAM) is a method for converting organisms of different ages (life stages) 
into an equivalent number of individuals in any single age (Goodyear 1978; Horst 1975). For its 316(b) 
analyses, EPA standardized all I&E mortality losses into equivalent numbers of 1-year-old fish, a value 
termed age-1 equivalents (A1Es). This conversion allows losses to be compared among species, years, 
facilities, and regions. 

To conduct EAM calculations requires a life history schedule, for each species, incorporating age-specific 
mortality rates. Using these species-specific survival tables, a conversion rate between all life history 
stages and age 1 is calculated. For life history stages younger than 1 year of age, the conversion rate is 
calculated as the product of all stage-specific survival rates between the stage at which I&E mortality 
occurs and age 1. Consequently, the loss of an individual younger than age 1 results in a conversion rate 
less than 1. For individuals older than 1 year, the conversion rate is calculated as the quotient of all stage-
specific survival rates between the stage at which I&E mortality occurs and age 1. Consequently, the loss 
of an individual older than age 1 results in a conversion rate greater than 1. 

Additional details on the EAM calculation are provided in Chapter A-1 of EPA’s Regional Benefits 
Analysis (USEPA 2006b). For the results presented in this chapter, the treatment of early life stages in this 
calculation considers all larval life stages reported in the original I&E mortality studies. 

3.2.2.2 Forgone Fishery Yield of Commercial and Recreational Species 

Fishery yield is a measure of the biomass harvested from a cohort of fish.6 EPA expressed I&E mortality 
of harvested species in terms of forgone (lost) fishery yield. To convert losses to forgone fishery yield, 
EPA used the Thompson-Bell equilibrium yield model (Ricker 1975). EPA’s application of the 
Thompson-Bell model assumed that 1) I&E mortality losses reduce the future yield of harvested adults, 
and 2) reductions in I&E mortality rates will lead to an increase in harvested biomass.  

The Thompson-Bell model is based on the principles used to estimate the expected yield in any harvested 
fish population (Hilborn and Walters 1992; Quinn and Deriso 1999). The general procedure involves 
multiplying age-specific harvest rates by age-specific weights to calculate an age-specific expected yield. 
The lifetime expected yield for a cohort of fish is the sum of all age-specific expected yields. Details of 
these calculations are provided in Chapter A-1 of EPA’s Regional Benefits Analysis (USEPA 2006b). 

3.2.2.3 Production Forgone for All Species 

Production forgone is an estimate of the biomass that would have been produced had individuals not been 
impinged or entrained (Rago 1984). It is calculated for all forage species from species- and age-specific 
growth rates and survival probabilities. This forgone biomass represents a decrease in prey availability for 
predator species, and is calculated because I&E mortality losses for forage species are not included in the 
forgone fishery yield calculations. Additional details regarding the calculation of production forgone are 
provided in Chapter A-1 of EPA’s Regional Benefits Analysis (USEPA 2006b). 
                                                      
6  A cohort of fish refers to fish produced in the same year, also referred to as a year-class of fish. 
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3.2.3 Valuation Approach  

EPA’s benefits analysis focused on increased commercial and recreational fishery harvests estimated 
from projected reductions in I&E mortality losses. For consistency with reported harvest data, 
commercial harvest is reported in pounds and recreational harvest is reported in numbers of fish. To 
project changes in fishery harvests, EPA integrated two components of fishery yield that change as a 
consequence of I&E mortality: direct contributions of commercially and recreationally harvested species 
(hereafter fishery species), and indirect contributions of forage species consumed by fishery species 
(Figure 3-1). The direct contribution of fishery species to yield (left side of Figure 3-1) is calculated by 
converting A1E losses to forgone yield as described in Section 3.2.2. The contribution of forage species 
to fishery yield is measured as a biotic transfer of mass through the food web to fishery species that are 
subsequently harvested (right side of Figure 3-1). EPA used a simple trophic transfer model for this 
purpose (discussed in Chapter A-1 of EPA’s Regional Benefits Analysis (USEPA 2006b), assuming a 
trophic transfer efficiency of 0.10 (Pauly and Christensen 1995).7 Trophic transfer efficiency represents 
the fraction of forage species biomass incorporated into predator (fishery) species biomass. EPA 
estimated total changes to commercial and recreational harvest yield as the sum of the contributions of 
fishery and forage species. For benefits analysis, total yield was separated into commercial and 
recreational fractions based on the proportion of harvest occurring within each type of fishery, and 
benefits were calculated for harvestable adult fish. Details of the commercial and recreational fishing 
benefits analysis are provided in Chapters 6 and 7 of this report, respectively.  

3.2.4 Rationale for EPA’s Approach for Valuation of I&E mortality losses 

EPA’s approach to estimating changes in fish harvest assumed that I&E mortality losses result in a 
reduction in the number of harvestable adults, and that I&E mortality reductions result in increases to 
future fish harvests. This approach estimates incremental fishery yield forgone because of I&E mortality 
and does not require knowledge of population size or total yield of a fishery.  

EPA’s forgone fishery yield analysis requires species- and stage-specific schedules of natural mortality 
(M), fishing mortality (F), and weight-at-age. The yield model assumes that these key parameters (F, M, 
and weight-at-age) are independent of I&E mortality rates for all species. EPA recognizes that this 
assumption does not fully reflect the dynamic nature of fish populations. However, by conducting benefits 
analysis using estimates of foregone yield, EPA was able to use a simple and direct measure of the 
potential economic value associated with each I&E-related death. EPA believes that this approach was 
warranted given: (1) the scope and objectives of its analysis of harvested species, (2) data availability, and 
(3) difficulties in distinguishing the causes of population changes. Each of these factors is discussed 
below. 

3.2.4.1 Scope and Objectives of EPA’s Analysis of Harvested Species 

EPA’s overall objective was to develop regional- and national-scale estimates of the magnitude of I&E 
mortality at hundreds of facilities that are in the scope of the proposed rule nationwide. As a consequence 
of the large geographic scope and multiple ecosystems involved, EPA modeled fishery yield using a 
relatively simplified approach to estimate the vulnerability of dozens of species to I&E mortality on a 

                                                      
7  EPA notes that its model of trophic transfer is a very simple and idealized representation of trophic dynamics; it is not 

intended to capture the details of trophic transfer in actual aquatic ecosystems. In reality, food webs and trophic dynamics 
are much more complex than EPA’s simple model implies, and include details that are specific to each particular aquatic 
ecosystem. This complexity was beyond the scope of EPA’s analysis and the available data. 
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national scale. Although sufficient data may exist to model the effects of I&E mortality on population and 
community-level impacts, sufficient data do not exist at the national scale to make such studies feasible. 

 

 

Figure 3-1: General Approach Used to Evaluate I&E Mortality Losses as Forgone Fishery 
Yield 

3.2.4.2 Data Availability and Uncertainties Related to Modeling Fish Harvest 

Forgone fishery yield and production forgone models used by EPA required age-specific life history data 
for all species analyzed. EPA acknowledges that many fish population models are available, and that 
these models may produce more accurate population-level impacts of I&E mortality. EPA did not pursue 
the development of species-specific population models for several reasons: 

 Constructing population models requires a large set of parameters and numerous assumptions 
about the nature of stock dynamics for each species, including current stock size, stock-
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recruitment relationships, changes to growth and mortality rates as a function of stock size, and 
the separation of certain species into geographically based stock units. Because of these 
limitations, fewer than 40 percent of U.S.-managed commercially harvested fish stocks have been 
fully assessed (NMFS 2009; NMFS 2010b). As such, the information necessary to build more-
complex population models is available only for a subset of harvested species, which represent a 
minor fraction of I&E mortality.  

 Numerous difficulties exist in the definition of the size and spatial extent of fish stocks. As a 
result, it is often unclear how I&E mortality losses at particular cooling water intake structures 
(CWISs) can be related to specific stocks at a regional scale. For example, juvenile Atlantic 
menhaden (Brevoortia tryannus) found in Delaware Bay recruit from both local and long 
distances (Light and Able 2003). As a result, estimating the effects of local I&E mortality on 
recruitment rates would not be sufficient to understand the stock-recruitment relationship for 
Delaware Bay menhaden.  

Consequently, due to issues of data availability and difficulties estimating the effects of localized I&E 
mortality on regional-scale fish stocks, EPA determined that the construction of population models for all 
species subject to I&E mortality was not feasible. The level of uncertainty that would accompany the 
construction of such models (if constructing them were even possible) would be difficult to defend with 
available data at both the national and population level for many species. 

3.2.4.3 Difficulties Distinguishing Causes of Population Changes 

It is fundamentally difficult to demonstrate a causal relationship between a single stressor and changes in 
fish population sizes. Fish populations are affected by multiple nonlinear stressors and are constantly in 
flux. As such, determining whether changes to fish populations are the consequence of an identifiable 
stressor due to natural fluctuation around an equilibrium stock size is difficult. Fish recruitment is a 
multidimensional process, and identifying and distinguishing the causes of variance in fish recruitment 
remains a fundamental problem in fisheries science, stock management, and impact assessment (Boreman 
2000; Hilborn and Walters 1992; Quinn and Deriso 1999). Consequently, resolving issues of population 
fluctuation was beyond the scope and objectives of EPA’s Section 316(b) benefits analysis. 

3.2.5 Extrapolation of I&E Mortality to Develop Regional Estimates 

EPA examined I&E mortality losses and the economic benefits of reducing these losses at a regional 
scale. Estimated benefits were then aggregated across all regions to produce a national benefits estimate. 
Regions were based on regions used by fisheries management agencies such as the National Marine 
Fisheries Service (NMFS). The geographical scope of all regions is described in Chapter 1 (Section 1.2).  

To obtain regional I&E mortality estimates, EPA extrapolated losses observed at 97 facilities with I&E 
mortality data (hereafter model facilities) to all in-scope facilities within the same region. Extrapolation of 
I&E mortality rates was necessary because only a subset of all in-scope facilities have conducted I&E 
mortality studies. To allow extrapolation, EPA assumed that all facilities, regardless of size, have similar 
I&E mortality rates after normalization by flow. I&E mortality data were extrapolated on the basis of 
operational flow, in millions of gallons per day (MGD), where MGD is the average operational flow over 
the period 1996-1998 as reported by facilities in response to EPA’s Section 316(b) Detailed 
Questionnaire and Short Technical Questionnaire. Operational flow at all facilities was scaled using a 
multiplicative factor that reflected the effectiveness of in-place technologies used to reduce I&E 
mortality. During the extrapolation procedure, EPA also applied weighting factors to in-scope facilities 
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based on questionnaire results. Weighting factors for the current analysis were based on results of the 
Detailed Questionnaire. Additional details of EPA’s extrapolation methods are provided in Appendix A. 

The assumption that I&E mortality is proportional to flow is consistent with other published I&E 
mortality studies and models. Power plants on the Great Lakes exhibit an increasing relationship (on a 
log-log scale) between plant size (measured as electrical output) and I&E mortality rates (Kelso and 
Milburn 1979), and Goodyear (1978) predicted entrainment on the basis of the ratio of cooling water flow 
to source water flow. Additionally, the Spawning and Nursery Area of Consequence (SNAC) model, used 
as a screening tool for assessing potential I&E mortality impacts at Chesapeake Bay facilities, assumes 
that entrainment is proportional to cooling water withdrawal rates (Polgar et al. 1979).  

EPA recognizes that there may be substantial variability in actual I&E mortality losses per MGD resulting 
from a variety of time- and facility-specific features, such as sampling date, location and type of intake 
structure, as well as from ecological features that affect the abundance and species composition of fish in 
the vicinity of each facility. Consequently, EPA’s extrapolation procedure relies heavily on the 
assumption that I&E mortality rates recorded at model facilities are representative of I&E mortality rates 
at other facilities in the region. Although this assumption may not be met in some cases, limiting the 
extrapolation procedure within regions reduces the likelihood that model facilities are unrepresentative.  

EPA believes that its method of extrapolation makes the best use of a limited amount of empirical data, 
and is the only feasible approach for developing a national estimate of I&E mortality, and the associated 
benefits of I&E mortality reduction. While acknowledging that extrapolation introduces uncertainty into 
I&E mortality estimates, EPA has not identified information suggesting a systematic bias in regional loss 
estimates based upon extrapolation.  

3.3 I&E Mortality Losses By Region 

3.3.1 California Region 

Estimated baseline I&E mortality, and estimated reductions to I&E mortality under the three regulatory 
options are presented in Table 3-1 and Table 3-2. Estimated total baseline I&E mortality losses in the 
California region are 36.83 million A1Es per year, of which 17.56 million (47 percent) are forage fish. 
Approximately 5.59 percent of total baseline A1E losses are assigned a direct use value from recreational 
or commercial fishing (Table 3-1). Table C-1of Appendix C presents species-specific data on 
impingement and entrainment losses under the baseline conditions and estimated reductions under all 
options. Among commercially and recreationally-harvested species, the greatest losses occur in crabs, 
rockfishes, and sea basses (Appendix Table C-1).  

The majority of I&E mortality in the California region occur due to entrainment (Appendix Table C-1). 
Because Option 1 does not reduce entrainment losses in the majority of facilities, it reduces baseline I&E 
mortality of A1E by only 1.9 percent (Table 3-1). Conversely, by requiring the installation of closed-cycle 
cooling towers, which effectively reduce entrainment mortality, Options 2 and 3 reduce A1E losses by 
85.5 and 89.4 percent, respectively, providing over 40 times the reduction in A1E losses (Table 3-1).  
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Table 3-1: Summary of Baseline I&E Mortality Losses at All In-scope Facilities 
(Manufacturing and Generating) in California, and Reductions Under Option 
Scenarios 

IM&EM Loss Metric (per year) Option 1 Option 2 Option 3
All Species (million A1E) 36.83 0.69 31.50 32.92
Forage Species (million A1E) 17.56 0.18 14.99 15.67
Commercial & Recreational Species (million A1E) 19.28 0.52 16.51 17.25
Commercial & Recreational Harvest (million fish) 2.06 0.06 1.76 1.84
A1E Losses with Direct Use Value (%) 5.59 7.96 5.60 5.60

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I Everywhere and E for 
Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 

Production foregone due to baseline I&E mortality is estimated to be 14.05 million pounds of fish, 
leading to a decrease in fishery yield of more than 3.28 million pounds per year (Table 3-2). Option 1 is 
estimated to result in increased fishery yields of 0.02 million pounds per year. Under Options 2 and 3, 
however, estimated increases to fishery yields are more than 100 times greater, at 2.80 and 2.93 million 
pounds per year, respectively (Table 3-2).  

 
Table 3-2: Baseline Losses in Fishery Yield, Catch, and Production 
Forgone as a Consequence of I&E Mortality at All In-scope Facilities 
(Manufacturing and Generating) in California, and Reductions Under 
Option Scenarios 

IM&E Loss Metric (million per year) Option 1 Option 2 Option 3
Foregone Fishery Yield (lbs) 3.28 0.02 2.80 2.93
Foregone Commercial Catch (lbs) 1.38 <0.01 1.18 1.23
Foregone Recreational Catch (fish) 1.02 0.04 0.88 0.92
Production Foregone (lbs) 14.05 0.10 11.99 12.54

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I 
Everywhere and E for Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 
Raw numbers of I&E mortality losses in California can be found in Appendix Table C-2. 

3.3.2 North Atlantic Region 

Estimated baseline I&E mortality, and estimated reductions to I&E mortality under the three regulatory 
options are presented in Table 3-3 and Table 3-4. Estimated total baseline I&E mortality losses in the 
North Atlantic region are 60.00 million A1Es per year, 78 percent of which are forage fish. 
Approximately 2.06 percent of total baseline A1E losses are assigned a direct use value from recreational 
or commercial fishing (Table 3-3). Table C-3 of Appendix C presents species-specific data on 
impingement and entrainment losses under the baseline conditions and estimated reductions under all 
options. Briefly, the vast majority (99 percent) of all A1E losses in the North Atlantic occur as a 
consequence of entrainment mortality (Appendix Table C-3). Notably, the combined I&E mortality of 
winter flounder, cunner, and sculpins account for 97 percent of all I&E mortality of commercially and 
recreationally-harvested species. 



 

March 28, 2011  3-8 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

Because Option 1 does not reduce entrainment losses, it reduces baseline I&E mortality A1E losses by 
less than 1 percent (Table 3-3). Conversely, by requiring the installation of closed-cycle cooling towers, 
which effectively reduce entrainment mortality, Options 2 and 3 reduce A1E losses by 81.7 and 85.7 
percent, respectively, providing more than 100 times the benefits of Option 1 by A1E (Table 3-3).  

 

Table 3-3: Baseline I&E Mortality Losses and I&E Mortality Reductions at All In-
scope Facilities (Manufacturing and Generating) in the North Atlantic, and 
Reductions Under Option Scenarios 

IM&EM Loss Metric (per year) Option 1 Option 2 Option 3
All Species (million A1E) 60.00 0.43 49.02 51.40
Forage Species (million A1E) 47.02 0.38 38.42 40.29
Commercial & Recreational Species (million A1E) 12.98 0.06 10.60 11.11
Commercial & Recreational Harvest (million fish) 1.23 <0.01 1.01 1.06
A1E Losses with Direct Use Value (%) 2.06 1.52 2.06 2.06

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I Everywhere and E for 
Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 

Production foregone due to baseline I&E mortality is estimated to be 26.99 million pounds of fish, 
leading to a decrease in fishery yield of 1.02 million pounds per year (Table 3-4). Option 1 is estimated to 
result in increased fishery yields of less than 0.01 million pounds per year. Under Options 2 and 3, 
however, estimated increases to fishery yields are more than 100 times greater, at 0.83 and 0.87 million 
pounds per year, respectively (Table 3-4).  

 
Table 3-4: Baseline Losses in Fishery Yield, Catch, and Production 
Forgone as a Consequence of I&E Mortality at All In-scope Facilities 
(Manufacturing and Generating) in the North Atlantic, and Reductions 
Under Option Scenarios 

IM&E Loss Metric (million per year) Option 1 Option 2 Option 3
Foregone Fishery Yield (lbs) 1.02 <0.01 0.83 0.87
Foregone Commercial Catch (lbs) 0.45 <0.01 0.37 0.39
Foregone Recreational Catch (fish) 0.76 <0.01 0.62 0.65
Production Foregone (lbs) 26.99 0.03 22.01 23.09

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I 
Everywhere and E for Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 

 

Raw numbers of I&E mortality losses in the North Atlantic can be found in Appendix Table C-4. 

3.3.3 Mid-Atlantic 

Estimated baseline I&E mortality, and estimated reductions to I&E mortality under the three regulatory 
options are presented in Table 3-5 and Table 3-6. Estimated total baseline I&E mortality losses in the 
Mid-Atlantic region are 990.06 million A1Es per year, including 751.07 million A1Es of forage fish (75.9 
percent). Approximately 3.11 percent of total baseline A1E losses are assigned a direct use value from 
recreational or commercial fishing (Table 3-5). Table C-5 of Appendix C presents species-specific data 
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on impingement and entrainment losses under the baseline conditions and estimated reductions under all 
options. Briefly, the vast majority (95 percent) of all A1E losses in the Mid-Atlantic occur as a 
consequence of entrainment mortality. Nearly half (45.9 percent) of the I&E mortality estimated for 
commercially- and recreationally-harvested species occurs in Blue Crab, and substantial I&E mortality 
(i.e., greater than 20 million A1E) is estimated for Atlantic Croaker, Atlantic Menhaden, Spot, and White 
Perch. 

Because of the high proportion of I&E mortality losses attributed to entrainment mortality, it is estimated 
that Options 2 and 3 will reduce I&E mortality by 91.9 and 93.0 percent, respectively (Table 3-5). 
Conversely, Option 1 is projected to reduce I&E mortality by approximately 3.9 percent, more than 20 
times smaller than the reductions estimated to occur under Options 2 and 3.  

 
 

Table 3-5: Baseline I&E Mortality Losses and I&E Mortality Reductions at All In-
scope Facilities (Manufacturing and Generating) in the Mid-Atlantic, and 
Reductions Under Option Scenarios 

IM&EM Loss Metric (per year) Option 1 Option 2 Option 3
All Species (million A1E) 990.06 38.69 909.74 920.90
Forage Species (million A1E) 751.07 14.27 688.96 697.59
Commercial & Recreational Species (million A1E) 238.98 24.42 220.78 223.31
Commercial & Recreational Harvest (million fish) 30.77 6.09 28.66 28.95
A1E Losses with Direct Use Value (%) 3.11 15.75 3.15 3.14

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I Everywhere and E for 
Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 

The I&E mortality model projects that baseline I&E mortality results in 80.73 million pounds of foregone 
production, and decreases fishery yield by 22.53 million pounds per year (Table 3-6). Option 1 is 
estimated to result in increased fishery yields of 5.40 million pounds per year. Under Options 2 and 3, 
increased fishery yields are 21.01 and 21.22 million pounds per year, respectively (Table 3-6).  

 
Table 3-6: Baseline Losses in Fishery Yield, Catch, and Production 
Forgone as a Consequence of I&E Mortality at All In-scope Facilities 
(Manufacturing and Generating) in the Mid-Atlantic, and Reductions 
Under Option Scenarios 

IM&E Loss Metric (million per year) Option 1 Option 2 Option 3
Foregone Fishery Yield (lbs) 22.53 4.73 21.01 21.22
Foregone Commercial Catch (lbs) 11.59 3.75 10.91 11.01
Foregone Recreational Catch (fish) 9.08 0.55 8.36 8.46
Production Foregone (lbs) 80.73 10.16 74.73 75.56

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I 
Everywhere and E for Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 

 

Raw numbers of I&E mortality losses in the Mid-Atlantic region can be found in Appendix Table C-6. 
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3.3.4 South Atlantic Region 

Estimated baseline I&E mortality, and estimated reductions to I&E mortality under the three regulatory 
options are presented in Table 3-7 and Table 3-8. Estimated total baseline I&E mortality losses in the 
South Atlantic region are estimated to be 33.40 million A1Es per year, including 31.22 million forage fish 
A1Es. Approximately 1.03 percent of total baseline A1E losses are assigned a direct use value from 
recreational or commercial fishing (Table 3-7). Table C-7 of Appendix C presents species-specific data 
on impingement and entrainment losses under the baseline conditions and estimated reductions under all 
options. Unlike other regions, the majority (67 percent) of all A1E losses in the South Atlantic occur as a 
consequence of impingement mortality. Among commercially- and recreationally-harvested species, I&E 
mortality is greatest in Drums and Croakers and Blue Crab. 

Due to the high proportion of I&E mortality lost to impingement, Option 1 is projected to reduce I&E 
mortality by 42.5 percent. However, because the installation of closed-cycle cooling towers reduces water 
usage, Options 2 and 3 are projected to reduce I&E mortality by approximately 84.6 and 84.7 percent 
(Table 3-7), approximately double the estimated reductions of Option 1.  
 

Table 3-7: Baseline I&E Mortality Losses and I&E Mortality Reductions at All In-
scope Facilities (Manufacturing and Generating) in the South Atlantic, and 
Reductions Under Option Scenarios 

IM&EM Loss Metric (per year) Option 1 Option 2 Option 3
All Species (million A1E) 33.40 14.20 28.28 28.30
Forage Species (million A1E) 31.22 13.43 26.43 26.45
Commercial & Recreational Species (million A1E) 2.19 0.77 1.85 1.85
Commercial & Recreational Harvest (million fish) 0.35 0.11 0.29 0.29
A1E Losses with Direct Use Value (%) 1.03 0.75 1.03 1.03
Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I Everywhere and E for 
Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 

Production foregone due to baseline I&E mortality is estimated to be 0.86 million pounds per year, 
leading to a decrease in fishery yield of approximately 0.16 million pounds per year. Option 1 is 
estimated to result in increased fishery yields of 0.05 million pounds per year. Under Options 2 and 3, 
however, estimated increases to fishery yields are more than 2 times greater, at 0.13 and 0.13 million 
pounds per year, respectively (Table 3-8).  
 

Table 3-8: Baseline Losses in Fishery Yield, Catch, and Production 
Forgone as a Consequence of I&E Mortality at All In-scope Facilities 
(Manufacturing and Generating) in the South Atlantic, and Reductions 
Under Option Scenarios 

IM&E Loss Metric (million per year) Option 1 Option 2 Option 3
Foregone Fishery Yield (lbs) 0.16 0.05 0.13 0.13
Foregone Commercial Catch (lbs) 0.10 0.05 0.08 0.08
Foregone Recreational Catch (fish) 0.13 0.02 0.11 0.11
Production Foregone (lbs) 0.86 0.14 0.72 0.72

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I 
Everywhere and E for Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses
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Raw numbers of I&E mortality losses in the South Atlantic region can be found in Appendix Table C-8. 

3.3.5 Gulf of Mexico 

Estimated baseline I&E mortality, and estimated reductions to I&E mortality under the three regulatory 
options are presented in Table 3-9 and Table 3-10. Estimated total baseline I&E mortality losses in the 
Gulf of Mexico are estimated to be 135.64 million A1Es per year, including 47.75 million forage fish 
A1Es. Approximately 8.56 percent of total baseline A1E losses are assigned a direct use value from 
recreational or commercial fishing (Table 3-9). Table C-9 of Appendix C presents species-specific data 
on impingement and entrainment losses under the baseline conditions and estimated reductions under all 
options. The majority (67 percent) of all A1E losses in the Gulf of Mexico occur as a consequence of 
entrainment mortality. Among commercially- and recreationally-harvested species, I&E mortality is 
greatest in Blue Crab, and Pink Shrimp, which together account for 68 percent of A1E losses with direct 
use value. Other fish species with substantial I&E mortality (i.e., greater than 5 million A1E) include 
Black Drum, Menhaden, and Silver Perch (Appendix Table C-9). 

Due to the low proportion of I&E mortality lost to impingement, Option 1 is projected to reduce I&E 
mortality by only 25.4 percent. In contrast, Options 2 and 3 are projected to reduce I&E mortality by 78.2 
and 78.3 percent, respectively (Table 3-9), approximately triple the estimated reductions of Option 1.  
 

Table 3-9: Baseline I&E Mortality Losses and I&E Mortality Reductions at All In-
scope Facilities (Manufacturing and Generating) in the Gulf of Mexico, and 
Reductions Under Option Scenarios 

IM&EM Loss Metric (per year) Option 1 Option 2 Option 3
All Species (million A1E) 135.64 34.50 106.02 106.21
Forage Species (million A1E) 47.75 4.31 34.09 34.16
Commercial & Recreational Species (million A1E) 87.89 30.19 71.94 72.05
Commercial & Recreational Harvest (million fish) 11.61 4.59 9.75 9.76
A1E Losses with Direct Use Value (%) 8.56 13.29 9.20 9.19

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I Everywhere and E for 
Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 

Production foregone due to baseline I&E mortality is estimated to be 76.06 million pounds per year, 43 
percent of which is foregone fishery yield. Option 1 is estimated to reduce foregone fishery yields by 2.99 
million pounds, while Options 2 and 3 are estimated to reduce foregone fishery yields by 23.43 and 23.48 
million pounds, respectively (Table 3-10).  

Raw numbers of I&E mortality losses in the Gulf of Mexico can be found in Appendix Table C-10. 
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Table 3-10: Baseline Losses in Fishery Yield, Catch, and Production 
Forgone as a Consequence of I&E Mortality at All In-scope Facilities 
(Manufacturing and Generating) in the Gulf of Mexico, and 
Reductions Under Option Scenarios 

IM&E Loss Metric (million per year) Option 1 Option 2 Option 3
Foregone Fishery Yield (lbs) 32.81 2.99 23.43 23.48
Foregone Commercial Catch (lbs) 5.56 1.46 4.36 4.37
Foregone Recreational Catch (fish) 2.85 0.67 2.20 2.21
Production Foregone (lbs) 76.06 5.77 53.84 53.96

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I 
Everywhere and E for Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 

3.3.6 Great Lakes Region 

Estimated baseline I&E mortality, and estimated reductions to I&E mortality under the three regulatory 
options are presented in Table 3-11 and Table 3-12. Estimated total baseline I&E mortality losses in the 
Great Lakes are 53.50 million A1Es per year, including 46.46 million A1E of forage fish. Approximately 
1.50 percent of total baseline A1E losses are assigned a direct use value from recreational or commercial 
fishing (Table 3-11). Table C-11 of Appendix C presents species-specific data on impingement and 
entrainment losses under the baseline conditions and estimated reductions under all options. Briefly, 
among commercially and recreationally-harvested species, the greatest losses occur in Smelts and 
Sunfish. 

The vast majority (83 percent) of I&E mortality losses in the Great Lakes occur due to impingement 
(Appendix Table C-11). Accordingly, Option 1 reduces baseline A1E I&E mortality by 71.5 percent 
(Table 3-11). By requiring the installation of closed-cycle cooling towers, which reduce the volume of 
water required for cooling purposes, Options 2 and 3 reduce A1E losses by 95.7 and 96.0 percent, 
respectively (Table 3-11).  

 

Table 3-11: Baseline I&E Mortality Losses and I&E Mortality Reductions at All In-
scope Facilities (Manufacturing and Generating) in the Great Lakes, and 
Reductions Under Option Scenarios 

IM&EM Loss Metric (per year) Option 1 Option 2 Option 3
All Species (million A1E) 53.50 38.23 51.13 51.35
Forage Species (million A1E) 46.46 33.46 44.46 44.64
Commercial & Recreational Species (million A1E) 7.04 4.77 6.67 6.70
Commercial & Recreational Harvest (million fish) 0.80 0.49 0.75 0.75
A1E Losses with Direct Use Value (%) 1.50 1.28 1.47 1.47

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I Everywhere and E for 
Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 

Production foregone due to baseline I&E mortality is estimated to be 32.02 million lbs of fish, leading to 
a decrease in fishery yield of 0.70 million pounds per year (Table 3-12). Option 1 is estimated to result in 
increased fishery yields of 0.42 million pounds per year. Under Options 2 and 3, however, estimated 
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increases to fishery yields are approximately 50 percent greater, at 0.65 and 0.65 million pounds per year, 
respectively (Table 3-12).  

 
Table 3-12: Baseline Losses in Fishery Yield, Catch, and Production 
Forgone as a Consequence of I&E Mortality at All In-scope Facilities 
(Manufacturing and Generating) in the Great Lakes, and Reductions 
Under Option Scenarios 

IM&E Loss Metric (million per year) Option 1 Option 2 Option 3
Foregone Fishery Yield (lbs) 0.70 0.42 0.65 0.65
Foregone Commercial Catch (lbs) 0.35 0.23 0.33 0.33
Foregone Recreational Catch (fish) 0.35 0.18 0.32 0.32
Production Foregone (lbs) 32.02 7.34 27.19 27.49
Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I 
Everywhere and E for Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 

Raw numbers of I&E mortality losses in the Great Lakes region can be found in Appendix Table C-12. 

3.3.7 Inland Region 

Estimated baseline I&E mortality, and estimated reductions to I&E mortality under the three regulatory 
options are presented in Table 3-13 and Table 3-14. Estimated total baseline I&E mortality losses in the 
Inland region are 879.49 million A1Es per year, including 713.71 million A1E of forage fish. 
Approximately 1.43 percent of total baseline A1E losses are assigned a direct use value from recreational 
or commercial fishing (Table 3-13). Table C-13 of Appendix C presents species-specific data on 
impingement and entrainment losses under the baseline conditions and estimated reductions under all 
options. Briefly, the majority (66.4 percent) of all A1E losses in the Inland region occur as a consequence 
of impingement mortality (Appendix Table C-13). Notably, the I&E mortality of sunfish account for 78.4 
percent of the I&E mortality of commercially and recreationally-harvested species. 

Option 1 reduces baseline I&E mortality A1E losses by 55.5 percent (Table 3-13). The installation of 
closed-cycle cooling towers under Options 2 and 3 reduce A1E losses by 91.6 and 93.5 percent, 
respectively, providing a benefit more than 60 percent larger than the benefits of Option 1 (Table 3-13).  

 

Table 3-13: Baseline I&E Mortality Losses and I&E Mortality Reductions at All In-
scope Facilities (Manufacturing and Generating) in the Inland Region, and 
Reductions Under Option Scenarios 

IM&EM Loss Metric (per year) Option 1 Option 2 Option 3
All Species (million A1E) 879.49 488.22 805.86 822.46
Forage Species (million A1E) 713.71 459.64 665.29 676.63
Commercial & Recreational Species (million A1E) 165.78 28.59 140.57 145.83
Commercial & Recreational Harvest (million fish) 12.59 4.32 11.06 11.39
A1E Losses with Direct Use Value (%) 1.43 0.89 1.37 1.38

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I Everywhere and E for 
Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses
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The decrease in production due to baseline I&E mortality is estimated to be 407.08 million pounds of 
fish, leading to a decrease in fishery yield of 11.01 million pounds per year (Table 3-14). Option 1 is 
estimated to result in increased fishery yields of 3.77 million pounds per year. Under Options 2 and 3, 
however, estimated increases to fishery yields are more than two times greater, at 9.67 and 9.96 million 
pounds per year, respectively (Table 3-14).  

 

Table 3-14: Baseline Losses in Fishery Yield, Catch, and Production 
Forgone as a Consequence of I&E Mortality at All In-scope Facilities 
(Manufacturing and Generating) in the Inland Region, and Reductions 
Under Option Scenarios 

IM&E Loss Metric (million per year) Option 1 Option 2 Option 3
Foregone Fishery Yield (lbs) 11.01 3.77 9.67 9.96
Foregone Commercial Catch (lbs) <0.01 <0.01 <0.01 <0.01
Foregone Recreational Catch (fish) 12.59 4.32 11.06 11.39
Production Foregone (lbs) 407.08 102.90 351.01 362.84

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I 
Everywhere and E for Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 

Raw numbers of I&E mortality losses in the Inland region can be found in Appendix Table C-14. 

3.3.8 National Estimates 

Estimated baseline I&E mortality, and estimated reductions to I&E mortality under the three regulatory 
options are presented in Table 3-15 and Table 3-16. Estimated total baseline I&E mortality losses 
nationally are 2,188.92 million A1Es per year, including 1,654.78 million A1E of forage fish. 
Approximately 2.71 percent of total baseline A1E losses are assigned a direct use value from recreational 
or commercial fishing (Table 3-15). Table C-13 of Appendix C presents species-specific data on 
impingement and entrainment losses under the baseline conditions and estimated reductions under all 
options. Briefly, the majority (65.8 percent) of all A1E losses nationally occur as a consequence of 
entrainment mortality (Appendix Table C-13).  

Option 1 reduces baseline I&E mortality A1E losses by 28.1 percent (Table 3-15). The installation of 
closed-cycle cooling towers under Options 2 and 3 reduce A1E losses by 90.5 and 92.0 percent, 
respectively, providing a benefit approximately three times larger than the benefits of Option 1 (Table 
3-15).  
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Table 3-15: Baseline I&E Mortality Losses and I&E Mortality Reductions at All In-
scope Facilities (Manufacturing and Generating) Nationally, and Reductions 
Under Option Scenarios 

IM&EM Loss Metric (per year) Option 1 Option 2 Option 3
All Species (million A1E) 2188.92 614.97 1981.55 2013.55
Forage Species (million A1E) 1654.78 525.66 1512.64 1535.44
Commercial & Recreational Species (million A1E) 534.15 89.31 468.91 478.11
Commercial & Recreational Harvest (million fish) 59.41 15.66 53.28 54.05
A1E Losses with Direct Use Value (%) 2.71 2.55 2.69 2.68

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I Everywhere and E for 
Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 

The decrease in production due to baseline I&E mortality is estimated to be 637.78 million pounds of 
fish, leading to a decrease in fishery yield of 71.50 million pounds per year (Table 3-16). Option 1 is 
estimated to result in increased fishery yields of 11.99 million pounds per year. Under Options 2 and 3, 
however, estimated increases to fishery yields are more than four times greater, at 58.52 and 59.24 million 
pounds per year, respectively (Table 3-16).  

 
Table 3-16: Baseline Losses in Fishery Yield, Catch, and Production 
Forgone as a Consequence of I&E Mortality at All In-scope Facilities 
(Manufacturing and Generating) Nationally, and Reductions Under 
Option Scenarios 

IM&E Loss Metric (million per year) Option 1 Option 2 Option 3
Foregone Fishery Yield (lbs) 71.50 11.99 58.52 59.24
Foregone Commercial Catch (lbs) 19.43 5.49 17.23 17.41
Foregone Recreational Catch (fish) 26.79 5.77 23.55 24.06
Production Foregone (lbs) 637.78 126.44 541.48 556.20

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I 
Everywhere and E for Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 

Raw numbers of national I&E mortality losses can be found in Appendix Table C-16.  
 

3.4 Limitations and Uncertainties  

There are four major kinds of uncertainty that may lead to imprecision and bias in EPA’s I&E mortality 
analysis: data, structural, statistical, and engineering uncertainty. Data limitations and uncertainty refers to 
uncertainty and inconsistency in sampling methodologies used in facility-specific I&E mortality studies.  
Structural uncertainty reflects the simplification built into any model of a complex natural system. 
Parameter uncertainty refers to uncertainty in the numeric estimates of model parameters. Finally, 
engineering uncertainty refers to the fact that facilities do not operate identically on an annual basis.  

3.4.1 Data Limitation and Uncertainty 

Quantification of regional and national I&E mortality losses is based on cumulative data generated by 
collection at individual facilities. In turn, these data are heterogeneous products of location-specific 
investigations set in differing geographic and ecological provinces. Interpretation of the significance and 
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trends of I&E mortality at regional and national scales (and of the accompanying ecological benefits upon 
mitigation) must consider the strengths and weaknesses of this data. 

The I&E mortality data from model facilities constitute a heterogeneous composite of results from many 
facility-specific studies. Sampling effort and data quality control vary tremendously among I&E mortality 
studies and baseline source water characterization programs. While there is broad EPA guidance as to the 
overall objectives and requirements for facility-specific data collection, there is little uniformity among 
studies as to the intensity, frequency and duration of data collection as well as the scope of target biota 
collected, identified, and enumerated. Sampling regimes may be properly adjusted to ensure that changes 
in local biotic activity associated with diurnal, tidal, and lunar cycles are incorporated; or may reflect 
regularly spaced sampling points with little concern paid to capturing environmental variability.  

In addition to the differences in environmental scope, sampling methods are not uniform among studies 
with regard to the types and meshes of sampling nets, deployment location of sampling nets (e.g., outside 
or within the intake structure), length and weight measurements, observations of field conditions, 
characterization of reference areas, etc. In addition to different sampling methods and timing, some 
sampling programs are designed primarily to estimate I&E mortality losses for a select suite of 
recreational or commercially important aquatic organisms.  Studies differ in their taxonomic sorting 
classes and specificity of identification of impinged and entrained organisms (e.g., eggs, ichthyoplankton, 
zooplankton, etc.). Thus, many I&E mortality studies are poorly suited to provide insight into the direct 
and indirect impacts to forage fish species, non-vertebrate organisms (zooplankton, tunicates, algae, 
worms, etc.), or community/ecosystem impacts. For older facilities, sampling data commonly lack pre-
operational (i.e., baseline) samples or community surveys to compare to the results of more-current I&E 
mortality data. Finally, few I&E mortality studies are designed to allow evaluation of community impacts 
or ecosystem effects (Section 2.4).  

Within regions, studies of I&E mortality from model facilities are typically composed of data from a 
relatively limited number of facilities. Most facility-specific I&E mortality studies are limited to one or 
two years, and are rarely replicated within a time period that allows direct comparison of trends without 
historical complications due to fishery stock trends, climatic changes, or shifts in collection methods or 
water quality. Thus, studies within a regional database may not accurately represent average climatic and 
oceanographic conditions (e.g., El Nino years). Additionally, studies within the database may include 
historical (>20 years) and recent data, thus incorporating considerable uncertainty due to the annual 
variability of highly dynamic fish stocks. Thus, extrapolation from regional collections of facility-specific 
studies may not provide a true regional estimate because the available data may or may not be fully 
representative of regional trends and/or of associated ecological benefits derived from mitigating I&E 
mortality impacts.  

3.4.2 Structural Uncertainty 

The models EPA used to evaluate I&E mortality simplify complex processes. The degree of 
simplification is substantial, but necessary, because of limited data availability and the need to generate 
estimates on a national scale. Simplification occurs with respect to many processes within the model, to 
ensure computational tractability and national applicability (Table 3-17).  

EPA recognizes these uncertainties, but believes that addressing each of these uncertainties in a 
defensible way would require data that does not currently exist (see Section 3.2.4.2), would be time-
consuming and resource-intensive to develop, and would lead to greater parameter uncertainty (Section 
3.4.3). 
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Table 3-17: Structural Uncertainties 
Aspect of Model General Description Specific Treatment in Model 
Biological 
submodels 

Life history traits are fixed Life history parameters in the models (i.e., growth, survival) are constant 
through time and are thus independent of biological conditions (e.g., fish 
densities, seasonality, weather, recruitment variability, food availability, 
fisheries pressure, etc.). 

 No trophic effects Indirect food web effects such as trophic cascades, growth and population 
limitations due to a lack of food, etc., are not considered. Trophic transfer 
is treated simplistically. 

 Outside impacts not addressed I&E mortality loss rates are affected by a variety of outside influences not 
included in the model (e.g., fisheries pressure, pollution, future 
development, invasive species, climate change, etc.).  

Valuation 
structure 

National nonuse benefits not 
addressed 

Fish species grouped into two categories: harvested or not harvested (i.e., 
forage for harvested species). Only commercial and recreational harvests 
are assigned monetary values at the national level. Nonuse values of I&E 
mortality is estimated for the North Atlantic and Mid-Atlantic regions only.

 Fishing pressure constant The valuation procedure assumes that fisheries harvests will increase 
proportionately to decreases in I&E mortality losses, independent of 
Federal and State policies on commercial and recreational fishing (i.e., 
fisheries quotas, closures, bag limits, etc.).  

 

3.4.3 Parameter Uncertainty 

Parameter uncertainty refers to variability in the value of parameters used in biological and economic 
modeling. All parameters must be estimated from sampling studies that cannot identify the true values of 
interest due to statistical and logistical limitations. These limitations are broadly driven by three 
processes, including parameter fluctuation through time, geographic location, and sampling.  

The true value of many biological parameters fluctuates on an annual basis, due to changes in weather, 
food availability, indirect food-web effects, and compensatory population dynamics. Consequently, 
parameter values used within biological submodels, despite being based upon the best available data 
obtained from the scientific literature, cannot be without error due to annual variability in fish growth and 
(natural and fisheries) mortality rates. Similarly, because I&E mortality rates are driven by a combination 
of intake flow and the presence of vulnerable fish, actual I&E mortality cannot remain constant through 
time.  

True values of biological parameters and facility I&E mortality vary geographically. Biological 
parameters may vary substantially within regions due to changes in substrate, water temperature and 
salinity, etc., while facility I&E mortality data may be strongly connected to local substrates, distance 
from shore, depth, etc. It follows, then, that using biological data and extrapolating facility-specific I&E 
mortality rates to the regional scale will result in parameter variability based solely on geographic 
considerations.  

Finally, all model parameters contain uncertainty because they are small samples from a much larger 
dataset. Biological parameters such as mortality rates must be estimated using incomplete sampling data. 
Facility-reported I&E mortality studies necessarily subsample cooling water, and often do not take 
replicate samples across tidal periods, seasons, time of day, and between years. Moreover, these studies 
often present I&E mortality with limited taxonomic detail (i.e., the identification of eggs, larvae, and 
juveniles is not species-specific), and do not have standard methodologies. As is the case with 
retrospective data, these studies also reflect the biological and physical state of the waterbody when 
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studies were conducted. In some cases, the state of the waterbody itself has changed substantially since 
sampling was conducted. 

EPA recognizes many sources of parameter uncertainty in its models (Table 3-18), all of which lead to 
uncertainty in point estimates of I&E mortality losses. The nature of these uncertainties, however, does 
not inherently bias the point estimate. EPA believes that all biological and physical parameters were 
reported in good faith, and as such, parameter estimates are unlikely to be biased in aggregate, but 
distributed both above and below true parameter values. Thus, EPA believes that parameter uncertainty 
has resulted in imprecision rather than inaccuracy in model output.8  

3.4.4 Engineering Uncertainty 

EPA’s evaluation of I&E mortality was also affected by uncertainty about the engineering and operating 
characteristics of the study facilities. It is unlikely that plant operating characteristics (e.g., seasonal, 
diurnal, or intermittent changes in intake water flow rates) are constant throughout any particular year. As 
such, the timing of sampling, and the annual repeatability of I&E mortality, may be biased by facility 
operating conditions. EPA assumed that the facilities’ loss estimates were provided in good faith and did 
not include any biases or omissions that significantly modified loss estimates.  

                                                      
8 Accuracy refers to the degree of closeness of model results to the actual value. Precision refers to the reproducibility of model 
output, or the degree to which repeated measurements (or samples, for example from different model facilities) under similar 
conditions will result in the same model output. 
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Table 3-18: Parameters Included in EPA’s I&E Mortality Analysis Subject to Uncertainty 
Model Aspect Parameter Description 
I&E mortality 
monitoring /loss rate 
estimates  

Sampling regimes Sampling regimes are subject to numerous plant-specific details. No 
established guidelines or performance standards for how to design and conduct 
sampling regimes. Not all sampling studies measured both impingement and 
entrainment mortality. 

Extrapolation 
assumptions 

Extrapolation of monitoring data to annual I&E mortality rates assumes 
sampling occurred under average conditions, and that diurnal/seasonal/annual 
cycles in fish presence and vulnerability and various technical factors (e.g., net 
collection efficiency; hydrological factors affecting I&E mortality rates) do not 
play a substantial role in the accuracy of extrapolation. No established 
guidelines or consistency in sampling regimes. 

Species selection Criteria for the selection of species evaluated in I&E mortality studies are not 
well-defined nor uniform across facilities. At many facilities, I&E mortality 
data was collected for only a subset of species, usually only fish and shellfish. 

Sensitivity of fish to 
I&E mortality 

Entrainment mortality was assumed by EPA to be 100%. Back-calculations 
were done in cases where facilities reported entrainment rates that assumed 
<100% mortality. These calculations were limited by data reporting (i.e., 
species-specific survival rates were not always provided). Impingement 
survival was included if presented in facility documents. 

Biological/life 
history 

Natural mortality rates Natural mortality rates (M) difficult to estimate, and vary with time and 
geography. Model results are highly sensitive to M. 

Growth rates Simple exponential growth rates or simple size-at-age parameters used, and 
assumed constant across all locations and years. 

Geographic 
considerations 

Migration patterns; I&E mortality occurring during spawning runs or larval 
out-migration; location of harvestable adults; intermingling with other stocks. 

Forage valuation Harvested species assumed to be food limited; trophic transfer efficiency to 
harvested species estimated by EPA based on general models; no consideration 
of trophic transfer to species not impinged and entrained. 

Fish stock 
characteristics 

Fishery yield For most harvested species, only one species-specific value for fishing 
mortality rate (F) was used for all stages subject to harvest. Used stage-specific 
constants for fraction vulnerable to fishery. 

Harvest behavior No assumed dynamics among harvesters to alter fishing rates or preferences in 
response to changes in stock size. Recreational access assumed constant (no 
changes in angler preferences or effort). 

Stock interactions I&E mortality losses assumed to be part of reported fishery yield rates on a 
statewide basis. No consideration of possible substock harvest rates or 
interactions, no unreported catch. 

Ecological  
system  

Fish community Long-term trends in fish community composition or abundance were not 
considered (general food webs assumed to be static), nor were indirect trophic 
interactions. Used constant value for trophic transfer efficiency, and specific 
trophic interactions were not considered. Trophic transfer to organisms not 
impinged and entrained is not considered. 

Spawning dynamics Sampled years assumed to be typical with respect to choice of spawning areas 
and timing of migrations that could affect vulnerability to I&E mortality 
(e.g., presence of larvae in vicinity of intake structure). 

Hydrology Sampled years assumed to be typical with respect to flow regimes and tidal 
cycles that could affect vulnerability to I&E mortality (e.g., presence of larvae 
in vicinity of CWIS). 

Meteorology Sampled years assumed to be typical with respect to vulnerability to I&E 
mortality (e.g., presence of larvae in vicinity of intake structure). 

 



 

March 28, 2011  4-1 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

4 Economic Benefit Categories Associated with I&E Mortality 
Reduction 

Changes in CWIS design or operations resulting from the regulatory options for the proposed Section 
316(b) regulation for in-scope facilities are expected to increase the numbers of aquatic organisms present 
and increase local and regional fishery populations. They will do this by reducing impingement and 
entrainment (I&E) mortality of fish, shellfish, and other aquatic organisms.  

The aquatic organisms affected by CWISs provide a wide range of ecosystem services. Ecosystem 
services are the physical, chemical, and biological functions performed by natural resources and the 
human benefits derived from those functions, including both ecological and human use services (Daily 
1997; Daily et al. 1997). Scientific and public interest in protecting ecosystem services is increasing with 
the recognition that these services are vulnerable to a wide range of human activities and are difficult, if 
not impossible, to replace with human technologies (Meffe 1992).  

In addition to their importance in providing food and other goods of direct use to humans, the organisms 
lost to impingement and entrainment mortality (I&E mortality) are critical to the continued functioning of 
the ecosystems of which they are a part. Fish are essential for energy transfer in aquatic food webs, 
regulation of food web structure, nutrient cycling, maintenance of sediment processes, redistribution of 
bottom substrates, the regulation of carbon fluxes from water to the atmosphere, and the maintenance of 
aquatic biodiversity (Holmlund and Hammer 1999; Peterson and Lubchenco 1997; Postel and Carpenter 
1997; Wilson and Carpenter 1999). Many of these ecosystem services can be maintained only by the 
continued presence of all life stages of fish and other aquatic species in their natural habitats. Section 2.3 
provided detail on potential CWIS impacts on aquatic ecosystems. Due to a lack of data, many of these 
impacts could not be successfully evaluated or monetized. 

4.1 Economic Benefit Categories Applicable to the Regulatory Options for In-
Scope Facilities 

The economic benefits of reducing I&E mortality at in-scope facilities stem from both market and 
nonmarket goods and services that the affected resources provide. These benefits can be divided into the 
following categories (Table 4-1, below). 

 Market benefits: Market benefits are positive welfare impacts that can be quantified using 
money-denominated measures of consumer and producer surplus. The most obvious example of 
market benefits from reduced I&E mortality is benefits to commercial fisheries. Changes in I&E 
mortality will directly affect the price, quantity, and/or quality of fish harvests; and the monetary 
value of the changes can be measured directly through market measures of consumer and 
producer behavior. Market benefits may be further categorized in terms of direct and indirect 
benefits. By definition, all market benefits are use benefits, as they involve either direct or 
indirect uses of goods or services. 

 Market direct use benefits: Market direct use benefits are benefits related to goods directly 
used, and bought and sold in markets; for example, fish caught for sale to consumers.  

 Market indirect use benefits: Indirect use benefits are those that contribute indirectly to an 
increase in welfare for users of the resource. Market indirect use benefits are benefits that 
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occur through indirect or secondary effects on marketed goods. For example, an increase in 
the number of forage fish may increase the population of commercially valuable species, 
which are marketed to consumers. Thus, reducing I&E mortality of forage species can 
indirectly result in welfare gains for commercial fishers and consumers who purchase fish.   

 Nonmarket benefits: Nonmarket benefits consist of goods and services that are not traded in the 
marketplace, but are nonetheless positively affected by reduced I&E mortality. Higher catch rates 
for recreational fishing are an obvious nonmarket benefit. Anglers place a high value on catching 
fish during their fishing trips, so higher catch rates from reduced I&E mortality will translate 
directly to greater utility from participation in recreational fishing. Because the monetary value of 
these improvements cannot be established by observing market transactions, nonmarket valuation 
techniques must be employed to estimate such benefits. Nonmarket benefits may be further 
categorized in terms of direct and indirect use benefits, and nonuse benefits.  

 Nonmarket direct use benefits: Nonmarket direct use benefits consist of goods and services 
that have direct uses, but are not traded in the marketplace. Higher catch rates for recreational 
fishing provide a typical nonmarket direct use benefit.  

 Nonmarket indirect use benefits: Nonmarket indirect use benefits contribute indirectly to 
an increase in welfare for nonmarketed uses of a resource. For example, the options’ positive 
impacts on local fisheries may generate an improvement in the population levels and diversity 
of fish-eating bird species. In turn, avid bird watchers might obtain greater enjoyment from 
their outings, as they are more likely to see a wider mix or greater numbers of birds. The 
increased welfare of the bird watchers is thus an indirect consequence of the regulatory 
options’ initial impact on fish.. 

 Nonuse benefits: Nonuse, or passive, benefits occur when individuals value improved 
environmental quality without any past, present, or anticipated future use of the resource in 
question. Individuals may gain utility simply from knowing that a particular good exists 
(existence value), or from knowing that a good is available for others to use now and in the 
future (bequest value). Nonuse benefits of reduced I&E mortality may include increased 
biodiversity, improved conditions for the recovery of T&E species that have no direct or 
indirect uses, and welfare gains to nonusers when reduced I&E mortality to forage species 
improve overall ecosystem function. 

Table 4-1 displays the benefit categories expected to be affected by the regulatory options considered for 
the Section 316(b) regulation for in-scope facilities. The table also reveals the various data needs, data 
sources, and estimation approaches associated with each category. Many ecosystem services with 
potential nonuse values could not be quantified or monetized due to a lack of sufficient data. A complete 
list of the ecosystem services potentially affect by reduction in I&E mortality is presented in Chapter 2 
(Table 2-4). 
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Table 4-1: Summary of Benefit Categories’ Data Needs, Potential Data Sources, Approaches, and 
Analyses Completed 

Benefit Category Basic Data Needs 
Potential Data Sources/ 
Approaches/Analyses Completed 

Market Goods, Direct Use 

 Increased commercial landings 

 Estimated change in landings of specific 
species 

 

 Estimated change in total economic 
impact 

 

 Based on facility-specific I&E 
mortality data and ecological 
modeling. 

 

 Changes in commercial fishery 
landings are estimated using a 
market-based approach. 

 

 Indirect economic impacts are not 
estimated due to data constraints. 

Market Goods, Indirect Use 
Increase in: 
 Equipment sales, rental, and repair 
 Bait and tackle sales 
 Consumer market choices 
 Choices in restaurant meals 
 Property values near the water 
 Ecotourism (charter trips, festivals, other 

organized activities with fees such as 
riverwalks) 

 Estimated change in landings of specific 
species 

 

 Relationship between increased 
fish/shellfish landings and secondary 
markets 

 

 Local activities and participation fees 
 

Estimated numbers of participating 
individuals 

 Indirect market impacts are not 
estimated, due to data constraints 
such as lack of information on the 
relationship between increased 
fish/shellfish yield and secondary 
impacts. 

Nonmarket Goods, Direct Use 
 Improved value of a recreational fishing 

trip due to increased catch of 
targeted/preferred species and incidental 
catch 

 Improved value of subsistence fishing 
 

 Estimated number of affected anglers 
 
 Value of an improvement in catch rate 

 Changes in the value of a 
recreational fishing trip are estimated 
based on benefit transfer (including 
recreational use values of selected 
T&E species). 

 Changes in the value of subsistence 
fishing is not estimated. 

 Increase in recreational fishing 
participation 

 Estimated number of affected anglers or 
estimate of potential anglers 

 

 Value of a fishing day 

 Not estimated due to data 
constraints.  

Nonmarket Goods, Indirect Use 
Increase in value of boating, scuba-diving, 
and near-water recreational experience 
from: 
 Enjoying observing fish while boating, 

scuba-diving, hiking, or picnicking 
 Watching aquatic birds fish or catch 

aquatic invertebrates 

 Estimated number of affected near-
water recreationists, divers, and boaters

 

 Value of boating, scuba-diving, and 
near-water recreation experience 

 Not estimated due to data 
constraints such as number of 
affected recreational users. 

 Increase in boating, scuba-diving, and 
near-water recreation participation 

 Estimated number of affected boating, 
scuba-diving, and near-water 
recreationists 

 Value of a recreation day 

 Not estimated. Changes in 
recreational participation are 
expected to be negligible at the 
regional level because fishery yield 
impacts are generally small.

Nonuse Goods 

Increase in nonuse values such as: 
 Existence (stewardship) 
 Altruism (interpersonal concerns) 
 Bequest (interpersonal and 

intergenerational equity) motives 
 Appreciation of the importance of 

ecological services apart from human 
uses or motives (Table 2-4) 

 I&E mortality estimates 
 Primary valuation research using stated 

preference approach  
 Applicable studies upon which to 

conduct benefit transfer 
 Location of CWISs and T&E species 

ranges 

 Estimate nonuse values for an 
increase in relative fish abundance 
within two benefits regions using 
benefits transfer. Not estimated for 
other regions due to a lack of 
applicable studies. 

 

 Used geographic information 
system (GIS) data to identify T&E 
species potentially impacted by 
CWISs based on the overlap of 
CWIS locations and T&E species 
ranges. 
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4.2 Market and Nonmarket Direct and Indirect Use Benefits from Reduced 
I&E Mortality 

Direct use benefits are the simplest to envision. The welfare of commercial, recreational, and subsistence 
fishers is improved when fish stocks increase and their catch rates rise or effort decreases. Higher catch 
rates increase the revenue and growth of commercial fisheries, the enjoyment of recreational fishing trips, 
and the availability of food for subsistence fishers—all of which are quantifiable benefits arising directly 
from changes in I&E mortality. Methodologies for estimating use values for recreational and commercial 
species are well developed, and some of the species affected by I&E mortality have been extensively 
studied. As a result, estimation of associated use values is often considered to be straightforward. 

Indirect use benefits refer to welfare improvements for those individuals whose activities are enhanced as 
an indirect consequence of fishery or habitat improvements generated by the regulatory options for in-
scope facilities. For example,an improvement in the population of a forage fish species may not be of any 
direct consequence to recreational or commercial fishers. However, the increased presence of forage fish 
will have an indirect effect on commercial and recreational fishing values if it increases food supplies for 
commercial and recreational predatory species. Thus, improvements in forage species populations can 
result in a greater number (and/or greater individual size) of those fish that are targeted directly by 
recreational or commercial fishers. In such an instance, the incremental increase in recreational and 
commercial fishing benefits would be an indirect consequence of the regulatory options’ effect on forage 
fish populations. 

The following sections discuss the benefits estimates presented in each chapter of this report, and 
techniques for estimating benefits of reduced I&E mortality for each category of benefits.9 

4.2.1 Commercial Fisheries 

Commercial fishing benefits include both direct and indirect market use values. The social benefits 
derived from increased landings by commercial fishers can be valued by examining the markets through 
which the landed fish are sold. The first step of the analysis involves a fishery-based assessment of I&E 
mortality-related changes in commercial landings (pounds of commercial species as sold dockside by 
commercial harvesters). The changes in landings are then valued according to market data from relevant 
fish markets (dollars per pound) to derive an estimate of the change in gross revenue to commercial 
fishers. The final steps entail converting the I&E mortality-related changes in gross revenues into 
estimates of social benefits. These social benefits consist of the sum of the producers’ and consumers’ 
surpluses that are derived as the changes in commercial landings work their way through the multi-market 
commercial fishery sector. 

Indirect use values in markets occur through increases in commercial species caused by increased 
numbers of forage fish. An improvement in the population of a forage fish species may not be of any 
direct consequence to commercial fishers. However, the increased presence of forage fish will have an 
indirect effect on commercial fishing values if it increases food supplies for commercial predatory 
species. Thus, improvements in forage species populations can result in a greater number (and/or greater 
individual size) of those fish that are targeted directly by commercial fishers. In such an instance, the 

                                                      
9  Many of the fish species affected by I&E mortality at CWIS sites are harvested both recreationally and commercially. To 

avoid double-counting the economic impacts of I&E mortality of these species, EPA determined, based on historic NMFS 
landings data, the proportions of total species landings attributable to recreational and commercial fishing, and applied these 
proportions to the total number of affected fish. 
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incremental increase in commercial fishing benefits would be an indirect consequence of the regulatory 
options’ effect on forage fish populations. See Chapter 3 for a discussion on the indirect influence of 
forage fish on abundance of commercial and recreational species. 

Chapter 6 of this report provides more detail on EPA’s analysis of commercial fishing benefits from 
reducing I&E mortality at the in-scope facilities’ cooling water intakes.  

4.2.2 Recreational Fisheries 

Recreational fishing benefits include both direct and indirect nonmarket use values. The benefits of 
recreational use cannot be tracked in the market, since much of the recreational activity associated with 
these fisheries occurs as nonmarket events. However, a variety of nonmarket valuation methods exist for 
estimating use value, including both “revealed” and “stated” preference methods (Freeman III 2003). 
These methods use other observable behavior to infer users’ value for environmental goods and services. 
Examples of revealed preference methods include travel cost, hedonic pricing, and random utility models. 
Compared to nonuse values, nonmarket use values are often considered relatively easy to estimate, due to 
their relationship to observable behavior, the variety of revealed preference methods available, and public 
familiarity with the recreational services that surface waterbodies provide. 

To evaluate the recreational benefits of the regulatory options for in-scope facilities, EPA developed a 
benefit transfer approach based on a meta-analysis of recreational fishing valuation studies. The analysis 
was designed to measure the various factors that determine willingness to pay (WTP) for catching an 
additional fish per trip. The estimated meta-model allows calculation of the marginal value per fish for 
different species, based on resource and policy context characteristics.  

Indirect use values for forage species occur through increases in recreational species caused by increased 
numbers of forage fish. An improvement in the population of a forage fish species may not be of any 
direct consequence to recreational anglers. However, the increased presence of forage fish will have an 
indirect effect on recreational fishing values if it increases food supplies for recreational predatory 
species. Thus, improvements in forage species populations can result in a greater number (and/or greater 
individual size) of those fish that are targeted directly by recreational anglers. In such an instance, the 
incremental increase in recreational fishing benefits would be an indirect consequence of the regulatory 
options’ effect on forage fish populations. See Chapter 3 for a discussion on the indirect influence of 
forage fish on abundance of commercial and recreational species. 

Chapter 7 of this report provides detail on the application of the meta-regression model to estimating 
recreational fishing benefits from the alternative regulatory options.  

4.2.3 Subsistence Fishers 

Subsistence fisheries benefits include both direct and indirect nonmarket use values. Subsistence use of 
fishery resources can be an important issue in areas where socioeconomic conditions (e.g., the number of 
low-income households) or the mix of ethnic backgrounds make such fishing economically or culturally 
important to a component of the community. In cases of Native American use of affected fisheries, the 
value of an improvement can sometimes be inferred from settlements in legal cases (e.g., compensation 
agreements between affected tribes and various government or other institutions in cases of resource 
acquisitions or resource use restrictions). For more-general populations, the value of improved 
subsistence fisheries may be estimated from the costs saved in acquiring alternative food sources 
(assuming the meals are replaced rather than foregone). This method may underestimate the value of a 
subsistence-fishery meal to the extent that the store-bought foods may be less preferred by some 
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individuals than consuming a fresh-caught fish. Subsistence-fishery benefits are not included in EPA’s 
benefits regional analyses. Impacts on subsistence fishers may constitute an important environmental 
justice consideration, leading to underestimation of the total benefits of the regulatory options. EPA’s 
analysis of the regulation’s impacts on low-income populations and subsistence fishers is presented in 
Chapter 9 of the Economic Analysis of the Proposed 316(b) Regulation. 

4.2.4 Benefits from Improved Protection to T&E Species 

T&E and other special status species can be adversely affected in several ways by CWISs. T&E species 
can suffer direct harm from I&E mortality; they can suffer indirect impacts if I&E mortality at CWISs 
adversely affects another species upon which the T&E species relies within the aquatic ecosystem (e.g., as 
a food source); or they can suffer impacts if the CWIS disrupts their critical habitat (e.g., via thermal 
discharges). The loss of individuals of listed species from CWISs is particularly important because, by 
definition, these species are already rare and at risk of irreversible decline because of other stressors.  

Benefits from improved protection of T&E species can include both direct and indirect nonmarket use 
values, as well as nonuse values. EPA identified nine special status fish species, six in California and 
three in the Inland region, for which I&E mortality data were available. Due to their special status as well 
as the fact that most of these species have either very limited or no direct uses, the major portion of the 
values for T&E species are nonuse values. However, some of these species have potentially significant 
recreational and commercial use values (e.g., sturgeon and paddlefish). EPA applied benefit transfer to 
estimate recreational use values for a subset of T&E species for which limited catch and release fisheries 
exist. EPA did not estimate potential commercial use values of these species due to the lack of market 
data.  

Chapter 5 of this report provides more detail on EPA’s analysis of T&E species benefits from reducing 
I&E mortality at in-scope facilities’ cooling water intakes. 

4.3 Nonuse Benefits from Reduced I&E Mortality 

Comprehensive estimates of total resource value include both use and nonuse values, such that the 
resulting total value estimates may be compared to total social cost. Recent economic literature provides 
substantial support for the hypothesis that nonuse values, such as option and existence values, are greater 
than zero. In fact, small per capita nonuse values held by a substantial fraction of the population can be 
very large in the aggregate. “Nonuse values, like use values, have their basis in the theory of individual 
preferences and the measurement of welfare changes. According to theory, use values and nonuse values 
are additive” (Freeman III 1993).10 Consequently, both EPA’s own Guidelines for Preparing Economic 
Analysis and OMB’s Circular A-4, governing Regulatory Analysis, support the need to assess nonuse 
values (USEPA 2000a; USOMB 2003).  Excluding nonuse values from consideration is likely to 
substantially understate total social values.   

Reducing I&E mortality of fish and shellfish may result in both use and nonuse benefits. Of the 
organisms that are anticipated to be protected by the regulatory options for the Section 316(b) regulation 
for in-scope facilities, only a tiny fraction will eventually be harvested by commercial and recreational 
fishers and therefore can be valued with direct use valuation techniques. Unharvested fish, which were 
not assigned direct use value in this analysis, constitute the majority—97 percent—of the total loss, as 
                                                      
10  This additive property holds under traditional conditions related to resource levels and prices for substitute goods in the 

household production model (Freeman III 1993). 
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summarized in Table 4-2 which reports total I&E mortality losses and reduction in I&E mortality losses 
by four loss categories: all species, forage species, total commercial and recreational species, harvested 
commercial and recreational species. Although unlanded forage fish contribute to the yield of harvested 
fish and therefore have an indirect use value that is captured by the direct use value of the commercial 
species, this indirect use value represents only a portion of the total value of unlanded fish. Society also 
values both landed and unlanded fish for reasons unrelated to their use value—for example, individual 
welfare may be affected simply by knowing these fish exist. Additionally, nonuse values are likely to be 
substantial because fish and other species found within aquatic habitats impacted directly and indirectly 
by CWISs provide other valuable ecosystem goods and services. These include nutrient cycling and 
ecosystem stability. Therefore, a comprehensive estimate of the welfare gain from reducing I&E mortality 
must include an estimate of nonuse benefits.  

In contrast to direct and indirect use values, nonuse values are often considered more difficult to estimate. 
Stated preference methods, or benefit transfer based on stated preference studies, are the generally 
accepted techniques for estimating these values (USEPA 2000a; USOMB 2003). Stated preference 
methods rely on carefully designed surveys, which either (1) ask people about their WTP for particular 
ecological improvements, such as increased protection of aquatic species or habitats with particular 
attributes, or (2) ask people to choose between competing hypothetical “packages” of ecological 
improvements and household cost where their choice implies a WTP value. In either case, values are 
estimated by statistical analysis of survey responses. 

 

Table 4-2: Summary of Baseline National I&E Mortality Losses and Reductions in 
I&E Mortality Losses, by Regulatory Option 

IM&EM Loss Metric (per year) Option 1 Option 2 Option 3
All Species (million A1E) 2188.92 614.97 1981.55 2013.55
Forage Species (million A1E) 1654.78 525.66 1512.64 1535.44
Commercial & Recreational Species (million A1E) 534.15 89.31 468.91 478.11
Commercial & Recreational Harvest (million fish) 59.41 15.66 53.28 54.05
A1E Losses with Direct Use Value (%) 2.71 2.55 2.69 2.68

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I Everywhere and E for 
Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.

Reductions in LossesBaseline 
Losses

 
 

Nonuse values may be more difficult to assess than use values for several reasons. First, nonuse values 
are not associated with easily observable behavior. Second, nonuse values may be held by both users and 
nonusers of a resource. Because nonusers may be less familiar with particular services provided by a 
resource, their values may be different from the nonuse values for users of the same resource. Third, the 
development of a defensible stated preference survey is often a time- and resource-intensive process. 
Fourth, even carefully designed surveys may be subject to certain biases associated with the hypothetical 
nature of survey responses (Mitchell and Carson 1989). Finally, efforts to disaggregate total WTP into its 
use and nonuse components have proved troublesome (Carson et al. 1999). 

Although EPA is not always able to estimate changes in affected resources’ nonuse service values as part 
of regulatory development, an extensive body of environmental economics literature reveals that the 
public holds significant value for service flows from natural resources well beyond those associated with 
direct uses (Boyd et al. 2001; Fischman 2001; Heal et al. 2001; Herman et al. 2001; Ruhl and Gregg 
2001; Salzman et al. 2001; Wainger et al. 2001). Studies have documented public values for the nonuse 
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services provided by a variety of natural resources potentially affected by environmental impacts, 
including fish and wildlife (Loomis et al. 2000; Stevens et al. 1991); wetlands (Woodward and Wui 
2001); wilderness (Walsh et al. 1984); critical habitat for T&E species (Hagen et al. 1992; Loomis and 
Ekstrand 1997; Whitehead and Blomquist 1991); shoreline quality (Grigalunas et al. 1988); and beaches, 
shorebirds, and marine mammals (Rowe et al. 1992), among others. However, given EPA’s regulatory 
schedule, developing and implementing stated preference surveys to elicit total value (i.e., nonuse and 
use) of environmental quality changes resulting from environmental regulations is often not feasible.11 

Existing stated preference studies suggest that nonuse benefits of aquatic habitat improvements may be 
significant. For example, results from a study of public values of migratory fish restoration projects in 
Rhode Island showed that nonuse motives such as existence and bequest values were rated as “important” 
or “very important” by 62 and 76 percent of survey respondents, respectively. Use motives such as 
commercial and recreational fishing, on the other hand, were rated as “important” or “very important” by 
only 38 and 43 percent of the survey respondents, respectively (Johnston et al. 2009, unpublished data). 
Additional detail regarding Johnston et al. (2009) is provided in Chapter 8, Section 8.3.1. 

Many ecosystems impacted by CWISs provide goods and services that contribute to well-being (see 
Chapter 2), but may be generally unrecognized because of their indirect nature. As such, valuations based 
on stated preferences are unlikely to capture the full complement of ecologically-based services with 
economic value (Costanza and Folke 1997). Despite these limitations, benefit transfers based on stated 
preference studies are the generally accepted techniques for estimating nonuse values. EPA was able to 
identify a single study that could be used to estimates total values (nonuse and use values) for reductions 
in I&E mortality in some regions. Chapter 8 of this report provides more detail on EPA’s quantitative 
analysis of nonuse benefits from reducing I&E mortality at the in-scope facilities’ cooling water intakes. 

                                                      
11  EPA designed a stated preference survey to separately estimate total value (including use and nonuse value) of potential 

aquatic resource improvements that might occur because of the proposed 316(b) regulation. However EPA did not have 
sufficient time to fully develop and deploy this survey and derive reliable quantitative estimates of the monetary value of 
reducing those impacts at the national level. Benefit transfer of values from existing stated preference studies was used by 
EPA in the absence of an original study. For more details on development of the survey, see the Information Collection 
Request entitled “Development of Willingness to Pay Survey Instrument for Section 316(b) Cooling Water Intake 
Structures”. 
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5 Impacts and Benefits on Threatened and Endangered Species 

5.1 Introduction 

Threatened and endangered (T&E) species are species vulnerable to future extinction or at risk of 
extinction in the near future, respectively. These designations may be made because of low or rapidly 
declining population levels, loss of essential habitat, or life history stages that are particularly vulnerable 
to environmental alteration. In addition to T&E labels, the designation “species of concern” includes 
species that warrant special protection due to inherent vulnerabilities to habitat modification, disturbance, 
or other human impacts. Together, these stressors may result in the species becoming threatened or 
endangered in the foreseeable future.12  

The withdrawal of cooling water from streams, rivers, estuaries and coastal marine waters leads to the 
impingement and entrainment (I&E) of a large number of aquatic organisms. For species vulnerable to 
future extinction, impingement and entrainment mortality (I&E mortality) from cooling water intake 
structures (CWISs) may represent a substantial portion of annual reproduction. Consequently, I&E 
mortality may either lengthen recovery time, or hasten the demise of these species. For this reason, the 
population-level and social values of T&E losses are likely to be disproportionately higher than the 
absolute number of losses that occur. 

Adverse effects of CWISs on T&E species may occur in several ways: 

 Populations of T&E species may suffer direct harm as a consequence of I&E mortality. This 
direct loss of individuals may be particularly important because T&E species have severely 
depressed population levels that are approaching local, national, or global extinction.  

 T&E species may suffer indirect harm if the CWIS substantially alters the food web in which 
these species interact. This might occur as a result of altered populations of predator or prey 
species, the removal of foundation species, or (for species with parasitic life history stages) 
the loss of a host species.  

 CWISs may alter habitat that is critical to the long-term survival of T&E species. This might 
occur as a consequence of changes in the thermal characteristics of local waterbodies, altered 
flow regimes, turbidity, or changes in substrate characteristics as a consequence of any of 
these changes (Chapter 2). 

By definition, T&E species are characterized by low population levels. As such, it is unlikely that these 
species will be recorded in I&E mortality monitoring studies due to the logistical limitations of sampling 
and identification effort, time of day, season, and year. For T&E species to be recorded in monitoring 
studies, 1) an individual of a T&E species must be captured by a CWIS during the (often short) sampling 
window, and 2) the organism must be identifiable. Thus, despite the fact that the population impacts of 
I&E mortality on T&E species may be high, they are difficult to ascertain and quantify within a 
framework designed for common, more-abundant species. Thus, EPA identifies spatial overlap between 
CWISs and T&E species to estimate the potential for adverse I&E mortality impacts on T&E species. 

                                                      
12  To simplify the discussion, in this chapter EPA uses the terms “T&E species” and “special status species” interchangeably 

to mean all species that are specifically listed as threatened or endangered, plus other species with special status designation 
at the state or federal level.  
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From an economic perspective, T&E species affected by CWISs may have both use and nonuse values. 
However, despite the existence of T&E species with potentially high use values (e.g., Pacific Salmonids), 
the majority of T&E species affected by I&E mortality are obscure, relatively unknown, and may not 
have any direct uses (e.g., delta smelt). Given the protected nature of T&E species and the fact that the 
majority of T&E species do not have direct uses, the majority of the economic value for T&E species 
must come from nonuse values. Strictly speaking, species-specific estimates of nonuse values held for the 
protection of T&E species can be derived only by primary research using stated preference techniques. 
However, the cost, administrative burden, and time required to develop primary research estimates to 
value effects of the 316(b) regulation on T&E species are beyond the schedule and resources available to 
EPA for this rulemaking. As an alternative, EPA considered a benefit transfer approach that relies on 
information from existing studies (USEPA 2000a).  

EPA was able to use a benefit transfer approach to estimate changes in recreational use values for a subset 
of T&E species that are highly valued by recreational anglers (i.e., paddlefish13 and sturgeon). 
Commercial and nonuse values are not monetized for any of the affected species. Therefore, benefit 
estimates presented in this chapter are incomplete and likely to be highly conservative (i.e., low).  

In this chapter, EPA explores the extent to which CWISs may affect species protected by the Endangered 
Species Act on national and regional scales (Section 5.2), documents the value society places on the 
protection of T&E species (Section 5.3), and applies economic valuation studies of T&E species to case 
studies of sea turtles and finfish in the Inland region (Section 5.4).   

5.2 T&E Species Affected by CWISs 

To assess the potential impacts of CWISs on T&E species, EPA constructed a database that identifies 
spatial overlap between CWISs and vulnerable life history stages of all aquatic T&E species for which 
data are available. The database allowed EPA to estimate the potential for adverse I&E mortality impacts 
on T&E species.  

5.2.1 T&E Species Identification and Data Collection 

First, all species currently listed or in consideration for listing under the Endangered Species Act (as of 
January 16, 2010) with aquatic life history stages were identified using the US Fish and Wildlife Service 
Environmental Conservation Online System (USFWS 2010b). This primary list of all T&E species was 
filtered to include only species with life history stages vulnerable to CWIS mortality according to life 
history data. Examples of vulnerable stages include planktonic egg stages, free-swimming larval stages, 
and adult life history stages that occur near shore. Life history data used to exclude species from further 
consideration was obtained from a wide variety of sources (AFSC 2010; ASMFC 2010; Froese and Pauly 
2009; NatureServe 2009; NEFSC 2010; PIFSC 2010a; PIFSC 2010b; SEFSC 2010; SWFSC 2010; 
USFWS 2010b). After filtering by life history data, the list of T&E species potentially affected by I&E 
mortality contained 247 species.  

Whenever possible, the geographical distribution of T&E species susceptible to I&E mortality was 
obtained in geographic information system (GIS) format as polygon (shape) files, line files (for 

                                                      
13 Note: the American Paddlefish is listed on T&E species lists for many states, but is not currently protected nationally under the 
US Endangered Species Act. A review of the species’ status in 1992 revealed that although the species did not then meet the 
requirements to be listed as threatened at the federal level, the US Fish and Wildlife Service expressed its concern for the future 
of the species.  
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inhabitants of small creeks and rivers) and as a subset of geodatabase files. Data sources include the US 
Fish and Wildlife Service (USFWS 2010a), NOAA’s Office of Response and Restoration (NOAA 
2010a), NatureServe (NatureServe 2009), and NOAA NMFS (NMFS 2010b; NMFS 2010c; NMFS 
2010d). For several freshwater species, geographic ranges were available only as 6-digit hydrologic unit 
codes (HUC) (NatureServe 2009; USFWS 2010a). For these species, GIS data layers were generated 
using a GIS HUC database obtained from the USGS (Steeves and Nebert 1994). For several species, no 
GIS data could be acquired. For these species, species distribution descriptions were compared with 
mapped CWISs, and inspected for geographic overlap. In all such cases (e.g., the “inarticulated 
brachiopod,” Lingula reevii, endemic to Kaneohe Bay, HI) there were no in-scope CWISs within 10 
kilometers, and further inspection was not warranted. 

5.2.2 Number of T&E Species Affected per Facility 

To investigate the potential for individual facilities to affect a wide variety of T&E species, EPA 
calculated the number of T&E species affected on a per-facility basis. This calculation allowed EPA to 
assess the magnitude of differences between regions of CWIS effects on T&E species.  

Nationally, 88 of the 247 aquatic T&E species assessed or 36 percent had vulnerable life history stages 
that either overlapped with CWISs, or had records of entrainment or impingement mortality (Appendix 
E). These species overlapped with 446 of 871 in-scope facilities (51 percent). Among facilities, the 
variability in the number of T&E species potentially affected ranges between 0 and 26 species (Table 
5-1), with more than 90 percent of facilities affecting fewer than 5 T&E species, and more than 99 percent 
of facilities affecting fewer than 12 species (Figure 5-1).  

Excluding facilities whose CWISs do not overlap with at least one T&E species, the average number of 
species per facility is 3.89 (minimum 0, maximum 26) (Table 5-1). Sea turtles and freshwater mussels had 
the highest overlap rate on a per-facility basis, averaging 4.83 and 3.53 species per facility, respectively. 
Anadromous, freshwater, and marine fish had lower overlap rates with facility CWISs, averaging slightly 
higher than 1 species per interacting facility (Table 5-1). 

Driven by the high number of I&E mortality freshwater mussels overlapping with facility CWISs, the 
majority of all species by facility interactions occur in the inland region. However, the shape of 
cumulative distribution plots is similar among regions after accounting for sample size, suggesting that 
the overall probability of a facility affecting one or more T&E is not a function of geographic region 
(Figure 5-2). 
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Table 5-1: Number of T&E Species with Geographical Distributions Overlapping In-
scope CWISs, on a Per-facility Basis 

Subset of Affected Species1 # Species Avg Max Avg Max
All T&E Species 88 1.99 26 3.89 26
T&E Freshwater Mussels 43 1.14 22 3.53 22
T&E Sea Turtles 6 4.83 5 4.83 5
T&E Anadromous Fish 13 0.13 3 1.08 3
Other T&E Freshwater Fish 21 0.09 4 1.33 4
Other T&E Marine Fish 3 0.13 2 1.42 2
1 T&E species included species of concern and species under review for listing by the US Fish and Wildlife Service 
(freshwater) or NOAA National Marine Fisheries Service (marine). Only species overlapping with a minimum of one CWIS 
are included.  
2 Interacting Facilities = all facilities with CWIS inside the range of at least one T&E species
3 Avg = average, Max = maximum

All Facilities Interacting Facilities2

T&E Species per Facility3

 
 

 

  

Figure 5-1: Empirical cumulative distribution function plot of the number of T&E species 
potentially affected on a per-facility basis by in-scope facilities nationwide. 
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Figure 5-2: Cumulative distribution plot of the number of T&E species potentially affected on a 
per-facility basis by in-scope facilities nationwide. Sample sizes (i.e., number of in-scope facilities) 
are noted in parentheses. The horizontal axis is equivalent in all plots, with the exception of the 
Inland region (noted with an asterisk *). 

5.2.3 Number of Facilities Affecting Individual T&E Species  

To investigate the cumulative potential for CWISs to affect individual T&E species, EPA calculated the 
number of facilities affecting each T&E species. There are 1,734 examples of species by facility 
interactions across 88 T&E species nationally, resulting in an average of 19.7 facilities per species (Table 
5-2). Consequently, many T&E species are likely to be affected by a large number of facilities. Thus, 
even if individual facilities have low I&E mortality of T&E species, the cumulative effect of in-scope 
316(b) facilities on these populations may be substantial. The variation among species was large and 
ranged between 1 and 135 facilities per species (Table 5-2). Overall, 19 percent of species are affected by 
1 facility, 50 percent of species affected by fewer than 6 facilities, 80 percent of species affected by fewer 
than 24 facilities, and 90 percent affected by fewer than 44 facilities (Figure 5-3). 
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Table 5-2: Number of Facilities with CWISs Within the Geographical 
Distribution of T&E Species, on a Per-species Basis 

Subset of Affected Species1,2 Species Interactions Avg Max
All T&E Species 88 1734 19.70 135
T&E Sea Turtles 6 652 108.67 135
T&E Freshwater Mussels 43 836 19.44 85
T&E Anadromous Fish 13 115 8.85 64
Other T&E Freshwater Fish 21 64 3.05 7
Other T&E Marine Fish 3 17 5.67 11
1 T&E species included species of concern and species under review for listing by the US Fish and Wildlife 
Service (freshwater) or NOAA National Marine Fisheries Service (marine). Only species overlapping with a 
minimum of one CWIS are included. 
2 Two species of coral are included in the 'All Species' category, and not in any subcategory
3 Avg = average, SD = standard deviation, Med = median, Max = maximum

Facilities per T&E Species3

 
 

When species were analyzed within life history trait, sea turtles had the highest average number of 
overlapping facilities (108.7) (Table 5-2), a value skewed by these species’ extensive ranges (i.e., entire 
Atlantic, Gulf of Mexico, and/or Pacific coast), and the potential for I&E mortality impacts at all life 
stages. The six sea turtle species examined were the six species with the highest number of overlapping 
CWISs. Following sea turtles, freshwater mussels had the highest average number of overlapping 
facilities (19.4 facilities per species). Excepting turtles, freshwater mussels accounted for 9 of the top 10 
species sorted by the count of CWISs affecting them (Figure 5-4). Following freshwater mussels, 
anadromous fish species were most likely to be affected, with an average of 8.9 facilities per species 
(Table 5-2). This average, however, is highly skewed by a single species of fish (the pallid sturgeon, 

Figure 5-3: Empirical cumulative distribution function plot of the number of facilities that 
overlap geographically with vulnerable life history stages of T&E species. Species represented 
on the plot are those that overlap with a minimum of one in-scope facility. Sample size is 88. 
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Scaphirhynchus albus) which accounted for 54 percent of all overlap between facilities and anadromous 
fish species (Figure 5-4). Excepting the pallid sturgeon, anadromous fish had a similar level of potential 
exposure to I&E mortality as non-diadromous fish: freshwater and marine fish species averaged 
approximately 3.5 facilities with potential I&E mortality per species (Table 5-2, Figure 5-4). In addition 
to finfish and shellfish, elkhorn and staghorn corals (Acropora palmata and A. cervicornis) also have the 
potential for I&E mortality impacts: both species have the potential to be affected by 25 facilities. 

5.2.4 Summary of Overlap Between Cooling Water Intake Structures and T&E Species 

Nationally, 36 percent of T&E species assessed have vulnerable life history stages that overlap with a 
minimum of one CWIS (Table 5-1), suggesting a high probability of T&E populations’ being affected by 
I&E mortality. The potential for these impacts is widespread: T&E species overlap CWISs in all 
geographical regions of the country (Figure 5-2), in all waterbody types, and across multiple life histories 
(Figure 5-4). Overall, 51 percent of in-scope facilities overlap with at least one T&E species (Table 5-1), 
while 36 percent of aquatic endangered species overlap with at least one CWIS. Finally, our analysis 
includes only federally listed T&E species. Thus, the number of T&E species (including those species 
defined as threatened or endangered under state law) affected by I&E mortality is understated. 

Figure 5-4: Cumulative distribution plots of the number of facilities likely to affect individual 
threatened or endangered species, grouped by species life history trait. Sample sizes (species 
per life history trait) are in parentheses, and represent those species potentially affected by a 
minimum of one in-scope facility.  
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5.2.5 Species with Documented I&E Mortality 

EPA identified several T&E species with documented I&E mortality (Table 5-3). In addition to 
documented instances of T&E mortality, EPA identified I&E mortality not identified to species but whose 
genus matched T&E species overlapping with the reporting facility’s CWIS (Table 5-3). Although these 
are not confirmed I&E mortality of T&E species, they provide evidence that additional T&E species are 
likely to be directly affected by I&E mortality.  

Including only individuals identified to species, EPA identified more than 130,000 baseline losses of 
T&E species (Table 5-3). However, for several reasons, T&E species suffering I&E mortality are likely to 
be underreported. First, T&E species are found at low population densities, and the volume of water 
sampled by facility-level impingement and entrainment studies is low. Thus, it is likely that many T&E 
species suffered I&E mortality outside of sampling periods and are never recorded. Second, because a 
high proportion of all I&E mortality occur during early life history stages (i.e., egg, larvae) when species 
identification is more challenging, T&E species may not be recognized during sampling (e.g., endangered 
species of darter, including the Cherokee and duskytail darters, may be reported as “darter,” or 
“unidentified darter”).  

5.3 Societal Values for Preservation of T&E Species Affected by I&E Mortality 

This section examines governmental spending, policy decisions, and private donations on the preservation 
and restoration of T&E species. It provides evidence of societal preferences for T&E preservation and 
spending related to ensuring sustainability of T&E species.  

The U.S. Fish and Wildlife Service (FWS) annually reports expenditures for the conservation of T&E 
species. Using the report for fiscal year 2008 (USFWS 2009) EPA calculated total government (federal 
and state) expenditures for the 88 federally listed T&E species with vulnerable life history stages that 
overlap CWISs (Table 5-4). Excluding expenditures on T&E species not subject to I&E mortality, 
expenditures on T&E species potentially affected by CWISs exceeded $465 million, and accounted for 86 
percent of all governmental spending on Fish, Marine Reptiles, Crustaceans, Corals and Clams listed 
under the Endangered Species Act (ESA) during FY 2008 (USFWS 2009). 

In addition to direct governmental spending associated with the protection of T&E species that overlap 
with CWISs, the presence of these species often guides policy discussions, and may require the 
installation of abatement technologies that reduce T&E species mortality and allow these species to 
migrate. For example, the life history of the American paddlefish (Polyodon spathula) (listed on many 
state T&E species lists, but not protected under the ESA) is occasionally discussed during Federal Energy 
Regulatory Commission relicensing of dams, because of the animal’s highly migratory life history. In the 
Wisconsin River, for example, Alliant Energy has been required to install a multi-million dollar fishway 
at the Prairie du Sac dam, primarily to allow the passage of paddlefish and lake sturgeon (WPLC v. FERC 
2004).  
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Table 5-3: T&E species with documented I&E mortality. Species are separated by the taxonomic 
resolution reported for the I&E mortality loss. 

Resolution Common Name Latin Name Baseline I&E Mortality 

Species Atlantic Salmon Salmo salar Qualitative 
 Chinook Salmon Oncorhynchus tshawytscha  5,470b  
 Coho Salmon Oncorhynchus kisutch Qualitative 
 Delta Smelt Hypomesus transpacificus  62,526b  
 Green Sea Turtle Chelonia mydas Qualitative 
 Hawksbill Sea Turtle Eretmochelys imbricata Qualitative 
 Kemp's Ridley Sea Turtle Lepidochelys kempii Qualitative 
 Leatherback Sea Turtle Dermochelys coriacea Qualitative 
 

Loggerhead Sea Turtle Caretta caretta 5-50b 
 

Longfin Smelt Spirinchus thaleichthysa  24,919b  
 Olive Ridley Sea Turtle Lepidochelys olivacea Qualitative 
 Pallid Sturgeon Scaphirhynchus albus 50 
 

Sacramento Splittail Pogonichthy macrolepidotusa 45,188b 

 
Steelhead Trout Oncorhynchus mykiss 5b 

  
Topeka Shiner Notropis Topeka 15b 

Genus Alabama Sturgeon Scaphirhynchus suttkusi 8,174b 
 Atlantic Sturgeon Acipenser oxyrinchus oxyrinchus  785,667  
 

Blackside Dace Phoxinus cumberlandensis 10b 
 Blue Shiner Cyprinella caerulea  94,608,786  
 Boulder Darter Etheostoma wapiti 3,529,746  
 Cherokee Darter Etheostoma scotti  3,529,746  
 Chum Salmon Oncorhynchus keta   22  
 Duskytail Darter Etheostoma percnurum 3,529,746  
 Etowah Darter Etheostoma etowahae 3,529,746  
 Green Sturgeon Acipenser medirostris  785,667  
 Gulf Sturgeon Acipenser oxyrinchus desotoi 785,667  
 

Neosho Madtom Noturus placidus 41,021b 
 

Palezone Shiner Notropis albizonatus 19,421,686b 
 

Pygmy Madtom Noturus stanauli 41,021b 
 

Scioto Madtom Noturus trautmani 41,021b 
 Shortnose Sturgeon Acipenser brevirostrum 785,667  
 

Snail Darter Percina tanasi 259,500b 
  Unarmored Threespine Stickleback Gasterosteus aculeatus williamsoni 2,922b 
Notes: Species listed as threatened or endangered under state laws, such as the American Paddlefish (Polyodon spathula), are not 
included in this list. 
"Qualitative" indicates the species is reported by name from a minimum of one facility, but no loss estimates are provided. 
Baseline losses reported for genera reflect losses for all species within the genus. Losses are likely dominated by more-common 
congeners. 
a This species is under review for listing under the Endangered Species Act 
b This estimate is not derived using extrapolation procedures 



 

March 28, 2011  5-10 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

Considerations for T&E species have also been responsible for changes in water diversions on the San 
Joaquin-Sacramento River delta, limiting water for downstream users. Under current regulations, the 
volume of water removed from the San-Joaquin-Sacramento River at the Banks Pumping Plant is limited 
from December to June, to protect Delta Smelt (NRDC v. Kempthorne 2007). This restriction limits the 
volume of water available for consumption as drinking water and for use in large-scale irrigation projects. 
Water restrictions, due to the potential for negative effects on Delta Smelt populations, have been 
estimated to result in the loss of 21,100 farm-related jobs and $703 million in agricultural revenue in 2009 
alone (Boxall 2010; Howitt et al. 2009).14 

 

 

Although government spending and policy decisions made to protect or enhance stocks of T&E species 
are not direct indications of economic benefits, they indicate that society does place a significant value on 
protecting and restoring species of concern. 

5.4 Assessment of Benefits to T&E Species 

5.4.1 Economic Valuation Methods 

For several reasons, it is difficult to estimate the benefits of preserving T&E species by reducing I&E 
mortality. First, the contribution to ecosystem stability, ecosystem function, and life history remain 
relatively unknown for many T&E species. Second, because much of the wildlife economic literature 
focuses on commercial and recreational benefits that are not relevant for many protected species (i.e., use 
values), there is a paucity of economic data focused on the benefits of preserving T&E species. 
Consequently, nonuse values comprise the principal source of benefit estimates for most T&E species. 

To obtain an accurate estimate of the nonuse values of T&E species affected by I&E mortality, 1) 
quantitative I&E mortality impacts, and the benefits of policy options, must be estimated for T&E 
species; and 2) an economic value must be obtained for the value of reducing I&E mortality as a 
consequence of increased population sizes, extinction avoidance, and, for certain species (e.g., 
Salmonids), the potential for re-establishment of a commercial fishery.  
                                                      
14 Water diversion in the San Joaquin-Sacramento River is currently undergoing active litigation. See San Luis & Delta-Mendota 

Water Authority, et al. v. Salazar, et al., USDC Case No. 1:09-CV-407 OWW GSA, and consolidated cases. 

Table 5-4: Federal and State Expenditures for T&E 
Species Overlapping with CWIS 

Life History  
Expenditure 

(2009$, millions) 
Anadromous Fish  $ 383.2  

Corals  $ 0.3 

Freshwater Fish  $ 44.4 

Freshwater Mussels  $ 5.6 

Marine and Estuarine Fish  $ 0.2 

Sea Turtles  $ 33.9 

All Species Overlapping CWIS  $ 467.6 
All Fish, Marine Reptile, Crustacean,  
Coral, and Clam Species  $ 541.7 
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Benefit transfer involves extrapolating existing estimates of nonmarket values to geographic locations or 
species that differ from the original analytical situation. Thus, the approach transfers estimates of values 
for preserving T&E species in one region to another region, or to a similar species. Ideally, the resource 
(i.e. species), policy variable (e.g., change in species status, recovery interval, population size, etc.), and 
the benefitting population (i.e., defined human population) are identical. Such a match rarely occurs. 
Despite discrepancies in these variables, however, a benefits transfer approach can provide useful insights 
into the social benefits gained by reducing I&E mortality of T&E species.15  

5.4.2 Case Studies 

EPA attempted to estimate the benefits of regulation for all T&E species with documented and quantified 
losses at CWIS. In most cases, EPA was unable to locate or calculate key components of the analysis 
necessary to apply a benefits transfer approach. However, EPA was able to obtain sufficient data to 
estimate the economic benefits to two categories of T&E species: a subset of T&E fish species in the 
inland region, and loggerhead sea turtles. The case studies of potential economic benefits from a decrease 
in T&E mortality are discussed below.  

5.4.2.1 Inland Region 

Baseline Losses of Special Status Species and Reductions in Losses Due to Regulatory Options 

EPA estimated losses for three T&E species in the Inland region: pallid sturgeon, American paddlefish, 
and Topeka shiner. However, sufficient data were available to estimate the benefits of regulation for only 
the pallid sturgeon (Scaphirhynchus albus), and the American paddlefish (Polyodon spathula). As such, 
benefits estimates address only 80–84 percent of documented T&E A1E losses in the Inland region (Table 
5-5).  

The pallid sturgeon is listed as an endangered species under the ESA; the American paddlefish is not 
listed federally. In the early 1990s, the U.S. FWS conducted a review of the paddlefish for threatened 
status, but ultimately did not list the species (Allardyce 1991). However, the review noted that immediate 
efforts were needed to restore stocks and degraded habitats (Allardyce 1991). Although not currently 
protected federally, paddlefish are protected by 11 states. 

The American paddlefish is a large (85 inches length and more than 220 lbs) species with roe suitable for 
caviar. The species once supported a large commercial fishery in the Mississippi Valley, and currently 
supports a limited recreational fishery in some states. Likewise, the pallid sturgeon is one of the largest 
(30-60 inches) fishe found in the Missouri-Mississippi River drainage, with specimens weighing up to 85 
pounds. Because their large size makes them a desirable commercial and trophy sport fish, and because 
they have roe suitable for caviar, both pallid sturgeon and American paddlefish have potentially 
significant direct use values. All extractive uses of the pallid sturgeon, however, are prohibited under the 
ESA.  

To estimate total baseline losses due to I&E mortality, EPA used the EAM to model A1Es for each of the 
three T&E species (Chapter 3).16 The choice of facilities used to extrapolate I&E mortality from model 
facilities was based on species’ historic ranges and current distributions. In addition to baseline estimates 
of I&E mortality for pallid sturgeon, paddlefish, and Topeka shiner, EPA calculated reductions in losses 
under three regulatory options (Table 5-5). 

                                                      
15 Types of benefit transfer studies are discussed at length in U.S. EPA (2000a). 

16  Paddlefish and pallid sturgeon losses were observed at nine and two model facilities, respectively. 
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Table 5-5: Annual Baseline I&E Mortality and Reductions in Baseline I&E Mortality 
of T&E Species at In-scope Facilities in the Inland Region, by Regulatory Option 
(A1E) 

Species Value Type Baselinea Option 1 Option 2 Option 3

Pallid Sturgeon Nonuse          17,628            8,631          15,946          16,317 
Paddlefish Use and Nonuse                 88                 73                 85                 86 
Topeka Shiner Nonuse            3,669            3,069            3,546            3,581 
Total          21,384          11,773          19,577          19,984 

a The I&E mortality data used to develop regional estimates are from sampling at the Wabash and Cayuga facilities in 
1976, the only year of sampling data for these facilities.
Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1 = I Everywhere;  Option 2 = I Everywhere and E for 
Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere.  

 

Benefit Transfer Approach: Estimated WTP for Protection of Inland T&E Species  

A Nonuse Values 

EPA identified two studies that estimated both nonuse and use values for sturgeon. One study found that 
citizens of Maine are willing to pay $37.02 (2009$) as a one-time tax to create a self-sustaining 
population of shortnose sturgeon (Kotchen and Reiling 2000), a species listed as endangered under the 
ESA (NMFS 2004). A separate study found that lake sturgeon is a popular wildlife-viewing species in 
Wisconsin, and that viewers place a substantial value on protection of lake sturgeon populations. The 
average viewer’s WTP to maintain the current sturgeon population of Wisconsin’s Lake Winnebago 
system was $121.30 (2009$). Since the estimated number of sturgeon viewers in 2002 was 3,176 
individuals, total WTP for sturgeon-viewing opportunities in the Winnebago system was $0.39 million 
(2009$). Together, the results of these studies indicate that nonuse values for preservation of sturgeon are 
likely to be significant. However, EPA was unable to monetize total nonuse benefits from reduced I&E 
mortality, because reliable population estimates needed to transfer the values were unavailable.  

B Use Values 

Pallid sturgeon and paddlefish have potentially high commercial use values as sources of roe. This value 
has increased dramatically owing to the collapse of Caspian Sea sturgeon populations (Speer et al. 2000). 
Paddlefish roe have been reported to sell for more than $300 per pound, and as much as 3 lbs of roe may 
be harvested from a large female (McKean 2007). Despite these reports, EPA was unable to reliably 
quantify total commercial values for these species due to a lack of market data.  

Recreational use values for sturgeon and paddlefish caught in inland waters or paddlefish were not 
available. Based on a review of literature describing these species, EPA determined that sturgeon species 
(including white, green, and pallid sturgeons) and paddlefish share many characteristics, including roe 
suitable for caviar, and their value as game fish. Consequently, WTP values for sturgeon obtained in 
California were used to value recreational use of these species in the Inland region. A limited recreational 
fishery (mostly catch and release) exists for paddlefish in several states; although harvesting pallid 
sturgeon is illegal, the species is sometimes caught by recreational anglers.  

To estimate recreational use values for paddlefish and pallid sturgeon, EPA applied estimates from a 
random utility model (RUM) analysis conducted to evaluate recreational fishing benefits of the 2004 
Section 316(b) Phase II Final Rule. Model results indicate that California anglers were willing to pay 
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$69.88 (2009$) to catch a sturgeon (USEPA 2004b), a value transferred to anglers for pallid sturgeon and 
paddlefish in the Inland region (Table 5-6).17 

The undiscounted recreational use value from eliminating baseline I&E mortality is approximately $1,238 
thousand, while use values from reducing pallid sturgeon and paddlefish I&E mortality range from $608 
thousand to $1,146 thousand for the three regulatory options considered. Annualized benefits range from 
$498 to $719 thousand at a 3 percent discount rate, and from $454 to $561 thousand at a 7 percent 
discount rate. EPA notes that these value estimates underestimate total values of reducing I&E mortality 
to T&E species in the Inland region, because both nonuse and commercial values, likely to be substantial, 
are not incorporated.  

 

Table 5-6: Estimated Annual WTP for Eliminating or Reducing I&E Mortality of Special 
Status Fish Species at In-scope Facilities in the Inland Region, by Regulatory Option 
(2009$) 

Baseline Option 1 Option 2 Option 3
Pallid Sturgeon $1,231.8 $603.1 $1,114.3 $1,140.3
Paddlefish $6.1 $5.1 $5.9 $6.0
Total Undiscounted $1,238.0 $608.2 $1,120.2 $1,146.2

Annualized Value $1,144.3 $498.0 $719.0 $717.8

Annualized Value $1,140.0 $454.3 $560.7 $549.7

a The I&E mortality data used to develop regional estimates are from sampling at the Wabash and Cayuga facilities in 1976, 
the only year of sampling data for these facilities.
Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1 = I Everywhere;  Option 2 = I Everywhere and E for Facilities 
> 125 MGD; Option 3 = I&E Mortality Everywhere.

3% Discount Rate

7% Discount Rate

T&E Species
Annual Benefits (2009$, thousands)

 
 

5.4.2.2 Potential Nonuse Values for T&E Species in the Inland Region 

To illustrate the potential magnitude of nonuse values for T&E species affected by I&E mortality in the 
Inland region, EPA applied a WTP meta-analytical model (Richardson and Loomis 2009) to hypothetical 
scenarios. Because EPA does not currently have region-wide I&E mortality for all T&E species, nor 
population models to estimate the effect of I&E mortality on population size, estimates are presented only 
to assess the range of benefits potentially resulting from 316(b) regulatory options. The modeled 
scenarios estimate the WTP for 0.25 percent and 0.5 percent increases for all T&E fish populations in the 
Inland region. 

EPA estimated nonuse values using benefit transfer according to Richard and Loomis (2009) (details in 
Appendix F, Section F.3). Excepting all policy-relevant variables, EPA used the mean values for all 
model parameters, and converted estimates to 2009$ using the Consumer Price Index (USBLS 2010). 

For a 0.25 percent change in T&E fish population size, projected WTP per household per year is $1.02 
(2009$). With 59.6 million households18, total WTP for T&E fish in the Inland region is $60.31 million. 

                                                      
17 The Phase II analysis did not estimating WTP for catching a sturgeon in other states. Given similarity in species characteristics 

EPA used WTP for sturgeon caught in California to value sturgeon and paddlefish species in the Inland region.  

18  Household number in the Inland region is calculated for states where at least T&E species affected by I&E mortality is 
found.  
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For a 0.5 percent change in T&E fish populations, WTP per household is $1.85 per year, resulting in 
WTP values of $110.25 million in the Inland region (all values 2009$). 

5.4.2.3 Sea Turtles 

Six species of sea turtles are found in U.S. waters: green (Chelonia mydas), hawksbill (Eretmochelys 
imbricata), Kemp's Ridley (Lepidochelys kempii), leatherback (Dermochelys coriacea), loggerhead 
(Caretta caretta), and Olive Ridley (Lepidochelys olivacea) sea turtles. All have extensive ranges, migrate 
long distances during their lifetime, and are listed as either threatened or endangered (T&E) under the 
ESA. Because of these large ranges, there is substantial overlap between sea turtle habitat and CWISs for 
in-phase power generating and manufacturing facilities. Additionally, since individuals of all ages and 
sizes are susceptible to impingement and entrainment (Norem 2005), there are more than 730 potential 
species x CWIS interactions that may result in the injury or death of these T&E species (Table 5-1, details 
in Appendix Section F.1).  

Evidence for Public Values for Sea Turtles 

In addition to research sponsored by the National Science Foundation and various private philanthropic 
organizations, federal and state governmental spending on sea turtle protection under the ESA totaled 
$33.8 million in FY2008 (Table 5-4). Moreover, there are dozens of academic, nonprofit, and ecotourism 
organizations that recruit thousands of volunteers every year to participate in sea turtle conservation and 
research projects (Appendix Table F-2). Volunteers are often required to undergo substantial training at 
their own expense and commit to long hours (often during the night). For example, the nonprofit group 
Earthwatch matches volunteers with academic researchers working at field stations around the world. By 
paying to spend time working with scientists on research projects, volunteers support sea turtle research 
and conservation both financially and logistically, working to gain first-hand experience of conservation 
issues. Trips may last from days to several weeks, and often require a commitment of 10 or more hours 
work per day. For example, on one 10-day volunteer trip with a cost of $2,450 (plus airfare), volunteers 
spend time tagging, measuring, and weighing leatherback seat turtles in Trinidad, patrolling beaches from 
sundown to the early hours of the morning (Earthwatch Institute 2010).  

Baseline Losses of Special Status Species and Reductions in Losses Due to Regulatory Options 

There are several passive-use (e.g., wildlife viewing and photography) and nonuse values associated with 
U.S. sea turtle populations. Many households express passive use value by participating in ecotourism 
activities, such as visiting sea turtle nesting areas, or by participating in sea turtle conservation activities 
(Frazer 2005). Additionally, a high proportion of governmental expenditures on T&E species are for turtle 
species (Table 5-4), suggesting that the public values the preservation of sea turtle populations.  

Power plants are known to entrain and impinge all six species of sea turtles found in U.S. waters (Norem 
2005), with more than 730 occurrences of overlap between species ranges and CWISs (Table 5-1). 
Incidences of mortality have been reported at facilities in California, Texas, Florida, South Carolina, 
North Carolina, and New Jersey (National Research Council 1990; Plotkin 1995). These facilities span a 
wide range of intake flows (fewer than 30 to more than 1,400 million gallons per day average intake 
flow), suggesting that sea turtle mortality is not limited to large intakes. Although quantitative reports are 
available from a few power stations, high-quality data is available from only one source, the St. Lucie 
Nuclear Power Plant, at Hutchinson Island, FL, where annual capture rates range from 350 to 1,000 
turtles (Appendix Table F-1). Despite the fact that mortality rates due to entrainment are estimated to be < 
3 percent, approximately 85 percent of entrained organisms show evidence of injury as a result of 
entrainment (Norem 2005). As such, true mortality rates from CWISs may be higher than reported, 
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particularly for individuals who are recaptured repeatedly (37 percent of green and 13 percent of 
loggerhead sea turtles entrained between May and December 2000 were recaptured individuals) (Norem 
2005). 

Although the magnitude of I&E mortality is believed to be small relative to fishing-related mortality, the 
cumulative impact of I&E mortality is unclear. The only study presenting a quantitative estimate of 
annual I&E mortality estimated mortality rates to be between 5 and 50 individuals per year (Plotkin 
1995). Consequently, EPA does not believe sufficient data exist to estimate baseline sea turtle mortality 
due to entrainment and impingement at regional or national scales. However, due to lower population 
sizes, long life-span, and high reproductive potential of adult turtles (Crouse et al. 1987), EPA believes 
the effect of 316(b) regulation is likely to have a small effect on the long-term viability of turtle 
populations. 

Benefit Transfer Approach: Potential WTP for Protection of Sea Turtle Species 

A Per-household WTP 

EPA identified a study that used a stated preference valuation approach to estimate the total economic 
value (i.e., use and nonuse values) of a management program designed to reduce the risk of extinction for 
loggerhead sea turtles (Whitehead 1993). The mail survey asked North Carolina households whether they 
were willing to pay a bid amount for a management program that reduces the probability that loggerhead 
sea turtles will be extinct in 25 years. 

EPA used Whitehead (1993) to assess the range of benefits potentially resulting from 316(b) regulatory 
options (detailed methodology in Appendix Section F.2). Available data sources and biological models 
were reviewed to assess the potential impact of baseline losses and reductions on the probability of sea 
turtle extinction over 25 years. Although analyses of sea turtle extinction risk have been conducted (e.g., 
Conant et al. 2009), EPA was unable to identify an existing model or analysis that could be readily used 
in conjunction with available mortality data to estimate the marginal impacts of CWISs on sea turtle 
extinction risk. Estimates from the literature suggest that I&E mortality is of relatively low importance 
compared to other human-induced mortality such as shrimp trawling and other fisheries (Plotkin 1995). 
However, Crouse et al. (1987) found that mortality at juvenile and subadult life stages can have a 
substantial effect on population growth, suggesting that small changes in survivorship at these age classes 
could have a measurable impact on extinction risk. EPA believes that the marginal change in extinction 
probability of loggerhead sea turtles due to 316(b) regulatory options is unlikely to be lower than 0.01 
(i.e., a 1 percent decrease in the probability over 25 years). This assessment is based upon reports that 
I&E mortality may result in the loss of more than 100 turtles per year (Appendix Table E-1), and because 
turtle population growth rates are known to be sensitive to changes in juvenile and subadult mortality 
(Crouse et al. 1987). 

EPA used a value of 0.01 within Whitehead’s (1993) modeling framework to bound household values for 
changes in extinction risk for loggerhead sea turtles as a consequence of 316(b) regulation (details of this 
calculation are in Appendix Section F.2). Although this assessment is not based on formal quantitative 
analysis of extinction risk, it is intended to illustrate the range of potential benefits associated with 
reductions in sea turtle losses. Using the published mean values for all other model parameters, EPA 
calculated an annual household value of $0.35 (2009$). Estimates were converted to 2009 dollars using 
the consumer price index (USBLS 2010).  
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B Total WTP for all Households 

Whitehead’s (1993) study for loggerhead sea turtle management activities was based on a state-wide 
survey of North Carolina residents. However, the large geographic range of sea turtles suggests that 
households of many coastal states through their U.S. range would value activities that decrease their 
extinction risk. There is also the potential for differential values within and across states. Households 
farther from the resource may value sea turtle survival less than households near the ocean, due to lower 
likelihood of participation in passive uses of the resource. Although EPA recognizes that the application 
of the benefit transfer may overestimate household values for states with population centers far from sea 
turtle habitat, evidence from the literature suggests that households may value changes in environmental 
resource that are occurring at great distances. For example, Pate and Loomis (1997) found that 
respondents were willing to ascribe stated preference values to environmental amenity changes in other 
states. As such, by focusing on residents of coastal states only, estimated benefits may undervalue 
national willingness to pay for the preservation of loggerhead sea turtles. 

For the purposes of assessing potential benefits from improvements to a sea turtle population, EPA 
focused solely on impacts to loggerhead sea turtles (one of six T&E sea turtle species in the US). By 
focusing only on loggerhead sea turtles, EPA notes that estimated benefits are likely to be lower than 
those held by individuals for all T&E turtle species. This species of turtles was chosen because they are 
late-maturing, have an existing population model (Crouse et al. 1987), an existing valuation study 
(Whitehead 1993), and are the most commonly affected species of turtle (Appendix Table F-1). The U.S. 
range of loggerhead sea turtles includes the Gulf of Mexico, South Atlantic, Mid-Atlantic, and North 
Atlantic 316(b) regions (USFWS 2010c). Assuming affected populations include all households within 
states with 316(b) existing facilities that potentially have an impact loggerhead sea turtles, 53.35 million 
households would be willing to pay for improved protection of this species (Table 5-7). By applying the 
mean household value of $0.35 (2009$) across all four regions, the total annual WTP for a 1 percent 
increase in the survival probability of loggerhead sea turtles annualized at a 3% discount rate over 25 
years is $16.6 million. Annualized benefits for each region are presented in Table 5-7, assuming that 
benefits begin to accrue in 2012 and continue throughout the compliance period. Because EPA does not 
currently have accurate national estimates of I&E mortality for turtle species, nor are population models 
available that estimate the effect of 316(b) regulation on population size and extinction risk, estimates are 
presented only to assess the potential range of benefits, and are not included in national totals. Actual 
benefits may be higher or lower than these estimates, with Option 2 and Option 3 likely to provide 
substantially greater benefits than Option 1. 
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Table 5-7: Monetized Benefits of a 1 Percent Increase in the Probability that Loggerhead 
Sea Turtles Will Not Be Extinct in 25 Years 

3% Discount Rate 7 % Discount Rate
North Atlantic CT, MA, ME, NH, 

RI
5.40 $1.67 $1.62

Mid-Atlantic DE, MD, NJ, NY, 
PA, VA

20.97 $6.51 $6.31

South Atlantic FL, GA, NC, SC 11.85 $3.67 $3.56

Gulf of Mexicoa FL, LA, MS, TX 15.13 $4.69 $4.40

Total - 53.35 $16.55 $16.04

Annualized Benefits
(2009$, millions)

a
 Florida households are included in both the South Atlantic and Gulf of Mexico regions.  To prevent double-counting, Florida 

households were apportioned between these regions based on relative AIF.
Note: Because of uncertainty in estimates of increased survival probability, and because benefits were not calculated for options, 
these values are not included in national totals.

Number of 
Households 
(millions)Region States Included

 

 

5.4.3 Limitations and Uncertainties 

Table 5-8 summarizes the caveats, omissions, biases, and uncertainties known to affect the estimates 
developed for the benefits analysis of sea turtles (Section 5.4.2.3), and T&E finfish in the Inland (Section 
5.4.2.1) region.  

Table 5-8: Caveats, Omissions, Biases, and Uncertainties in the T&E Species Benefits Estimates 

Issue Impact on Benefits Estimate Comments 

Change in T&E populations due to 
I&E mortality is uncertain 

Uncertain 

Projected changes in number of fish affected may be 
underestimated because neither cumulative impacts of 
I&E mortality over time nor interactions with other 
stressors are considered. 

I&E mortality effects are not 
estimated for all T&E species and 
all regions 

Estimates understated 

EPA was unable to estimate I&E mortality of T&E 
species for all regions, due to lack of data. The large 
amount of overlap between T&E ranges and CWIS 
suggests that many affected species are likely to be 
missing from I&E mortality reports. 

Benefit estimates include only a 
subset of species identified as 
affected 

Estimates understated 

EPA was unable to apply benefit transfer of values for 
all affected species. Benefits estimates address 80–84 
percent of documented T&E A1E losses in the Inland 
region. 

Benefit estimates used in benefit 
cost analysis include only 
recreational use values 

Estimates understated 

EPA applied recreational use values to estimate benefits 
for the species included in the analysis. T&E species 
have primarily nonuse values, which were not 
monetized. In addition, some of the affected species 
have commercial use values, which were not estimated. 

Benefit transfer introduces 
uncertainties 

Uncertain 

EPA applied a recreational use value for sturgeon in 
California to value sturgeon and paddlefish in the Inland 
region. This value may over- or understate recreational 
values in the Inland region. 

Ecological consequences of 
reduced numbers of T&E species  

Estimates understated 
WTP values are unlikely to include damage to food-
webs and ecosystem stability as a consequence of the 
removal or restoration of T&E species. 

Effects of thermal impacts from 
CWIS on T&E populations is 
uncertain 

Uncertain 
EPA has no data with respect to the effect of thermal 
discharge on T&E species. 
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6 Commercial Fishing Benefits 

Commercial fisheries can be adversely affected by impingement and entrainment mortality (I&E 
mortality) in addition to many other stressors. Commercially landed fish are exchanged in markets with 
observable prices and quantities; however, estimating the change in economic surplus from increases in 
the number of commercially landed fish requires consideration of various conceptual and empirical 
issues. This chapter provides an overview of these issues, and indicates how EPA estimated the change in 
commercial fisheries-related economic surplus associated with the elimination of baseline I&E mortality 
and reduction in baseline I&E mortality under the regulatory options considered for the Section 316(b) 
regulation. The chapter includes a review of the concept of economic surplus, and describes economic 
theory and empirical evidence regarding the relationship between readily observable dockside prices and 
quantities and the economic welfare measures of producer and consumer surplus that are suitable for 
benefit-cost estimation. 

Section 6.1 describes the methodology used to estimate the commercial fisheries-related benefits 
including conceptual and empirical discussions of producer and consumer surplus. Section 6.2 presents 
the commercial fisheries-related benefits by region; and Section 6.3 presents the limitations and 
uncertainties associated with EPA’s analysis. 

6.1 Methodology 

The methodology employed to estimate the commercial fishing benefits associated with the regulatory 
options for the proposed Section 316(b) regulation closely follows the analysis conducted for the Section 
316(b) Phase III Final Rule (USEPA 2006b). Changes from that analysis include updated estimates of 
I&E mortality losses and reductions, and updated dockside prices. The dockside prices are now estimated 
based on the 5-year average price between 2005 and 2009, from commercial fishing landings data 
obtained from the National Oceanic and Atmospheric Administration’s National Marine Fisheries Service 
(NMFS). 

EPA measured commercial fishing benefits as changes in producer surplus. EPA considered estimating 
consumer surplus values associated with reductions in I&E mortality, but found that dockside prices 
would not change enough to produce measurable shifts in consumer surplus. The details of this analysis 
and the estimated price changes are presented in Section 6.2 and in Appendix G. 

6.1.1 Estimating Consumer and Producer Surplus 

The total loss to the economy from I&E mortality impacts on commercially harvested fish species is 
determined by the sum of changes in both producer and consumer surplus (Hoagland and Jin 2006). EPA 
modeled I&E mortality losses using the methods presented in Chapter 3 of this document. EPA assumed a 
linear relationship between stock and harvest. That is, if 10 percent of the current commercially targeted 
stock were harvested, EPA assumes that 10 percent of any increase in that species due to lower I&E 
mortality losses would be harvested. Thus, the percentage increase in harvest is assumed to be the same as 
the percentage increase in fish. The percentage of fish harvested is based on historical fishing mortality 
rates. EPA used historical NMFS landings data on commercial and recreational catch to determine the 
proportions of total species landings attributable to recreational and commercial fishing. EPA applied 
these proportions to the estimated total change in harvest to distribute benefits between commercial and 
recreational fisheries. 
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Producer surplus provides an estimate of the economic benefits to commercial fishers, but welfare 
changes can also be expected to accrue to final consumers of fish and to commercial consumers 
(including processors, wholesalers, retailers, and middlemen) if the projected decrease in catch is 
accompanied by an increase in price. These impacts can be expected to flow through the tiered 
commercial fishery market (as described in Holt and Bishop (2002)). 

This study used a fishery market model to estimate changes in welfare as a result of changes in the level 
of the commercial fishing harvest. The market model takes as inputs the expected change in harvest and 
baseline gross revenues, and provides as outputs the expected change in producer and consumer surplus. 
In general, the analysis of market impacts involves the following steps (Bishop and Holt (2003)): 

1. Assessing the net welfare changes for fish consumers due to changes in fish harvest and the 
corresponding change in fish price. 

2. Assessing net welfare changes for fish harvesters due to the change in total revenue, which could 
be positive or negative. 

3. Calculating the increase in net social benefits when the fish harvest changes. 

Figure 6-1 illustrates a simplified fishery market model as shown in Bishop and Holt (2003). For 
simplicity, the model assumes that the fishery is managed on quota basis with the baseline quota shown as 
F1 and baseline dockside or ex-vessel price as P1. It uses an inverse demand function, P(F),  because fish 
are perishable with the quantity harvested driving price in the short run.  

 
Figure 6-1: Fishery Market Model, reproduced from Bishop and Holt (2003) 

 

6.1.1.1 Step 1: Assessing Benefits to Consumers 

The downward sloping line labeled P(F), depicted in Figure 6-1, represents a general equilibrium demand 
function that accounts for markets downstream of commercial fishers. As described above, the vertical 
curve F1 is the quantity of fish supplied to the market by commercial fishers under the baseline 
conditions. Equilibrium is attained at the point where P(F) equals F1. The intersection of these two lines 
gives the price P1 at which quantity F1 is sold. In this case the total amount paid by consumers for fish is 
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equal to P1 × F1, which is equal to the area of the boxes U + V + W in the graph. The consumer surplus or 
benefit to consumers is equal to the area of the triangle T. 

The measurement of the benefits from reducing I&E mortality relies on the assumption that a decrease in 
mortality of fish, larvae, and eggs under a scenario of reduced I&E mortality would increase fish 
populations and the quantity of fish supplied to consumers (i.e., an increase from F1 to F2). If the quantity 
of fish available to the market increases from F1 to F2, this in turn would result in a lower market price for 
fish (i.e., P2). This changes the total amount paid by consumers to P2 × F2, which is equal to the area of 
the boxes V + W + Y + Z. This may be less than or greater than area U + V + W, but unequivocally 
increases the consumer surplus so that it is equal to the area of the triangle T + U + X. The difference in 
consumer surplus between the reduced I&E mortality scenario and the current baseline scenario (i.e., U 
+ X) is the measure of benefits to consumers from reducing I&E mortality.  

Estimating the change in price of fish from changes in commercial fish harvest requires the following 
input data: (1) An estimate of the baseline prices and quantities of the commercial fishing harvest, (2) the 
estimated change in the commercial fishing harvest under the reduced I&E mortality scenario, and (3) an 
understanding of the price elasticity of demand for fish. The baseline commercial fishing prices and 
harvest quantities were estimated from NMFS landings data from 2005 to 2009 for regional markets for 
relevant species. Chapter 3 describes the methods and data used in estimating baseline I&E mortality 
losses and reductions under the regulatory options.19 The price elasticity of demand for fish measures the 
percentage change in demand in response to a percentage point change in fish price. Thus, the inverse 
elasticity, or price flexibility, measures the percent change in price for a given percent change in quantity.  

EPA did not include estimates of changes in consumer surplus for commercial species. Prices must 
change in order for consumer surplus to change.  EPA estimated the expected price changes from 
eliminating baseline levels of I&E mortality losses, and found them to small, ranging from 0.13 percent to 
2.1 percent. Appendix G of this document presents the detailed calculations and results. Consumer 
surplus measures that have been estimated by NMFS for past environmental impact statements tend to be 
quite low. 20 Most species of fish have numerous close substitutes, and most fisheries are price-takers in 
the world market. Therefore, if harvest of one or several species increases, prices are unlikely to change 
by a significant amount.  

6.1.1.2 Step 2: Assessing Producer Surplus 

In an unregulated fishery, the long-run change in producer surplus due to an increase in fish stocks will be 
zero percent of the change in gross revenues, because in open access fisheries, excess profits are always 
driven to zero at the margin. Most fisheries are, however, regulated with quotas or restrictive permits to 
prevent overfishing. Thus, there are lasting economic benefits to commercial fishers from reductions in 
I&E mortality and the subsequent increase in harvest. Fishery regulations seek to create sustainable 
harvests that maximize resource rents.21 In a regulated fishery, I&E mortality impacts reduce the number 
of fish available to harvest. This may lead to more-stringent regulations and decreases in harvest. In this 

                                                      
19  For several species, the predicted changes in harvest were quite large. EPA increased scrutiny on results for species with 10 

percent or greater predicted change in harvest, to determine whether such increases were in fact reasonable estimates. In 
some cases, EPA capped the predicted harvest increases. The methods used and caps are described in Section 6.2. 

20  Personal communications with NMFS economists Cindy Thomson (2008), Eric Thunberg (2008), and Steve Freese (2008). 

21  In addition, even in open access fisheries, inframarginal rents are earned by at least some boats (personal communication, 
Thunberg 2008). 
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case, the change in producer surplus can be related to the change in harvest and the resulting gross 
revenue. 

In Figure 6-1, the line C represents the cost to the producer of supplying a pound of fish. The model 
assumes that average cost is equal to marginal cost, that is, C is constant for all pounds produced.22 When 
the supply of fish is equal to F1, the commercial fishers sell F1 pounds of fish at a price of P1 and earn 
revenues equal to U + V + W. The area between P1 and C is the producer surplus that accrues to 
producers for each pound of fish. Total producer surplus realized by producers is equal to (P1 - C) × F1. In 
the example, this producer surplus is equal to the area of U + V. The area W is the amount that producers 
pay for capital and labor and to suppliers if the harvest equals F1 (e.g., fishing gear and the costs of 
operating in the market). 

When supply increases to F2, the producers sell F2 pounds of fish at a price of P2. The total cost to 
produce F2 increases from W to W + Z. The total producer surplus changes from U + V to V + Y. This 
change may be either positive or negative, depending on the relative elasticity of demand, which changes 
the relative sizes of areas U and Y. 

In theory, producer surplus is equal to normal profits (total revenue minus fixed and variable costs), 
minus the opportunity cost of capital. The fixed costs and inputs are incurred independently of the 
expected marginal changes in the level of fish landings (Squires et al. 1998; Thunberg and Squires 2005). 
Total variable costs including labor, fuel, ice, and other supplies, however, vary directly with the level of 
landings. Furthermore, since the opportunity cost of capital is estimated to be only about 0.4 to 2.6 
percent of producer surplus, normal profits are assumed to be a sufficient proxy for producer surplus 
(USEPA 2004b). As a result, assessment of producer surplus is reduced to a relatively straightforward 
calculation in which the change in producer surplus is calculated as a species- and region-specific fraction 
of the change in gross revenue due to increased landings. 

The change in producer surplus, captured by “normal profits,” is assumed to be equivalent to a fixed 
proportion of the change in gross revenues, as estimated from the change in the commercial harvest due to 
reducing I&E mortality and the change in prices associated with the increased commercial harvest. As 
discussed above, EPA estimated price changes to be negligible, and therefore did not include price 
changes in the model. EPA estimated species- and region-specific Net Benefits Ratios which represent the 
fractional share of gross revenue associated with net benefits.  EPA’s approach for estimating Net 
Benefits Ratios using available data on variable costs from sources such as the National Marine Fisheries 
Service is described in more detail in Section A4-10 of US EPA (2006b). EPA then applied the Net 
Benefits Ratio to the estimated change in gross revenue under the 316(b) regulatory options to estimate 
the increase in producer surplus. The Net Benefits Ratios are shown by region and species in Table 6-1 
through Table 6-6; they range from 0.15 to 0.85.23,24  See Chapter 1, Section 1.2 for a definition of the 
seven study regions. The Inland region is excluded from the analysis due to a negligible commercial 
fishing harvest in this region.  EPA notes that this approach yields an estimate of benefits to commercial 

                                                      
22  If marginal cost increases as harvest increases, some of the producer surplus per unit will be lost due to the increased costs.  

23  Positive Net Benefits Ratios reflect the assumption that there will be rents (profits) to commercial fishers in regulated 
fisheries. When calculating the Net Benefits Ratios, EPA assumed that the predicted changes in harvest are such that fixed 
costs and variable costs per ton will not change. If costs remain constant, a marginal change in harvest is more likely to 
result in increases in profit and positive producer surplus. 

24 In the case of species aggregates (e.g., forage species), EPA assumed that the net benefit ratio is equal to the simple average of 
all empirically estimated net benefit ratios in the region. Species aggregates are listed as “Other” in Table 6-1 to Table 6-6. 
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fisherman, not benefits to society as a whole. As described in Section 6.1.1.1, EPA did not estimate 
changes in consumer surplus.   

 

Table 6-1: California Region, Species-Specific Gear Type, Status of Stock, and Net Benefits Ratio 

Species 
Main Management 
Method 

Main Gear 
Type 

Status of Stock 
Net Benefits as a 
Ratio of Gross 
Revenue (NBRatio) 

Anchovies Annual landings Roundhaul Unknown 0.64 

Cabezon Total allowable catch Hook-and-line 
Not overfished or subject 
to overfishing 

0.52 

Crabs Seasonal closures Pots and traps Unknown 0.74 
Drums and Croakers Permits Nets Unknown 0.42 

Dungeness Crab 
Size, no females, closed 
during molting season 

Traps Unknown 0.74 

Flounders Quotas Bottom trawl 
Not overfished or subject 
to overfishing 

0.64 

California Halibut Total allowable catch Longline 
Not overfished or subject 
to overfishing 

0.58 

Other N/A N/A N/A 0.53 

Rockfishes Quotas Trawls 
Overfished or subject to 
overfishing 

0.62 

California Scorpionfish Quotas Otter trawl Unknown 0.47 
Sculpins Nonrestrictive permits Trawls Unknown 0.64 

Sea Basses  
Season, size, gear 
restrictions 

Gillnets Unknown 0.66 

Shad, American None Nets 
Not overfished or subject 
to overfishing 

0.00 

Shrimp Seasonal closures Trawl  Unknown 0.15 

Smelts Seasonal closures Nets 
Overfished or subject to 
overfishing 

0.66 

Surfperches Quotas Handlines Unknown 0.37 
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Table 6-2: North Atlantic Region, Species-Specific Gear Type, Status of Stock, and Net Benefits 
Ratio 

Species 
Main Management 
Method 

Main Gear 
Type 

Status of Stock 
Net Benefits as a 
Ratio of Gross 
Revenue (NBRatio) 

Bluefish Quotas Gillnets 
Not overfished or subject 
to overfishing 

0.63 

Butterfish Quotas NA Unknown 0.64 

Atlantic Cod Time/area closures Otter trawl 
Overfished or subject to 
overfishing 

0.66 

Crabs Size, sex, season Traps 
Not overfished or subject 
to overfishing 

0.57 

American Plaice Size Otter trawl 
Overfished or subject to 
overfishing 

0.63 

Windowpane Time/area closures Bottom trawl 
Overfished or subject to 
overfishing 

0.63 

Winter Flounder Quotas Otter trawls 
Overfished or subject to 
overfishing 

0.64 

Flounders Total allowable landing Bottom trawl 
Overfished or subject to 
overfishing 

0.63 

Red Hake Quotas Otter trawls 
Not overfished or subject 
to overfishing 

0.62 

Silver Hake Quotas Otter trawls 
Not overfished or subject 
to overfishing 

0.63 

Atlantic Herring  Total allowable catch Purse seine 
Not overfished or subject 
to overfishing 

0.76 

Atlantic Mackerel Annual quota Unknown 
Not overfished or subject 
to overfishing 

0.77 

Atlantic Menhaden Not reg. In this area Unknown 
Not overfished or subject 
to overfishing 

0.68 

Other N/A N/A N/A 0.57 
White Perch Size limits Unknown Unknown 0.82 

Pollock Time/area closures Bottom trawl 
Not overfished or subject 
to overfishing 

0.71 

Sculpins Open access Unknown Unknown 0.00 

Scup Quotas Otter trawls 
Overfished or subject to 
overfishing 

0.69 

Searobin Open access (by catch) Unknown Unknown 0.00 
Shad, American Mortality targets Unknown Fully exploited 0.60 

Skates Catch limits Otter trawl 
Overfished or subject to 
overfishing 

0.68 

Tautog Possession limits Otter trawl 
Overfished or subject to 
overfishing 

0.46 

Weakfish Size limits Trawls 
Not overfished or subject 
to overfishing 

0.76 
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Table 6-3: Mid-Atlantic Region, Species-Specific Gear Type, Status of Stock, and Net Benefits Ratio 

Species 
Main Management 
Method 

Main Gear 
Type 

Status of Stock 
Net Benefits as a Ratio 
of Gross Revenue 
(NBRatio) 

Alewife  Bans, species of concern Fish weirs 
Overfished or subject to 
overfishing 

0.85 

American Shad 
Chesapeake fishery 
closed 

Unknown 
Overfished or subject to 
overfishing except for 
small by-catch allowance 

0.84 

Atlantic Croaker Gear restrictions Gillnets 
Not overfished or subject 
to overfishing 

0.74 

Atlantic Menhaden Open access 
Purse seine, 
otter trawl, gill 
net 

Unknown 
0.67 

Black Drum Quotas Unknown Unknown 0.70 

Blue Crab 
Limits on female crabs, 
size 

Pots 
Overfished or subject to 
overfishing 

0.57 

Bluefish Quotas Gillnets 
Not overfished or subject 
to overfishing 

0.63 

Butterfish Quotas Unknown 
Overfished or subject to 
overfishing 

0.64 

Crabs Season, size  Unknown Unknown 0.57 

Drums and Croakers Gear restrictions, quotas Nets Unknown 0.74 

Flounders Quotas Bottom trawl 
Overfished or subject to 
overfishing 

0.65 

Other N/A N/A N/A 0.73 

Red Hake Quotas Otter trawls 
Not overfished or subject 
to overfishing 

0.62 

Scup Quotas Otter trawls 
Overfished or subject to 
overfishing 

0.69 

Searobin Open access Unknown Unknown 0.00 

Silver Hake Quotas Otter trawls 
Not overfished or subject 
to overfishing 

0.63 

Spot License Haul seines Unknown 0.84 

Striped Bass Quotas Gill nets 
Not overfished or subject 
to overfishing 

0.67 

Striped Mullet Gear restrictions Cast nets 
Not overfished or subject 
to overfishing 

0.70 

Tautog Possession limits Otter trawl 
Overfished or subject to 
overfishing 

0.46 

Weakfish Size limits Trawls 
Not overfished or subject 
to overfishing 

0.76 

White Perch Size limits Unknown Unknown 0.82 
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Table 6-4: South Atlantic Region, Species-Specific Gear Type, Status of Stock, and Net Benefits 
Ratio 

Species 
Main Management 
Method 

Main Gear 
Type 

Status of Stock 
Net Benefits as a Ratio 
of Gross Revenue 
(NBRatio) 

Blue Crab Size limits Pots 
Overfished or subject to 
overfishing 

0.57 

Crabs Size, sex, season Traps 
Not overfished or subject 
to overfishing 

0.57 

Drums and Croakers Open access (by catch) 
Otter trawl 
bottom, gill nets 

Overfished 0.54 

Atlantic Menhaden 
Five year annual cap on 
reduction fishery in 
Chesapeake 

Unknown Unknown 0.76 

Other N/A N/A N/A 0.59 

Spot License Haul seines Unknown 0.70 

Stone Crab Size Traps 
Not overfished or subject 
to overfishing 

0.58 

Weakfish Size limits Trawls 
Not overfished or subject 
to overfishing 

0.64 

 

Table 6-5: Gulf of Mexico Region, Species-Specific Gear Type, Status of Stock, and Net Benefits 
Ratio 

Species 
Main Management 
Method 

Main Gear 
Type 

Status of Stock 
Net Benefits as a Ratio 
of Gross Revenue 
(NBRatio) 

Blue Crab Limited entry, pot limits Pots 
Overfished or subject to 
overfishing 

0.72 

Black Drum Limited access permits 
Hand lines, gill 
nets 

Unknown 
0.69 

Leatherjacket N/A 
Rod/reel, hand 
and long lines, 
pots and traps 

Unknown 
0.00 

Mackerels Quotas Hook-and-line 
Not overfished or subject 
to overfishing 

0.75 

Menhaden Seasonal/area closures Purse seines Fully exploited 0.76 

Other N/A N/A N/A 0.46 

Sea Basses  Quotas Traps 
Overfished or subject to 
overfishing 

0.72 

Sheepshead Size Cast net 
Not overfished or subject 
to overfishing 

0.84 

Shrimp Same as pink shrimp Unknown 
Not overfished or subject 
to overfishing 

0.43 

Spot License Haul seines Unknown 0.54 

Stone Crab Size Traps 
Not overfished or subject 
to overfishing 

0.71 

Striped Mullet Gear restrictions Strike nets 
Not overfished or subject 
to overfishing 

0.79 
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Table 6-6: Great Lakes Region, Species-Specific Gear Type, Status of Stock, and Net Benefits Ratio 

Species 
Main Management 
Method 

Main Gear Type Status of Stock 
Net Benefits as a Ratio 
of Gross Revenue 
(NBRatio) 

Bullhead State specific Gill and trap nets Unknown 0.29 

Freshwater Drum State specific Gill and trap nets Unknown 0.29 

Other State specific Gill and trap nets Unknown 0.29 

Smelt State specific Gill and trap nets Unknown 0.29 

White Bass State specific Gill and trap nets Unknown 0.29 

Whitefish State specific Gill and trap nets Unknown 0.29 

Yellow Perch State specific Gill and trap nets Unknown 0.29 

 

6.1.1.3 Step 3: Estimating Net Social Benefits When the Fishing Harvest Increases 

The change in net social benefits when the commercial fishing harvest increases from F1 to F2 is 
estimated by adding the results from Steps 1 and 2. Because area U is a transfer from commercial fishers 
to consumers, it does not affect social benefits.25 Therefore, the change in net social benefits is area X + Y 
(see Figure 6-1). However, if demand elasticity is such that changes in price are negligible, area X will be 
negligible relative to Y, and total social benefits will be measured by area Y. See Appendix G on EPA’s 
analysis of the estimated price changes due to reducing I&E mortality losses at CWIS sites by region and 
species. 

6.2 Benefits Estimates for Regional Commercial Fishing 

The first step of the analysis of commercial fishing benefits involves a fishery-based assessment of I&E 
mortality-related changes in harvested species landings. Many of the fish species affected by I&E 
mortality at CWIS sites are harvested both recreationally and commercially. As described in Section 
6.1.1, EPA assumed a linear relationship between stock and harvest and used historical NMFS landings 
data on commercial and recreational catch to determine the proportions of total species harvest 
attributable to recreational and commercial fishing. EPA applied these proportions to the estimated total 
change in harvest to distribute benefits between commercial and recreational fisheries. The estimated 
change in commercial fishery harvest was then used as a basis for estimating changes in producer surplus 
in the commercial fishing industry.  

EPA further assessed species with estimated harvest increases from the elimination of I&E mortality 
exceeding10 percent of baseline harvest from 2005 to 2009. This was done to evaluate whether potential 
harvest increases under 316(b) regulatory options are reasonable when compared to historic harvest data. 
Table 6-7 lists the species and potential percent increases in harvest over baseline harvest from 
eliminating baseline I&E mortality losses for the fourteen species found to exceed 10 percent. The species 
of concern are cabezon, California halibut, rockfishes, and sculpins in the California region; sculpins in 
the North Atlantic region; drums and croakers, spot, and weakfish in the Mid-Atlantic region; black drum, 
drums and croakers, leatherjacket, spot, and striped mullet in the Gulf of Mexico region; and smelt in the 
Great Lakes region. No species with 10 percent or greater potential change in harvest were found in the 
South Atlantic region. The increases range from 12 percent for striped mullet in the Gulf of Mexico to 
25,110 percent for sculpins in the North Atlantic. 

                                                      
25  Note that in the model shown in Figure 6-1, X + Y = U + X + [(V + Y) – (U + V)] = U + X + (Y – U)  
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Table 6-7: Potential Harvest Increase from Eliminating I&E Mortality Losses as a Percentage of Total 
Harvest and Potential Harvest Capping Rules Used in EPA’s Analysis 

Region and 
Species 

Baseline 
Harvest 
(thousand 
lbs) 

Baseline 
I&E Losses 
(thousand 
lbs) 

Potential 
% Increase 
in Harvest 

Maximum 
Harvest 
1979-2009 
(thousand 
lbs) 

90th 
Percentile of 
Max. 
Harvest 
(thousand 
lbs) 

MSY or 
Other 
Capping 
Rule 
(thousand 
lbs) 

Cap Used 

California Cabezon 55.6 54.4 98% 374.2 256.7 207.2a Don’t cap 

California Halibut 629.9 126.4 20% 1,337.1 1,256.3 1,158.5b Don’t cap 

California Rockfishes 2,668.4 1,168.7 44% 58,189.5 43,216.7 77,161.8c Don’t cap 

California Sculpins 3.5 2.6 74% 19.5 7.1 482.8 d Don’t cap 

North Atlantic Sculpins <0.1 25.1 25,110% 4.8 4.0  Cap at 90th 

Mid-Atlantic Drums and 
Croakers 

11,430.1 1,519.2 13% 16,575.2 16,252.9  Don’t cap 

Mid-Atlantic Spot 3,286.9 2,033.0 62% 4,766.2 4,398.3  Cap at 90th 

Mid-Atlantic Weakfish 497.0 741.9 149% 15,389.6 7,023.5  Don’t cap 

Gulf of Mexico Black 
Drum 

4,397.3 1,885.2 43% 10,347.2 6,977.2  Don’t cap 

Gulf of Mexico Drums and 
Croakers 

81.0 40.3 50% 1,787.4 1,193.3  Don’t cap 

Gulf of Mexico 
Leatherjacket 

65.6 90.7 138% 509.3 437.5   Don’t cap 

Gulf of Mexico Spot 18.1 40.0 221% 442.8 299.1  Don’t cap 

Gulf of Mexico Striped 
Mullet 

10,347.7 1,278.3 12% 33,141.6 27,395.6  Don’t cap 

Great Lakes Smelts 522.2 105.9 20% 4,107 3,520  Don’t cap 
a. MSY (maximum sustainable yield). 
b. Average of most recent four peaks in harvest. 
c. MSY for rockfishes for the West Coast. 
d. MSY for all scorpionfish and sculpins. 
Sources: EPA estimates of I&E mortality losses; NMFS data on baseline harvest, historical landings, and MSY. 

 

Economists and biologists with NMFS recommended using either maximum sustainable yield (MSY), 
allowable biological catch (ABC), or historical harvest to determine reasonable caps on projected total 
harvest under the post-compliance scenario.26 NMFS scientists recommended using 25 years or more of 
historical catch, because many populations peaked around 25 years ago—at that time there were virgin, 
non-exploited populations, so that maximum harvests were achievable. Using historical catch data from 
NMFS, EPA determined the maximum landings for the years 1979 through 2009, and calculated the 90th 
percentile of landings for those years. NMFS biologists provided MSY where available (for California 
cabezon and all West Coast rockfishes). NMFS biologists suggested that sculpins in California be 
evaluated in combination with scorpionfish, as these species are grouped when determining the MSY. 
They also noted that halibut harvests fluctuate greatly, as the stock is highly variable. There is no stock 
assessment for halibut, so NMFS biologists suggested averaging the most recent four peaks in harvest.27  

                                                      
26  Cindy Thomson, NMFS, personal communication (2008). 

27  Cindy Thomson, NMFS, personal communication (2008). 
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MSY or ABC data were not available for the species of interest in the other regions.28 Therefore, EPA 
capped potential harvest increase at the 90th percentile of annual harvest from 1979 to 2009. The only 
species for Based on this criteria and the NMFS scientists’ recommendations, EPA capped estimated 
harvest increases for two species when estimated commercial fishing benefits, sculpins in the North 
Atlantic and spot in the Mid-Atlantic.  

The following sections present estimated benefits from commercial harvest changes in six of the seven 
study regions. The Inland region is excluded from the analysis due to a negligible commercial fishing 
harvest in this region. 

6.2.1 California 

Baseline levels of I&E mortality account for 1,379 thousand pounds of commercial fishing losses 
annually in the California region, as shown in Table 6-8. Rockfishes account for the major portion of 
overall losses in this region. The annual undiscounted commercial fishing benefits of eliminating baseline 
I&E mortality losses are estimated to be approximately $1,394 thousand, as shown in Table 6-8. 
Applying a 3 percent discount rate, the annualized benefits of eliminating baseline I&E mortality losses 
are estimated to be $1,236 thousand. Applying a 7 percent rate, these annualized benefits are 
approximately $1,195 thousand. 

As shown in Table 6-8, annual commercial harvest is estimated to increase by approximately 7 thousand 
pounds under Options 1, 1,176 thousand pounds under Option 2, and 1,230 thousand pounds under 
Option 3. Discounted at 3 percent, the estimated annualized benefits to commercial fishers are 
approximately $4 thousand under Option 1, $751 thousand under Option 2, and $776 thousand under 
Option 3. Discounted at 7 percent, the estimated annualized benefits to commercial fishers are 
approximately $3 thousand under Option 1, $573 thousand under Option 2, and $589 thousand under 
Option 3. (Table 6-8). Appendix Table H-1 presents species-specific results for the estimated annual 
increase in harvest and monetary benefits to commercial fishers. 

 

Table 6-8: Commercial Fishing Benefits from Eliminating or Reducing Baseline I&E 
Mortality Losses at In-Scope Facilities in the California Region, by Regulatory Option 
(2009$) 

Undiscounted 3% Discount Rate 7% Discount Rate
Baseline 1,379 1,394 1,236 1,195
Option 1 7 5 4 3
Option 2 1,176 1,189 751 573
Option 3 1,230 1,243 776 589

Regulatory Option
Annual Increase in 

Commercial Harvest
(thousand lbs)

Annualized Benefits from Increase in Commercial Harvest
(2009$, thousands)

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere

 
 

                                                      
28  Based on information from NMFS and other Web sites, and personal communication with Nichola Meserve of the Atlantic 

States Marine Fisheries Commission (2008). 
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6.2.2 North Atlantic 

Baseline levels of I&E mortality account for 430 thousand pounds of annual commercial fishing losses in 
the North Atlantic region, as shown in Table 6-9, with flounders playing a particularly important role. 
EPA estimated the annual undiscounted benefits to commercial fishers from eliminating baseline I&E 
mortality losses to be approximately $471 thousand, as shown in Table 6-9. Total annualized benefits 
from eliminating baseline I&E mortality losses, applying a 3 percent discount rate, are estimated to be 
$418 thousand. Applying a 7 percent rate, these annualized benefits are approximately $404 thousand. 

As shown in Table 6-9, annual commercial harvest is estimated to increase by approximately 3 thousand 
pounds under Option 1, 352 thousand pounds under Option 2, and 369 thousand pounds under Option 3. 
Discounted at 3 percent, the estimated annualized benefits to commercial fishers are approximately $2 
thousand under Options 1, $231 thousand under Option 2, and $242 thousand under Option 3. Discounted 
at 7 percent, the estimated annualized benefits to commercial fishers are approximately $1 thousand under 
Option 1, $171 thousand under Option 2, and $179 thousand under Option 3 (Table 6-9). Appendix Table 
H-2 presents species-specific results for the estimated annual increase in harvest and monetary benefits to 
commercial fishers. 

 

Table 6-9: Commercial Fishing Benefits from Eliminating or Reducing Baseline I&E 
Mortality Losses at In-Scope Facilities in the North Atlantic Region, by Regulatory 
Option (2009$) 

Undiscounted 3% Discount Rate 7% Discount Rate
Baseline 430 471 418 404
Option 1 3 2 2 1
Option 2 352 385 231 171
Option 3 369 403 242 179

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere

Regulatory Option
Annual Increase in 

Commercial Harvest
(thousand lbs)

Annualized Benefits from Increase in Commercial Harvest
(2009$, thousands)

 
 

6.2.3 Mid-Atlantic 

Baseline levels of I&E mortality account for approximately 10,672 thousand pounds of commercial 
fishing losses annually in the Mid-Atlantic region, as shown in Table 6-10. Atlantic menhaden, blue crab, 
drums and croakers, spot, and weakfish are the primary drivers of I&E mortality losses in the Mid-
Atlantic region. The annual undiscounted benefits to commercial fishers from eliminating baseline I&E 
mortality losses are estimated to be $3,192 thousand, as shown in Table 6-10. Applying a 3 percent 
discount rate, annualized benefits from eliminating baseline I&E mortality losses are estimated to be 
$2,831 thousand. Applying a 7 percent rate, these annualized benefits are approximately $2,737 thousand. 

As shown in Table 6-10, annual commercial harvest is estimated to increase by approximately 3,750 
thousand pounds under Option 1, 10,152 thousand pounds under Option 2, and 10,224 thousand pounds 
under Option 3. Discounted at 3 percent, the estimated annualized benefits to commercial fishers are $342 
thousand under Options 1, $1,615 thousand under Option 2, and $1,629 thousand under Option 3. 
Discounted at 7 percent, the estimated annualized benefits to commercial fishers are approximately $303 
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thousand under Option 1, $1,124 thousand under Option 2, and $1,134 thousand under Option 3 (Table 
6-10). Appendix Table H-3 presents species-specific results for the estimated annual increase in harvest 
and monetary benefits to commercial fishers. 

 

Table 6-10: Commercial Fishing Benefits from Eliminating or Reducing Baseline I&E 
Mortality Losses at In-Scope Facilities in the Mid-Atlantic Region, by Regulatory Option 
(2009$) 

Undiscounted 3% Discount Rate 7% Discount Rate
Baseline 10,672 3,192 2,831 2,737
Option 1 3,750 436 342 303
Option 2 10,152 3,010 1,615 1,124
Option 3 10,224 3,035 1,629 1,134

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere

Regulatory Option
Annual Increase in 

Commercial Harvest
(thousand lbs)

Annualized Benefits from Increase in Commercial Harvest
(2009$, thousands)

 
 

6.2.4 South Atlantic 

Baseline levels of I&E mortality account for more than 99 thousand pounds of commercial fishing losses 
in the South Atlantic region, as shown in Table 6-11. The estimated undiscounted annual commercial 
fishing benefits of eliminating baseline I&E mortality losses are driven primarily by spot, followed by 
Atlantic menhaden, blue crab, and stone crab, and total $23 thousand, as shown in Table 6-11. Applying a 
3 percent discount rate, the annualized benefits of eliminating baseline I&E mortality losses are estimated 
to be $21 thousand. Applying a 7 percent rate, these annualized benefits are $20 thousand. 

As shown in Table 6-11, annual commercial harvest is estimated to increase by approximately 84 
thousand pounds under Options 2 and 3 and 45 thousand pounds under Option 1. Discounted at 3 percent, 
the estimated annualized benefits to commercial fishers are $12 thousand under Options 2 and 3, and $8 
thousand under Option 1. Discounted at 7 percent, the estimated annualized benefits to commercial 
fishers are approximately $8 thousand under Options 2 and 3, and $7 thousand under Option 1 (Table 
6-11). Appendix Table H-4 presents species-specific results for the estimated annual increase in harvest 
and monetary benefits to commercial fishers. 
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Table 6-11: Commercial Fishing Benefits from Eliminating or Reducing Baseline I&E 
Mortality Losses at In-Scope Facilities in the South Atlantic Region, by Regulatory 
Option (2009$) 

Undiscounted 3% Discount Rate 7% Discount Rate
Baseline 99 23 21 20
Option 1 45 10 8 7
Option 2 84 20 12 8
Option 3 84 20 12 8

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere

Regulatory Option
Annual Increase in 

Commercial Harvest
(thousand lbs)

Annualized Benefits from Increase in Commercial Harvest
(2009$, thousands)

 

6.2.5 Gulf of Mexico 

Baseline levels of I&E mortality account for more than 5,559 thousand pounds of commercial fishing 
losses in the Gulf of Mexico region annually, as shown in Table 6-12. These losses are driven by black 
drum, Atlantic menhaden, and striped mullet. The estimated undiscounted annual commercial fishing 
benefits from eliminating baseline I&E mortality losses are approximately $3,747 thousand, as shown in 
Table 6-12. Applying a 3 percent discount rate, estimated commercial fishing benefits from eliminating 
baseline I&E mortality losses are estimated to be $3,463 thousand. Applying a 7 percent rate, these 
annualized losses are approximately $3,450 thousand. 

As shown in Table 6-12, annual commercial harvest is estimated to increase by approximately 4,400 
thousand pounds under Options 2 and 3, and 1,500 thousand pounds under Option 1. Discounted at 3 
percent, the estimated annualized benefits to commercial fishers are approximately $588 thousand under 
Option 1 and $1,800 under Options 2 and 3. Discounted at 7 percent, the annualized benefits to 
commercial fishers are estimated to be approximately $1,400 thousand under Options 2 and 3, and $537 
thousand under Option 1 (Table 6-12). Appendix Table H-5 presents species-specific results for the 
estimated annual increase in harvest and monetary benefits to commercial fishers. 

 

Table 6-12: Commercial Fishing Benefits from Eliminating or Reducing Baseline I&E 
Mortality Losses at In-Scope Facilities in the Gulf of Mexico Region, by Regulatory 
Option (2009$) 

Undiscounted 3% Discount Rate 7% Discount Rate
Baseline 5,559 3,747 3,463 3,450
Option 1 1,459 719 588 537
Option 2 4,364 2,832 1,806 1,394
Option 3 4,371 2,837 1,804 1,390

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere

Regulatory Option
Annual Increase in 

Commercial Harvest
(thousand lbs)

Annualized Benefits from Increase in Commercial Harvest
(2009$, thousands)
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6.2.6 The Great Lakes 

Baseline levels of I&E mortality account for more than 346 thousand pounds of commercial fishing losses 
in the Great Lakes region annually, as shown in Table 6-13. These losses are driven by the impingement 
of smelts and whitefish. The annual undiscounted commercial fishing benefits from eliminating baseline 
I&E mortality losses in this region are estimated to be approximately $87 thousand, as shown in Table 
6-13. Total annualized commercial benefits from eliminating baseline I&E mortality losses, applying a 3 
percent discount rate, are estimated to be $80 thousand. Applying a 7 percent rate, these annualized losses 
are approximately $80 thousand as well.  

As shown in Table 6-13, annual commercial harvest is estimated to increase by approximately 330 
thousand pounds under Options 2 and 3, and 227 thousand pounds under Option 1. The increase in 
commercial harvest under Option 1 is relatively close to Options 2 and 3 due to the relative importance of 
impingement mortality compared to total I&E mortality in the Great Lakes region. Discounted at 3 
percent, the estimated annualized benefits to commercial fishers are approximately $53 thousand under 
Options 2 and 3 and by $48 thousand under Option 1. Discounted at 7 percent, the annualized benefits to 
commercial fishers are estimated to be approximately $44 thousand under Option 1 and $41 thousand 
under Options 2 and 3 (Table 6-13). Appendix Table H-6 presents species-specific results for the 
estimated annual increase in harvest and monetary benefits to commercial fishers. 

 

Table 6-13: Commercial Fishing Benefits from Eliminating or Reducing Baseline I&E 
Mortality Losses at In-Scope Facilities in the Great Lakes Region, by Regulatory Option 
(2009$) 

Undiscounted 3% Discount Rate 7% Discount Rate
Baseline 346 87 80 80
Option 1 227 58 48 44
Option 2 326 82 53 41
Option 3 328 83 53 41

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere

Regulatory Option
Annual Increase in 

Commercial Harvest
(thousand lbs)

Annualized Benefits from Increase in Commercial Harvest
(2009$, thousands)
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6.3 Limitations and Uncertainties 

Table 6-14 summarizes the caveats, omissions, biases, and uncertainties known to affect the estimates that 
were developed for the benefits analysis.  

 

Table 6-14: Caveats, Omissions, Biases, and Uncertainties in the Commercial Benefits Estimates 
Issue Impact on Benefits Estimate Comments 

Change in commercial landings due to 
I&E mortality is uncertain 

Uncertain 

Projected changes in harvest may be 
underestimated because cumulative 
impacts of I&E mortality over time, 
interactions with other stressors, and 
population changes are not considered. 

Some estimates of commercial harvest 
losses due to I&E mortality under current 
conditions are not region/species-specific 

Uncertain 

EPA estimated the impact of I&E 
mortality in the case study analyses 
based on data provided by the facilities. 
The most current data available were 
used. However, in some cases these data 
are 20 years old or older. Thus, they may 
not reflect current conditions. 

Effect of change in stocks on landings is 
not considered 

Uncertain 

EPA assumed a linear stock to harvest 
relationship, so that a 10% change in 
stock would have a 10% change in 
landings; this may be low or high, 
depending on the condition of the stocks. 
Region-specific fisheries regulations also 
will affect the validity of the linear 
assumption. 

Effect of uncertainty in estimates of 
commercial landings and prices is 
unknown 

Uncertain 

EPA assumes that NMFS landings data 
are accurate and complete. In some cases 
prices and/or quantities may be reported 
incorrectly. 
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7 Recreational Fishing Benefits 

7.1 Introduction 

This chapter presents the estimated benefits to recreational anglers from improved recreational fishing 
opportunities due to reductions in impingement and entrainment mortality (I&E mortality) under the 
regulatory options considered for the Section 316(b) regulation. For this analysis, EPA used a benefit 
transfer approach based on a meta-analysis of economic studies of recreational fishing benefits from 
improved catch rates. Benefit transfer involves adapting research conducted for another purpose to 
address the policy questions at hand (Bergstrom and De Civita 1999). Because benefit-cost analysis of 
environmental regulations rarely affords sufficient time to conduct original stated or revealed preference 
studies specific to policy effects, benefit transfer is often the only remaining option for providing 
information to inform policy decisions. EPA notes that Smith et al. (2002, p.134) state that “…nearly all 
benefit cost analyses rely on benefit transfers….” 

Boyle and Bergstrom (1992) define benefit transfer as “the transfer of existing estimates of nonmarket 
values to a new study which is different from the study for which the values were originally estimated.” 
There are four types of benefit transfer studies: point estimate, benefit function, meta-analysis, and 
Bayesian techniques (USEPA 2000a). These may be categorized into three fundamental classes: (1) 
transfer of an unadjusted fixed value estimate generated from a single study site; (2) the use of expert 
judgment to aggregate or otherwise alter benefits to be transferred from a site or set of sites; and (3) 
estimation of a value estimator model derived from study site data, often from multiple sites (Bergstrom 
and De Civita 1999). Recent studies have shown little support for the accuracy or validity of the first 
method, leading to increased attention to, and use of, adjusted values estimated by one of the remaining 
two approaches (Bergstrom and De Civita 1999). The third class of benefit transfer approaches includes 
meta-analysis techniques, which have been increasingly explored by economists as a potential basis of 
policy analysis conducted by various government agencies charged with the stewardship of natural 
resources. 29  

Section 7.2 provides a brief overview of the benefit transfer methodology used for estimating the 
recreational fishing benefits, and highlights the updates to methodology. Chapter A5 of EPA’s Regional 
Benefits Analysis of the Final Section 316(b) Phase III Existing Facilities Rule (USEPA 2006b) provides 
a detailed description of the benefit transfer methodology that is employed in this analysis. Section 7.3 
presents the recreational fishing benefits by region, and Section 7.4 summarizes the limitations and 
uncertainties inherent in EPA’s analysis of recreational fishing benefits. 

7.2 Methodology 

EPA’s analysis of recreational fishing benefits from reducing I&E mortality at cooling water intake 
structures (CWISs) at the in-scope facilities includes the following general steps:  

1. Estimate the forgone catch of recreational fish (in number of fish) attributable to I&E 
mortality under current conditions. EPA modeled these losses using the methods presented in 

                                                      
29  Meta-analysis is “the statistical analysis of a large collection of results from individual studies for the purposes of integrating 

the findings” (Glass 1976). 
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Chapter 3 of this document. EPA’s estimates of recreational fish losses are expressed as the 
number of harvestable adults, rather than age-1 equivalents (A1Es), so as to not overstate the 
increases in catch resulting from 316(b) regulatory options.30 Many of the fish species affected by 
I&E mortality at CWIS sites are harvested both recreationally and commercially. EPA used the 
proportion of total species landings attributable to recreational fishing to estimate baseline 
welfare losses to recreational anglers from current levels of I&E mortality and benefits from 
reducing I&E mortality under alternative policy options.  

2. Estimate the marginal value per fish. EPA used the estimated meta-regression described in 
Chapter A5 of EPA (USEPA 2006b) to estimate marginal values per fish for the species affected 
by I&E mortality at Phase II facilities. To calculate the marginal value per fish for the affected 
species, EPA chose input values for the independent variables based on the affected species 
characteristics, study regions, and demographic characteristics of the affected angling 
populations. The study design variables were selected based on current economic literature. This 
step is described in more detail in Section 7.2.1. 

3. Estimate the value of forgone recreational catch lost to I&E mortality under the baseline 
scenario by multiplying the marginal value per fish by the number of recreational fish currently 
lost to I&E mortality that would otherwise be caught by recreational anglers. 

4. Estimate recreational fishing benefits from reducing I&E mortality losses at the in-scope 
facilities’ CWISs by multiplying the marginal value per fish by the reduction in recreational 
fishing losses under the alternative policy options.  

7.2.1 Estimating Marginal Value per Fish 

To estimate marginal values per fish for the species affected by I&E mortality at in-scope facilities, EPA 
used a benefit transfer function based on meta-analysis of recreational fishing studies from the Section 
316(b) Phase III Final Rule. The general approach follows standard methods illustrated by Johnston et al. 
(2006) and Shrestha et al. (2007), among many others (Rosenberger and Phipps 2007). This function 
allows EPA to forecast willingness to pay (WTP) based on assigned values for model variables, chosen to 
best represent a resource change in the 316(b) policy context. EPA’s meta-analysis results imply a simple 
benefit function of the following general form:  

ln(WTP) = intercept + ∑(coefficienti)(Independent Variable Valuesi) (Eq. 7-1) 

Here, ln(WTP) is the dependent variable in the meta-analysis—the natural log of WTP for catching an 
additional fish. The independent variables included in the meta-analysis characterize the species being 
valued, study location, baseline catch rate, elicitation and survey methods, demographics of survey 
respondents, and other specific characteristics of each study. 

To calculate the marginal value per fish for the species affected by in-scope facilities, EPA chose input 
values for the independent variables based on the affected species’ characteristics, study regions, and 
demographic characteristics of the affected angling populations. The study design variables were selected 
based on current economic literature. Table 7-1 provides the independent variable names, the estimated 
variable coefficients (coefficienti), and the assigned input values for each of the independent variables in 
the model. 

                                                      
30 Adult fish of harvestable age means that they are the age at which they can legally be harvested. 
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EPA followed Johnston et al. (2006) in assigning values for methodological attributes (i.e., variables 
characterizing the study methodology used in the original source studies), which are set at mean values 
from the metadata except in cases where theoretical considerations dictate alternative specifications. This 
follows general guidance from Bergstrom and Taylor (2006) that meta-analysis benefit transfer should 
incorporate theoretical expectations and structures, at least in a weak form. In this instance, two of the 
methodology variables, RUM_nest and high_resp_rate, are included with an assigned value of one. 
RUM_year is given the value of 9.37, which corresponds to the average study year, 1985. 

EPA decided not to include the error term when using the regression equation to predict marginal values 
per fish. Bockstael and Strand (1987) argue that if the econometric error in an equation is primarily due to 
omitted variables, the error term should be included, but if the error is primarily due to random 
preferences, it should be excluded. EPA did not conclude whether the error is primarily due to omitted 
variables or random preferences. Because the error term is positive, the empirical effect of including this 
term is to increase the predicted marginal values. Therefore, EPA excluded the error term in order to 
result in more- conservative estimates. EPA also notes that when the error term is excluded, the values 
predicted by the regression equation are more consistent with those from the underlying studies.  

Table 7-2 presents region- and species-specific values for the input variables that vary across regions and 
Table 7-3 presents the estimated marginal value per fish for all species affected by I&E mortality in each 
region. 

 

Table 7-1: Independent Variable Assignments for Regression Equation 
Variable Coefficient Assigned Value Explanation 
Intercept  -1.4568 1 The equation intercept was set to one by default. 

SP_conjoint  -1.1672 0 

Current academic literature suggests that nested RUM models 
produce the most accurate valuation results, so RUM_nest was set 
to one, and the other study methodology variables were set to zero. 

SP_dichot  -0.9958 0 

TC_individual  1.1091 0 

TC_zonal  2.0480 0 

RUM_nest  1.3324 1 

RUM_nonnest  1.7892 0 

sp_year  0.08754 0 
RUM_year was set equal to the average value across the studies in 
the analysis, 9.37. 

tc_year  -0.03965 0 

RUM_year  -0.00291 9.37 

sp_mail  0.5440 0 Since RUM_nest was the model specified above, sp_mail and 
sp_phone were set to zero. sp_phone  1.0859 0 

high_resp_rate  -0.6539 1 
High survey response rates are desirable because they may provide 
more-accurate estimates, so high_response_rate was set to one. 

inc_thou  0.003872 Varies 
Inc_thou was set to the median household income for each study 
region evaluated, based on U.S. Census data. 

age42_down  0.9206 0.0972 
Age42_down and age43_up were set to their sample means. 

age43_up  1.2221 0.2711 

trips19_down  0.8392 0.1100 
Trips19_down and trips20_up were set to their sample means. 

trips20_up  -1.0112 0.3350 

nonlocal  3.2355 0 
Because the default (zero) value for the nonlocal dummy variable 
represents a combination of local and nonlocal anglers, nonlocal 
was set to zero. 
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Table 7-1: Independent Variable Assignments for Regression Equation 
Variable Coefficient Assigned Value Explanation 
big_game_pac  2.2530 Varies 

Species-targeted variables were assigned input values based on 
characteristics of the species affected by I&E mortality and the 
study region. In general, the match between the affected species 
and the variables in the meta-analysis equation was good. 

big_game_natl  1.5323 Varies 

big_game_satl  2.3821 Varies 

small_game_pac  1.6227 Varies 

small_game_atl  1.4099 Varies 

flatfish_pac  1.8909 Varies 

flatfish_atl  1.3797 Varies 

other_sw  0.7339 Varies 

musky  3.8671 Varies 

pike_walleye  1.0412 Varies 

bass_fw  1.7780 Varies 

trout_GL  1.8723 Varies 

trout_nonGL  0.8632 Varies 

salmon_pacific  2.3570 Varies 

salmon_atl_more
y  

5.2689 Varies 

salmon_GL  2.2135 Varies 

steelhead_pac  2.1904 Varies 

steelhead_GL  2.3393 Varies 

cr_nonyear  -0.08135 Varies The variable cr_nonyear was assigned species and region-specific 
values for the coastal and Great Lakes regions based on catch rates 
data provided by the National Marine Fisheries Service (NMFS 
2002; 2003) and the Michigan Department of Natural Resources 
(MDNR 2002). For the Inland region, EPA assigned values to the 
cr_nonyear variable based on the average values for each species 
from the studies. The variable spec_cr was set to one. Cr_year and 
catch_year were set to zero, since catch per trip and catch per day 
are more common measures of angling quality. 

cr_year  -0.05208 0 

catch_year  1.2693 0 

spec_cr  0.6862 1 

shore  -0.1129 Varies 

Shore was assigned values based on NMFS (2002; 2003) and U.S. 
Fish and Wildlife Service (USDOI and USDOC 2002) survey data 
indicating the average percentage of anglers who fish from shore in 
each region. 

Source:U.S. EPA (2006b) 
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Table 7-2: Region- and Species-specific Variable Assignments for the Regression Equation 

Variable 
Region 

California 
North 

Atlantic 
Mid-

Atlantic 
South 

Atlantic 
Gulf of 
Mexico 

Great 
Lakes 

Inland 

inc_thou 54.385 55.000 51.846 40.730 36.641 44.519 58.240 

Shore 24.0 24.0 23.1 30.0 25.0 48.0 57.0 

Species 
Species Type 

Dummy Variablea 
Baseline Catch Rate, Expressed in Fish per Day (cr_nonyear) 

Small gameb small_game_atl, 
small_game_pac 

2.7 1.6 1.6 2.2 2.2  2.1 

Flatfishc flatfish_atl, 
flatfish_pac 

1.3 1.0 1.0 1.5    

Other saltwater other_sw 1.7 1.7 1.7 1.7 1.7   

Salmon Salmon_GL      0.2 0.2 

Walleye/pike pike_walleye      0.8 0.8 

Bass bass_fw      0.2 0.2 

Panfishd    4.7   4.7 4.7 

Trout       3.2 3.2 

Unidentified  1.7 1.7 1.7 1.7 1.9 1.9 3.8 
a This column indicates which species type dummy variable was set to one to represent each species. 
b For “small game” fish in the North Atlantic, Mid-Atlantic, South Atlantic, Gulf of Mexico, and Inland regions, small_game_atl 
was set to one. For “small game” fish in the California region, small_game_pac was set to one. 
c For “flatfish” in the North Atlantic, Mid-Atlantic, South Atlantic, Gulf of Mexico, Great Lakes, and Inland regions, flatfish_atl 
was set to one. For flatfish in the California region, flatfish_pac was set to one. 
d To indicate that the target species was “panfish,” all species type dummy variables were set to zero. 
Source: U.S. EPA (2006b) 

 

Table 7-3: Marginal Recreational Value per Fish, by Region and Speciesa 

Species California North Atlantic Mid-Atlantic 
South 

Atlantic 
Gulf of 
Mexico 

Great Lakes Inland 

Small game $7.23 $5.92  $5.88  $5.70  $5.61  $5.34  

Flatfish $9.73 $5.94  $5.60  $5.60      

Other saltwater $2.95  $2.97  $2.91  $2.84  $2.76    

Salmon      $13.22  $13.22  

Walleye/pike      $4.10  $4.09  

Bass      $8.53  $8.98  

Panfish   $1.06    $1.32 $1.06  

Trout      $9.41  $2.81  

Unidentified $3.09  $3.00  $3.23  $2.86  $3.65 $6.20  $2.22  
a All values are in 2009$. 
Source: U.S. EPA (2006b), converted to 2009$ using the Consumer Price Index (USBLS 2010), 

 

7.2.2 Calculating Recreational Fishing Benefits 

EPA estimated the recreational welfare gain from eliminating current I&E mortality losses and the 
recreational welfare gain from the regulatory options by combining estimates of the marginal value per 
fish with the estimated recreational fishing losses under the baseline level of I&E mortality and the 
reduction in recreational fishing losses attributable to each regulatory option. To calculate the recreational 
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welfare gain from eliminating baseline I&E mortality losses, EPA multiplied the marginal value per fish 
by the number of fish that are lost due to baseline I&E mortality that would otherwise be caught by 
recreational anglers. To calculate the recreational welfare gain from each analyzed option, EPA 
multiplied the marginal value per fish by the estimated additional number of fish caught by recreational 
anglers that would have been impinged or entrained in the absence of the regulation. As explained in 
Chapter 3 of this report, these calculations express recreational fish losses as the number of harvestable 
adults. 

7.2.3 Sensitivity Analysis Based on the Krinsky and Robb (1986) Approach 

The meta-analysis model briefly described above can be used to predict mean WTP for catching an 
additional fish. However, estimates derived from regression models are subject to some degree of error 
and uncertainty. To better characterize the uncertainty or error bounds around predicted WTP, EPA 
adopted the statistical procedure described by Krinsky and Robb in their 1986 Review of Economics and 
Statistics paper, “Approximating the Statistical Property of Elasticities.” The procedure involves sampling 
from the variance-covariance matrix and means of the estimated coefficients. WTP values are then 
calculated for each drawing from the variance covariance matrix, and an empirical distribution of WTP 
values is constructed. By varying the number of drawings, it is possible to generate an empirical 
distribution with a desired degree of accuracy (Krinsky and Robb 1986). The lower or upper bound of 
WTP values can then be identified based on the 5th and 95th percentile of WTP values from the empirical 
distribution. These bounds may help decision-makers understand the uncertainty associated with the 
benefit results. 

The results of EPA’s calculations are shown in Table 7-4. The table presents 95th percentile upper 
confidence bounds and 5th percentile lower confidence bounds for the marginal value per fish for each 
species in each region. These bounds can be used to estimate upper and lower confidence bounds for the 
WTP for improvements in recreational catch rates from eliminating baseline I&E mortality losses or 
reducing I&E mortality losses under each regulatory analysis option. Refer to EPA (2006b) for more 
detail on the specific calculations. The 5th percentile values shown in Table 7-4 show that, with the 
exception of panfish, even the lowest estimates of recreational value are greater than $1 per fish. 
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Table 7-4: Confidence Bounds on Marginal Recreational Value per Fish, Based on the  
Krinsky and Robb Approacha 

Species California 
North 

Atlantic 
Mid-

Atlantic 
South 

Atlantic 
Gulf of 
Mexico 

Great 
Lakes 

Inland 

5th Percentile Lower Confidence Boundsb 
Small game $4.19 $2.12 $2.26 $2.71 $2.86  $1.60
Flatfish $5.10 $3.80 $3.74 $3.86   
Other saltwater $1.78 $1.78 $1.84 $2.14 $2.13  
Salmon $8.40  $8.12 $8.12
Walleye/pike   $2.17 $11.98
Bass   $4.41 $4.27
Panfish  $0.53  $0.69 $0.53
Trout   $6.08 $1.51
Unidentified $1.85 $1.80 $1.90 $2.14 $2.36 $3.32 $1.08
95th Percentile Upper Confidence Boundsb 
Small game $12.40 $16.70 $15.46 $11.99 $11.00  $18.00
Flatfish $18.56 $9.40 $8.49 $8.25   
Other saltwater $4.87 $4.96 $4.58 $3.77 $3.60  
Salmon $28.70  $21.53 $21.53
Walleye/pike   $7.77 $8.49
Bass   $16.56 $19.01
Panfish  $2.10  $2.48 $2.10
Trout   $14.61 $5.27
Unidentified $5.16 $5.01 $5.71 $3.81 $5.89 $11.67 $4.58
a All values are in 2009$. 
b Upper and lower confidence bounds based on results of the Krinsky and Robb (1986) approach. 
Source: U.S. EPA (2006b), converted to 2009$ using the Consumer Price Index (USBLS 2010). 

 

7.3 Benefits Estimates for Recreational Fishing by Region 

7.3.1 California 

Table 7-5 shows the results of EPA’s analysis of the recreational fishing losses from I&E mortality under 
the baseline conditions at in-scope facilities in California. Baseline recreational fishing losses from I&E 
mortality in the California region amount to 1.0 million fish per year. The majority of recreational losses 
from I&E mortality under baseline conditions are attributable to entrainment of rockfish and sea bass. 
Table 7-5 shows the results of EPA’s analysis of the potential welfare gain to recreational anglers from 
eliminating baseline recreational fishing losses at in-scope facilities in California. The estimated mean 
annual welfare gain to California anglers from eliminating all of these losses is $2.9 million and $2.8 
million evaluated at 3 percent and 7 percent discount rates, respectively. The majority of the monetized 
recreational benefits from eliminating baseline I&E mortality are attributable to eliminating entrainment 
of “other saltwater” fish31. Appendix I presents additional species-specific results. 

                                                      
31 The “other saltwater” species group includes banded drum, black drum, chubby, cod family, cow cod, croaker, grouper, 

grunion, grunt, high-hat, kingfish, lingcod, other drum, perch, porgy, rockfish, sablefish, sand drum, sculpin, sea bass, smelt, 
snapper, spot, spotted drum, star drum, white sea bass, wreckfish, other bottom species, other coastal pelagics, and “no 
target” saltwater species. 
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As shown in Table 7-5, the estimated reduction in I&E mortality leads to an estimated annual increase in 
recreational fishery harvest of less than 0.1 million fish under Option 1 and approximately 0.9 million fish 
per year under Options 2 and 3. Discounted at 3 percent, the estimated mean annualized welfare gain to 
California anglers is approximately $0.1 million under Option 1, $1.7 million under Option 2, $1.8 
million under Option 3. Discounted at 7 percent, the estimated mean annualized welfare gain is $1.3 
million and $1.4 million under Options 2 and 3, and $0.1 million under Option 1 (Table 7-5). Appendix I 
presents additional species-specific results. 

 

Table 7-5: Recreational Fishing Benefits from Eliminating or Reducing Baseline I&E Mortality 
Losses at In-Scope Facilities in the California Region, by Regulatory Option (2009$) 

5th Mean 95th 5th Mean 95th

Baseline 1,022,339 $1,740 $2,923 $4,917 $1,681 $2,823 $4,750
Option 1 36,438 $51 $85 $141 $46 $75 $125
Option 2 876,841 $1,037 $1,741 $2,929 $792 $1,330 $2,237
Option 3 915,750 $1,096 $1,840 $3,095 $832 $1,396 $2,349

Annual Increase in 
Recreational Harvest

(harvestable adult fish)

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere; Option 4 = I for Facilities > 50 MGD

Regulatory 
Option 3 % Discount Rate 7 % Discount Rate

Annualized Benefits from Increase in Recreational Harvest 
(2009$, thousands)

 
 

 

7.3.2 North Atlantic Region 

Table 7-6 shows the results of EPA’s analysis of the recreational fishing losses from I&E mortality under 
the baseline conditions at in-scope facilities in the North Atlantic region. Baseline recreational fishing 
losses from I&E mortality in the North Atlantic region amount to 0.8 million fish per year. The majority 
of recreational losses from I&E mortality under baseline conditions are attributable to entrainment of 
winter flounder, cunner, and sculpin. Table 7-6 shows the results of EPA’s analysis of the potential 
welfare gain to recreational anglers from eliminating baseline recreational fishing losses at in-scope 
facilities in the North Atlantic. The estimated mean annual welfare gain to North Atlantic anglers from 
eliminating all of these losses is $2.8 million and $2.7 million evaluated at 3 percent and 7 percent 
discount rates, respectively. The majority of the monetized recreational benefits from eliminating baseline 
I&E mortality are attributable to eliminating the entrainment of “flatfish” and “other saltwater” fish. 
Appendix I presents additional species-specific results. 

As shown in Table 7-6, the estimated reduction in I&E mortality leads to an estimated annual increase in 
recreational fishery harvest of less than 0.1 million fish under Option 1, 0.6 million fish under Option 2, 
and 0.7 million fish under Option 3. Discounted at 3 percent, the estimated mean annualized welfare gain 
to North Atlantic anglers is less than $0.1 million under Option 1, $1.5 million under Option 2, and $1.6 
million under Option 3. Discounted at 7 percent, the estimated mean annualized welfare gain is less than 
$0.1 million under Option 1, $1.1 million under Option 2, and $1.2 million under Option 3 (Table 7-6). 
Appendix I presents additional species-specific results. 
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Table 7-6: Recreational Fishing Benefits from Eliminating or Reducing Baseline I&E Mortality 
Losses at In-Scope Facilities in the North Atlantic Region, by Regulatory Option (2009$) 

5th Mean 95th 5th Mean 95th

Baseline 761,183 $1,765 $2,838 $4,596 $1,705 $2,742 $4,440
Option 1 1,495 $3 $5 $9 $3 $5 $8
Option 2 620,929 $939 $1,510 $2,446 $698 $1,122 $1,817
Option 3 651,307 $1,018 $1,638 $2,652 $756 $1,216 $1,969

Annual Increase in 
Recreational Harvest

(harvestable adult fish)

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere; Option 4 = I for Facilities > 50 MGD

Regulatory 
Option

Annualized Benefits from Increase in Recreational Harvest 
(2009$, thousands)

3 % Discount Rate 7 % Discount Rate

 
 

7.3.3 Mid-Atlantic Region 

Table 7-7 shows the results of EPA’s analysis of the recreational fishing losses from I&E mortality under 
the baseline conditions at in-scope facilities in the Mid-Atlantic region. Baseline recreational fishing 
losses from I&E mortality in the Mid-Atlantic region amount to 9.1 million fish per year. The majority of 
recreational losses from I&E mortality under baseline conditions are attributable to I&E mortality of spot, 
Atlantic croaker, and “other saltwater” fish. Table 7-7 shows the results of EPA’s analysis of the potential 
welfare gain to recreational anglers from eliminating baseline recreational fishing losses at in-scope 
facilities in the Mid-Atlantic. The estimated mean annual welfare gain to Mid-Atlantic anglers from 
eliminating all of these losses is $25.6 million and $24.7 million evaluated at 3 percent and 7 percent 
discount rates, respectively. The majority of the monetized recreational benefits from eliminating baseline 
I&E mortality are attributable to eliminating the entrainment of other saltwater fish. Appendix I presents 
additional species-specific results. 

As shown in Table 7-7, the estimated reduction in I&E mortality leads to an estimated annual increase in 
recreational fishery harvest of approximately 0.6 million fish under Option 1, 8.4 million fish under 
Option 2, and 8.5 million fish under Option 3. Discounted at 3 percent, the estimated mean annualized 
welfare gain to Mid-Atlantic anglers is $14.1 million and $14.4 million under Options 2 and 3, and $1.6 
million under Option 1. Discounted at 7 percent, the estimated mean annualized welfare gain is $9.8 
million and $10.0 million under Options 2 and 3, and $1.4 million under Option 1 (Table 7-7). Appendix 
I presents additional species-specific results. 

 
Table 7-7: Recreational Fishing Benefits from Eliminating or Reducing Baseline I&E Mortality 
Losses at In-Scope Facilities in the Mid-Atlantic Region, by Regulatory Option (2009$) 

5th Mean 95th 5th Mean 95th

Baseline 9,081,061 $15,239 $25,569 $44,467 $14,721 $24,701 $42,958
Option 1 549,015 $846 $1,577 $3,136 $749 $1,396 $2,776
Option 2 8,359,591 $8,381 $14,073 $24,501 $5,831 $9,792 $17,049
Option 3 8,459,880 $8,584 $14,410 $25,078 $5,975 $10,030 $17,456

Annual Increase in 
Recreational Harvest

(harvestable adult fish)

Regulatory 
Option

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere; Option 4 = I for Facilities > 50 MGD

Annualized Benefits from Increase in Recreational Harvest 
(2009$, thousands)

3 % Discount Rate 7 % Discount Rate
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7.3.4 South Atlantic Region 

Table 7-8 shows the results of EPA’s analysis of the recreational fishing losses from I&E mortality under 
the baseline conditions at in-scope facilities in the South Atlantic region. Baseline recreational fishing 
losses from I&E mortality in the South Atlantic region amount to 0.1 million fish per year. The majority 
of recreational losses from I&E mortality under baseline conditions are attributable to I&E mortality of 
“other saltwater” fish, especially spot and croakers. Table 7-8 shows the results of EPA’s analysis of the 
potential welfare gain to recreational anglers from eliminating baseline recreational fishing losses at in-
scope facilities in the South Atlantic. The estimated mean annual welfare gain to South Atlantic anglers 
from eliminating all of these losses is approximately $0.3 million evaluated at both 3 percent and 7 
percent discount rates. The majority of the monetized recreational benefits from eliminating baseline I&E 
mortality are attributable to eliminating impingement of “other saltwater” fish. Appendix I presents 
additional species-specific results. 

As shown in Table 7-8, the estimated reduction in I&E mortality leads to an estimated annual increase in 
recreational fishery harvest of approximately 0.1 million fish under Options 2 and 3, and less than 0.1 
million fish per year under Option 1. Discounted at 3 percent, the estimated mean annualized welfare gain 
to South Atlantic anglers is $0.2 million under Options 2 and 3, and less than $0.1 million under Option 1. 
Discounted at 7 percent, the estimated mean annualized welfare gain is $0.1 million under Options 2 and 
3, and less than $0.1 million under Option 1 (Table 7-8). Appendix I presents additional species-specific 
results. 

 
Table 7-8: Recreational Fishing Benefits from Eliminating or Reducing Baseline I&E Mortality 
Losses at In-Scope Facilities in the South Atlantic Region, by Regulatory Option (2009$) 

5th Mean 95th 5th Mean 95th

Baseline 133,897 $257 $346 $469 $249 $335 $453
Option 1 15,882 $28 $37 $50 $24 $33 $45
Option 2 112,139 $141 $190 $257 $103 $139 $188
Option 3 112,301 $141 $190 $257 $103 $139 $188

Annual Increase in 
Recreational Harvest

(harvestable adult fish)

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere; Option 4 = I for Facilities > 50 MGD

Regulatory 
Option

Annualized Benefits from Increase in Recreational Harvest 
(2009$, thousands)

3 % Discount Rate 7 % Discount Rate

 
 

7.3.5 Gulf of Mexico 

Table 7-9 shows the results of EPA’s analysis of the recreational fishing losses from I&E mortality under 
the baseline conditions at in-scope facilities in the Gulf of Mexico region. Baseline recreational fishing 
losses from I&E mortality in the Gulf of Mexico region amount to 2.9 million fish per year. The majority 
of recreational losses from I&E mortality under baseline conditions are attributable to the impingement of 
spotted seatrout and the entrainment of black drum and “other saltwater” fish. Table 7-9 shows the results 
of EPA’s analysis of the potential welfare gain to recreational anglers from eliminating baseline 
recreational fishing losses at in-scope facilities in the Gulf of Mexico. The estimated mean annual welfare 
gain to Gulf of Mexico anglers from eliminating all of these losses is $8.9 million and $8.8 million 
evaluated at 3 percent and 7 percent discount rates, repectively. The majority of the monetized 
recreational benefits from eliminating baseline I&E mortality are attributable to both the impingement of 
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“small game” fish and the entrainment of “other saltwater” species. Appendix I presents additional 
species-specific results. 

As shown in Table 7-9, the estimated reduction in I&E mortality leads to an estimated annual increase in 
recreational fishery harvest of approximately 2.2 million fish under Options 2 and 3, and 0.7 million fish 
per year under Option 1. Discounted at 3 percent, the estimated mean annualized welfare gain to Gulf of 
Mexico anglers is $2.4 million under Option 1, and $4.9 million under Options 2 and 3. Discounted at 7 
percent, the estimated mean annualized welfare gain is $2.2 million under Option 1, and $3.8 million 
under Options 2 and 3 (Table 7-9). Appendix I presents additional species-specific results. 

 
Table 7-9: Recreational Fishing Benefits from Eliminating or Reducing Baseline I&E Mortality 
Losses at In-Scope Facilities in the Gulf of Mexico Region, by Regulatory Option (2009$) 

5th Mean 95th 5th Mean 95th

Baseline 2,851,347 $6,022 $8,852 $13,506 $5,999 $8,818 $13,456
Option 1 665,697 $1,398 $2,422 $4,334 $1,275 $2,210 $3,953
Option 2 2,204,063 $3,225 $4,866 $7,642 $2,491 $3,760 $5,908
Option 3 2,208,009 $3,258 $4,906 $7,690 $2,510 $3,781 $5,926

Annual Increase in 
Recreational Harvest

(harvestable adult fish)

Regulatory 
Option

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere; Option 4 = I for Facilities > 50 MGD

3 % Discount Rate

Annualized Benefits from Increase in Recreational Harvest 
(2009$, thousands)

7 % Discount Rate

 
 

 

7.3.6 Great Lakes Region 

Table 7-10 shows the results of EPA’s analysis of the recreational fishing losses from I&E mortality 
under the baseline conditions at in-scope facilities in the Great Lakes region. Baseline recreational fishing 
losses from I&E mortality in the Great Lakes region amount to 0.3 million fish per year. The majority of 
recreational losses from I&E mortality under baseline conditions are attributable to impingement of 
whitefish and entrainment of “unidentified” species. Table 7-10 shows the results of EPA’s analysis of the 
potential welfare gain to recreational anglers from eliminating baseline recreational fishing losses at in-
scope facilities in the Great Lakes. The estimated mean annual welfare gain to Great Lakes anglers from 
eliminating all of these losses is $2.0 million evaluated at both 3 percent and 7 percent discount rates. The 
majority of the monetized recreational benefits from eliminating baseline I&E mortality are attributable to 
eliminating the impingement of “other trout” and “unidentified” fish. Appendix I presents additional 
species-specific results. 

As shown in Table 7-10, the estimated reduction in I&E mortality leads to an estimated annual increase in 
recreational fishery harvest of approximately 0.2 million fish per year under Option 1, and 0.3 million fish 
under Options 2 and 3. Discounted at 3 percent, the estimated mean annualized welfare gain to Great 
Lakes anglers is $1.3 million under Options 2 and 3, and $1.0 million under Option 1. Discounted at 7 
percent, the estimated mean annualized welfare gain is $1.0 million under Options 2 and 3, and $0.9 
million under Option 1 (Table 7-10). Appendix I presents additional species-specific results. 
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Table 7-10: Recreational Fishing Benefits from Eliminating or Reducing Baseline I&E 
Mortality Losses at In-Scope Facilities in the Great Lakes Region, by Regulatory Option 
(2009$) 

5th Mean 95th 5th Mean 95th

Baseline 349,648 $1,127 $1,984 $3,544 $1,123 $1,977 $3,530
Option 1 176,089 $561 $951 $1,638 $511 $867 $1,495
Option 2 317,974 $720 $1,261 $2,241 $559 $979 $1,739
Option 3 320,196 $725 $1,271 $2,261 $561 $984 $1,750

Annual Increase in 
Recreational Harvest

(harvestable adult fish)

Regulatory 
Option

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere; Option 4 = I for Facilities > 50 MGD

Annualized Benefits from Increase in Recreational Harvest 
(2009$, thousands)

3 % Discount Rate 7 % Discount Rate

 
 

 

7.3.7 Inland Region 

Table 7-11 shows the results of EPA’s analysis of the recreational fishing losses from I&E mortality 
under the baseline conditions at in-scope facilities in the Inland region. Baseline recreational fishing 
losses from I&E mortality in the Inland region amount to 12.6 million fish per year. The majority of 
recreational losses from I&E mortality under baseline conditions are attributable to I&E mortality of 
“bass,” “panfish,” and “unidentified” species groups. Table 7-11 shows the results of EPA’s analysis of 
the potential welfare gain to recreational anglers from eliminating baseline recreational fishing losses at 
in-scope facilities in the Inland region. The estimated mean annual welfare gain to Inland anglers from 
eliminating all of these losses is $34.4 million and $34.2 million evaluated at 3 percent and 7 percent 
discount rates, respectively. The majority of the monetized recreational benefits from eliminating baseline 
I&E mortality are attributable to eliminating I&E mortality of “bass,” “panfish,” and “unidentified” fish. 
Appendix I presents additional species-specific results. 

As shown in Table 7-11, the estimated reduction in I&E mortality leads to an estimated annual increase in 
recreational fishery harvest of approximately 11.1 million fish and 11.4 million fish under Options 2 and 
3, and 4.7 million fish per year under Option 1. Discounted at 3 percent, the estimated mean annualized 
welfare gain to Inland anglers is $19.9 million and $20.7 million under Options 2 and 3, and $10.5 
million under Option 1. Discounted at 7 percent, the estimated mean annualized welfare gain is $9.6 
million under Option 1, $15.3 million under Option 2, and $15.8 million under Option 3 (Table 7-11). 
Appendix I presents additional species-specific results. 
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Table 7-11: Recreational Fishing Benefits from Eliminating or Reducing Baseline I&E 
Mortality Losses at In-Scope Facilities in the Inland Region, by Regulatory Option (2009$) 

5th Mean 95th 5th Mean 95th

Baseline 12,592,464 $16,566 $34,376 $71,653 $16,504 $34,247 $71,384
Option 1 4,321,037 $5,071 $10,545 $22,049 $4,626 $9,619 $20,115
Option 2 11,061,370 $9,578 $19,879 $41,449 $7,361 $15,277 $31,856
Option 3 11,389,049 $9,966 $20,684 $43,122 $7,592 $15,755 $32,847

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities >125 MGD; Option 3 = I&E Mortality Everywhere; Option 4 = I for Facilities > 50 MGD

Annual Increase in 
Recreational Harvest

(harvestable adult fish)

Regulatory 
Option

Annualized Benefits from Increase in Recreational Harvest 
(2009$, thousands)

3 % Discount Rate 7 % Discount Rate

 

7.4 Limitations and Uncertainties  

A number of limitations and uncertainties are common to all WTP values predicted using benefit transfer. 
To better characterize the uncertainty or error bounds around predicted WTP, EPA adopted the statistical 
procedure described by Krinsky and Robb in their 1986 Review of Economics and Statistics paper 
“Approximating the Statistical Property of Elasticities.” This procedure was used to generate lower and 
upper bound WTP values identified as the 5th and 95th percentile of values from the empirical 
distribution. Additional detail regarding the Krinsky and Robb approach is provided in Section 7.2.3. 
These bounds may help decision-makers understand the uncertainty associated with the benefit results for 
the elimination of baseline I&E mortality losses and 316(b) regulatory options. 

Specific limitations and uncertainties associated with the estimated regression model and the underlying 
studies are discussed in Section A5-3.3 of EPA (2006b). Additional limitations and uncertainties 
associated with implementation of the meta-analysis approach are addressed below. 

7.4.1 Variable Assignments for Independent Regressors  

The per-fish values estimated from the model depend on the values of the input variables in the meta-
analysis. EPA assigned values to the input variables based on established economic theory and 
characteristics of the affected species and regions. However, because the input values for some variables 
are uncertain, the resulting per-fish values and benefits estimates also include some degree of uncertainty. 

7.4.2 Exclusion of Error Term from Regression Equation to Predict Marginal Values 

EPA decided not to include the error term when using the regression equation to predict marginal values 
per fish. Bockstael and Strand (1987) argue that if the source of econometric error in an equation is 
primarily due to omitted variables, the error term should be included, but if the error is primarily due to 
random preferences, it should be excluded. EPA did not conclude whether the error is primarily due to 
omitted variables or random preferences. Because the error term is positive, the empirical effect of 
including this term is to increase the predicted marginal values. Therefore, EPA excluded the error term in 
order to result in more- conservative estimates. EPA also notes that when the error term is excluded, the 
values predicted by the regression equation are more consistent with those from the underlying studies. 
This indicates that convergent validity is greater when the error term is excluded. 
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7.4.3 Other Limitations and Uncertainties 

In addition to the limitations and uncertainties involved with the study data and model estimation, which 
are discussed in Section A5-3.3e of EPA (2006b), there are limitations and uncertainties involved with the 
calculation of per-fish values from the model, and with the use of those values to estimate the welfare 
gain resulting from the regulatory options considered for the final Section 316(b) regulation for existing 
Phase II facilities.  

The validity and reliability of benefit transfer—including that based on meta-analysis—depends on a 
variety of factors. While benefit transfer can provide valid measures of use benefits, tests of its 
performance have provided mixed results (e.g., Desvousges et al. 1998; Smith et al. 2002; Vandenberg et 
al. 2001). Nonetheless, benefit transfers are increasingly applied as a core component of benefit-cost 
analyses conducted by EPA and other government agencies (Bergstrom and De Civita 1999; Griffiths 
undated). Smith et al. (2002, p.134) state that “nearly all benefit cost analyses rely on benefit transfers, 
whether they acknowledge it or not.”  

An important factor in any benefit transfer is the ability of the study site or estimated valuation equation 
to approximate the resource and context for which benefit estimates are desired. As is common, the meta-
analysis model presented here provides a close but not perfect match to the context in which values are 
desired.  

The final area of uncertainty related to the use of the regression results to calculate regulatory benefits is 
uncertainty in the estimates of I&E mortality. There are a number of reasons why recreational losses due 
to I&E mortality may be higher or lower than expected. Projected changes in recreational catch may be 
underestimated because cumulative impacts of I&E mortality over time are not considered. In particular, 
I&E mortality estimates include only individuals directly lost to I&E mortality, not their progeny. 
Additionally, the interaction of I&E mortality with other stressors may have either a positive or negative 
effect on recreational catch. Finally, in estimating recreational fishing losses, EPA used the most current 
I&E mortality data available provided by facilities, which in some cases may not reflect current 
conditions. 
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8 Nonuse Benefits of Reducing I&E Mortality 

8.1 Introduction 

Comprehensive estimates of total resource value include both use and nonuse values, such that the 
resulting total value estimate may be compared to total social cost. “Non-use values, like use values, have 
their basis in the theory of individual preferences and the measurement of welfare changes. According to 
theory, use values and non-use values are additive” (Freeman III 1993). Consequently, excluding nonuse 
values from consideration is likely to substantially understate total social values. Recent economic 
literature provides substantial support for the hypothesis that nonuse values are greater than zero for many 
types of environmental improvements. Moreover, when a substantial fraction of the population holds even 
small per capita nonuse values, these nonuse values can be very large in the aggregate. As stated by 
Freeman (1993), “there is a real possibility that ignoring non-use values could result in serious 
misallocation of resources.” Consequently, both EPA’s own Guidelines for Preparing Economic Analysis 
and OMB’s Circular A-4, governing regulatory analysis, support the need to assess nonuse values 
(USEPA 2000a; USOMB 2003). 

The vast majority (97 percent) of current (i.e., baseline) impingement and entrainment mortality (I&E 
mortality) losses at cooling water intake structures (CWISs) consist of forage species or unlanded 
individuals of recreational and commercial species (Chapter 3). Although these forage fish and unlanded 
fish do not have direct use values, they may be valued by users (commercial fishers and recreational 
anglers) and nonusers of fisheries resources. Additionally, the nonuse values are likely to be substantial, 
because fish and other species found within aquatic habitats impacted directly and indirectly by CWISs 
provide other valuable ecosystem goods and services, including nutrient cycling and ecosystem stability. 
Therefore, a comprehensive estimate of the welfare gain from reducing I&E mortality losses must include 
an estimate of nonuse benefits. 

The following sections present EPA’s qualitative and quantitative assessments of nonuse benefits. EPA 
qualitatively evaluated the public’s nonuse values for aquatic habitats by considering evidence from 
existing aquatic restoration and protection programs (Section 8.2). This chapter also presents EPA’s 
benefit transfer approach for the quantification of nonuse benefits associated with reductions in I&E 
mortality of fish, shellfish, and other aquatic organisms under the 316(b) regulatory options in the North 
Atlantic and Mid-Atlantic Regions (Section 8.3). Section 8.4 presents estimated nonuse benefits under the 
316(b) regulatory options. 

8.2 Public Policy Significance of Ecological Improvements from the 
Proposed 316(b) Regulation for Existing Facilities 

Changes to CWIS design and operation resulting from 316(b) regulation of existing facilities is expected 
to reduce I&E mortality losses of fish, shellfish, and other aquatic organisms. These direct benefits are 
believed to lead to increases in local and regional fishery populations and ecosystem stability. Moreover, 
many indirect ecosystem goods and services are affected by I&E mortality, thermal effects, and flow 
alteration. Due to the wide-ranging nature of these indirect effects, EPA believes that regulation is likely 
to enhance the value of ecosystem goods and services provided by aquatic habitats, and that regulation 
will help reduce the overall impact of anthropogenic effects on aquatic systems affected by CWISs. Table 
2-4 provides a detailed list of ecosystem services potentially affected by the proposed 316(b) regulation.  
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EPA assessed the potential magnitude of nonuse benefits that are quantified, but not monetized using 
information regarding government spending on the protection, restoration, and regulation of various 
aquatic habitats. This included Marine Protected Areas (Section 8.2.2) and a subset of freshwater 
ecosystems undergoing large-scale restoration efforts (Section 8.2.3). This spending serves as a lower 
bound of nonuse values in a subset of geographical locations 

8.2.1 Effects on Depleted Fish Populations 

EPA believes that reducing fish mortality from impingement and entrainment (I&E) would contribute to 
the health and sustainability of the affected fish populations by lowering the overall level of mortality for 
these populations. Fish populations suffer from numerous sources of mortality, both natural and 
anthropogenic. Natural sources include weather, predation by other fish, and the availability of food. 
Human impacts that affect fish populations include fishing, pollution, habitat changes, and I&E mortality 
losses at CWISs. Fish populations decline when they are unable to sufficiently compensate for their 
overall level of mortality. Although it is difficult to measure, EPA believes that an aquatic population's 
compensatory ability—the capacity for a species to increase survival, growth, or reproduction rates in 
response to decreased population —is likely compromised by impingement and entrainment mortality 
(I&E mortality) losses and the cumulative impact of other stressors in the environment over extended 
periods of time (USEPA 2006a). Lowering the overall mortality level increases the probability that a 
population will be able to compensate for mortality at a level sufficient to maintain its long-term health. 
In some cases, I&E mortality losses may be a significant source of anthropogenic mortality to already-
depleted stocks of commercially targeted species (see Table 2-3). Depleted saltwater fish stocks affected 
by I&E mortality include winter flounder, Atlantic Cod, and rockfishes, for example (NMFS 2010a). As 
discussed in Section 2.3.1, I&E mortality also increases the pressure on freshwater species native to the 
Great Lakes, such as lake whitefish and yellow perch, whose populations have dramatically declined in 
recent years (USDOI 2008; Wisconsin DNR 2003).  

The federal government and the states have recognized the public importance of maintaining sustainable 
fisheries, achieving recovery of depleted fish stocks, and ensuring that functioning ecosystems are passed 
to future generations. Actions these governments have taken include buying fishing licenses and fishing 
vessels from individual fishers when stocks appear depressed, imposing restrictions on commercial and 
recreational harvests, conducting large-scale ecosystem restoration projects (USDOI 2008), and creating a 
national system of marine protected areas (Executive Order No. 13158 2001). Together, these 
governmental actions suggest that the public holds substantial nonuse values for aquatic habitats. 

To summarize, EPA believes that reducing fish mortality from I&E mortality along with other measures 
would contribute to the recovery of damaged fish populations. 

8.2.2 Marine Protected Areas 

A Marine Protected Area (MPA) is “any area of the marine environment that has been reserved by 
federal, state, tribal, territorial, or local laws or regulations to provide lasting protection for part or all of 
the natural and cultural resources therein” (Executive Order No. 13158 2001). In some states, the majority 
of coastal waters are found within MPAs (e.g., Massachusetts, Hawaii). The ecological importance of 
MPAs varies widely because of their broad focus on the preservation and maintenance of cultural and 
natural resources, and/or sustainable production (NMPAC 2006). Consequently, evaluating the impact of 
CWISs on the entire universe of MPAs may overstate the nonuse values for the ecological benefits 
associated with reductions in I&E mortality. For this reason, EPA focused on MPAs within the National 
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Estuary Program (NEP). The NEP was established in the 1987 amendments to the Clean Water Act 
(CWA) because the “Nation’s estuaries are of great importance to fish and wildlife resources and 
recreation and economic opportunity [and because maintaining] the health and ecological integrity of 
these estuaries is in the national interest” (Water Quality Act 1987). In addition to the 28 estuaries 
designated under the NEP (USEPA 2010a), EPA included facilities found in Chesapeake Bay (itself 
protected by the Chesapeake Bay Program [CBP]).  

Substantial federal and state resources have been directed to the NEP and Chesapeake Bay Program to 
enhance conservation of and knowledge about estuaries. From 2005 to 2007, NEP budgeted $965 million 
to protect and restore aquatic habitat, conduct outreach and research, upgrade stormwater infrastructure, 
and implement other priority actions to benefit the health of the 28 constituent estuaries. Approximately 
$130 million (13.5 percent) of the funding was designated for restoration programs (USEPA 2008). 
Between fiscal years 1995 and 2004, direct funding by federal and state governments to restore 
Chesapeake Bay averaged $366 million (GAO 2005), with an additional $131 million in direct spending 
in fiscal year 2005 (CBP 2007). Moreover, recent governmental action is likely to increase federal 
spending on restoration efforts in the future (Executive Order No. 13508 2009). All told, these 
expenditures reflect high public values for restoring (or protecting) the biological integrity of these 
ecosystems. 

A total of 116 Section 316(b) facilities exist on 75 waterbodies within MPAs designed to preserve natural 
resources and/or to ensure sustainable production (NOAA 2010b) (Figure 8-2; Table 8-1). Although these 
facilities are found in fresh, brackish, and marine waters, and in all regions of the country except 
California, the vast majority of 316(b) facilities occurring within MPAs occur in coastal waters, and are 
most highly concentrated in the Northeastern United States (i.e. both coastal and inland facilities) (Figure 
8-2; Table 8-1). Under Option 1, 87 percent of in-scope facilities found within MPAs obtain reductions in 
impingement mortality (IM), while entrainment mortality (EM) is not reduced at any facilities (Table 
8-1). Under Options 2 and 3, impingement mortality is reduced at 92 and 97 percent of 316(b) facilities in 
MPAs, while the addition of closed-cycle cooling results in reduced entrainment mortality at 72 and 92 
percent of in-scope facilities found in MPAs, respectively (Table 8-1). 



 

March 28, 2011  8-4 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

 

Figure 8-2: In-scope Facilities with CWISs Located In Marine Protected Areas. 
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Table 8-1: 316(b) Facilities in Marine Protected Areas, and Improvements in I&E Mortality 
Technologies by Regulatory Option 

I 
Mortality

E 
Mortality

I 
Mortality

E 
Mortality

I 
Mortality

E 
Mortality

California 0 0 0 0 0 0 0 0
North Atlantic 18 9 17 0 19 16 20 20
Mid-Atlantic 24 10 40 0 41 31 43 40
South Atlantic 5 23 10 0 10 9 10 9
Gulf of Mexico 9 44 8 0 10 10 10 10
Great Lakes 3 20 8 0 9 8 9 9
Inland 14 10 18 0 18 9 20 18
Total 73 116 101 0 107 83 112 106

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1= I Everywhere; Option 2 = I Everywhere and E for Facilities > 
125 MGD; Option 3 = I&E Mortality Everywhere.

Option 2 Option 3
Number of Facilities with Improved Technologies by Policy Option

Benefits Region
Affected 

Waterbodies

Baseline 
316(b) 

Facilitiesa 

Option 1

 

8.2.3 Restoration of Freshwater Ecosystems 

Reducing the effect of CWISs at 316(b) facilities is likely to benefit aquatic ecosystems nationwide, but 
the largest magnitude of improvements may occur in areas of the Great Lakes Basin and Mississippi 
River, with their high density of facilities. These freshwater bodies are subject to large-scale ecosystem 
restoration efforts that indicate public support for restoring the ecological health of these ecosystems 
(Northeast Midwest Institute 2010; USDOI 2008; USFWS 2011; Upper Mississippi River Basin 
Association 2004). 

Nationally, ecosystem restoration efforts focus on many issues, including coastal habitat restoration, 
protection of fish species, and conservation of migratory birds. For example, the federal government 
provided in excess of $1.7 billion for sport fish restoration between fiscal years 2005-2009 (USFWS 
2010d), and has initiated a 5-year multi-agency initiative to restore the ecosystems of the Great Lakes, for 
which $475 million was appropriated in fiscal year 2010 (CEQ et al. 2010). The restoration of major 
inland river ecosystems has been recognized as a worthwhile goal, with more than $100 million spent on 
restoring ecosystems along the Mississippi River (Brescia 2002; USEPA 2004c). Additionally, substantial 
federal funding for river restoration has been proposed for FY2011, with more than $730 million 
requested for major projects in the Missouri, Mississippi, Columbia, and Kissimmee rivers (USOMB 
2010a; USOMB 2010b). These projects include the construction of fish ladders, restoration of wetland 
nursery habitat, and the reduction of pollution. These expenditures indicate a high value placed on the 
maintenance and restoration of ecosystem function and the integrity of freshwater ecosystems.  

8.2.4 Summary of Evidence for Nonuse Values of Ecosystems Impacted by CWISs 

Overall, the public appears to hold substantial nonuse values for ecosystems and species impacted by 
CWISs. For example, governments at various levels have committed to the designation of MPAs at large 
scales. Governments also have committed substantial resources to the restoration of degraded aquatic 
ecosystems. This evidence suggests that the nonuse benefits of 316(b) regulation, although unquantified, 
are substantial. Additional discussion of nonuse impacts occurring under baseline conditions is provided 
in Chapter 2. 
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8.3 Quantitative Assessment of Ecological Nonuse Benefits 

Stated preference (SP) methods and benefit transfers based on SP studies are the generally accepted 
techniques for estimating nonuse values. SP methods rely on surveys that ask people to state their 
willingness to pay (WTP) for particular ecological improvements, such as increased protection of aquatic 
species or habitats with particular attributes. As mentioned above, EPA is in the process of developing a 
SP survey to estimate total WTP for improvements to fishery resources affected by I&E mortality from 
in-scope 316(b) facilities. This survey will provide estimates of total WTP which includes both use and 
nonuse values, will allow estimates of value associated with specific choice attributes (following standard 
methods for choice experiments), and will provide insight into the relative importance of use versus 
nonuse values in the 316(b) context. EPA did not have sufficient time before this notice of proposed 
rulemaking to fully develop and deploy this survey and thus derive estimates of the monetary value of 
reducing I&E mortality impacts at the national level. In the absence of original study values, EPA 
identified a recent SP study conducted by Johnston et al. (2009) that is closely related to the 316(b) policy 
context. Johnston et al. (2009) developed a Bioindicator-Based Stated Preference Valuation (BSPV) 
method specifically for applications to ecological systems.32 Like EPA’s planned survey, this study 
addresses policy changes that introduce forage fish to aquatic habitat but for which ultimate population 
effects are unknown. The study was originally developed to address Rhode Island residents’ preferences 
for the restoration of migratory fish passage over dams within an in-state watershed. It estimates nonuse 
values by asking respondents to consider changes in ecological indicators reflecting quantity of habitat, 
abundance of wildlife, ecological condition, and abundance of migratory fish species.  

EPA used Johnston et al. (2009) to conduct a benefits transfer to quantify nonuse benefits associated with 
reductions in I&E mortality under the 316(b) regulatory options for the North Atlantic and Mid-Atlantic 
benefits regions. The study’s choice experiment allows direct estimation of households’ WTP for policies 
that increase the number of fish in watersheds by changing human industrial uses of aquatic ecosystems. 
Section 8.3.1 describes Johnston et al. (2009) and BSPV methods in greater detail. This is followed by a 
description of EPA’s benefits transfer methods using Johnston et al. (2009) (Section 8.3.2) and estimated 
benefits for 316(b) regulatory options (Section 8.4).  

8.3.1 Description of Johnston et al. (2009) and BSPV Methods 

Johnston et al. (2009) developed the BSPV method to promote ecological clarity and closer integration of 
ecological and economic information within SP studies. The study’s focus on improved ecological 
valuation is an EPA priority as described in findings of EPA’s Science Advisory Board on valuing the 
protection of Ecological System and Services (USEPA 2009b). In contrast to traditional SP valuation, 
BSPV employs a more structured and formal use of ecological indicators to characterize and 
communicate welfare-relevant changes. It begins with a formal basis in ecological science, and extends to 
relationships between attributes in respondents’ preference functions and those used to characterize policy 
outcomes. Specific BSPV guidelines ensure that survey scenarios and resulting welfare estimates are 
characterized by (1) a formal basis in established and measurable ecological indicators, (2) a clear 
structure linking these indicators to attributes influencing individuals’ well-being, (3) consistent and 
meaningful interpretation of ecological information, and (4) a consequent ability to link welfare measures 
to measurable and unambiguous policy outcomes. The welfare measures provided by the BSPV method 
can be unambiguously linked to models and indicators of ecosystem function, are based on measurable 

                                                      
32 The study was funded by the EPA’s Science to Achieve Results (STAR) competitive grant program. 
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ecological outcomes, and are more easily incorporated into benefit cost analysis. It also provides a means 
to estimate values for ecological outcomes that individuals might value, even though they may not fully 
understand all relevant ecological science. 

Johnston et al. (2009) developed the BSPV methods for a case study addressing public preferences for the 
restoration of migratory fish passage in Rhode Island’s Pawtuxet Watershed. The BSPV survey (Rhode 
Island River: Migratory Fishes and Dams) was designed to estimate WTP of Rhode Island residents for 
options that would provide fish passage over dams and access to between 225 and 900 acres of historical 
habitat within the Pawtuxet Watershed to which there is currently no fish passage. The watershed 
currently provides no spawning habitat for migratory fish; access to all 4,347 acres of potential habitat is 
blocked by 22 dams and other obstructions (Erkan 2002). 

The survey was developed and tested over 2½ years through a collaborative process involving 
interactions of economists and ecologists; meetings with resource managers, natural scientists, and 
stakeholder groups; and 12 focus groups with 105 total participants. In addition to survey development 
and testing in focus groups, individual interviews were conducted with both ecological experts and non-
experts. These included cognitive interviews (Kaplowitz et al. 2004), verbal protocols (Schkade and 
Payne 1994) and other pretests conducted to gain additional insight into respondents’ understanding and 
interpretation of the survey. Careful attention to development and testing helped ensure that the survey 
language and format would be easily understood by respondents, that respondents would have similar 
interpretations of survey terminology and scenarios, and that the survey scenarios captured restoration 
outcomes viewed as relevant and realistic by both respondents and natural scientists. In all cases, survey 
development paid particular attention to the use and interpretation of ecological indicators and related 
information in the survey. 

The choice scenarios and restoration options presented within the survey were informed in part by data 
and restoration priorities in the Strategic Plan for the Restoration of Anadromous Fishes to Rhode Island 
Coastal Streams (Erkan 2002). Additional information was drawn from the ecological literature on fish 
passage restoration, interviews with ecologists and policy experts, and other sources described below. 
Consistent with the strategic plan, the choice experiment within the survey addressed restoration methods 
that neither require dam removal nor would cause appreciable changes in river flows; considered options 
included fish ladders, bypass channels and fish lifts. The choice experiment addresses forage species such 
as alewife and blueback herring that neither are subject to current recreational or commercial harvest in 
Rhode Island nor are charismatic species.  Hence, the species affected are a close analog to the forage fish 
affected in the 316(b) policy context. Moreover, the policy context of Johnston et al. (2009) involves 
changes to technologies used within in-water structures (i.e., the use of fish ladders or fish lifts at dams), 
providing another parallel to the 316(b) context, which also involves the use of new technologies within 
in-water structures to mitigate harm to aquatic organisms. 

The choice experiment asked respondents to consider alternative options for the restoration of migratory 
fish passage in the Pawtuxet Watershed. Respondents were provided with two multiattribute restoration 
options, “Restoration Project A” and “Restoration Project B,” as well as a status quo option that would 
result in no policy change and zero household cost. An example choice question is presented in Figure 8-
3. Prior to administration of the choice experiment questions, the survey provided information: (1) 
describing the current status of Rhode Island river ecology and migratory fish compared to historical 
baselines, (2) characterizing affected ecological systems and linkages, (3) describing the methods and 
details of fish passage restoration, and (4) providing the definitions, derivations and interpretations of 
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ecological indicators used in the survey scenarios, including the reason for their inclusion. All survey 
language and graphics were pretested carefully to ensure respondent comprehension. 

The restoration options are characterized by seven attributes, including five ecological indicators, one 
attribute characterizing public access, and one attribute characterizing unavoidable household cost. The 
included ecological indicators characterize: (1) the quantity of river habitat accessible to migratory fishes, 
(2) the number of fish migrating to upstream habitat, (3) the abundance of fish suitable for recreational 
harvest, (4) the abundance of fish-dependent wildlife, (5) and overall ecological condition. 

8.3.2 Benefits Transfer Methodology 

The following subsections describe EPA’s benefits transfer methods using the BSPV study. Section 
8.3.2.1 describes the estimation of WTP for a percentage increase in fish numbers using the BSPV study, 
and Section 8.3.2.2 describes the application of BSPV WTP values to I&E mortality reductions under 
316(b) regulatory options. 

8.3.2.1 Estimating WTP for a Percentage Increase in Fish Numbers 

As shown in Figure 8-3, within Johnston et al. (2009)’s choice scenarios each ecological attribute is 
expressed in relative terms with regard to upper and lower reference conditions (i.e., best and worst 
possible in the Pawtuxet) as defined in survey informational materials. Relative scores represent percent 
progress towards the upper reference condition (100 percent), starting from the lower reference condition 
(0 percent). This also implies bounds on the potential attribute levels that might occur in the choice 
questions, following guidance in the literature to provide visible choice sets (Bateman et al. 2004). The 
number of fish affected by 316(b) regulations is many times larger than that considered by Johnston et al. 
(2009) — therefore it would be inappropriate to apply the Johnston et al. (2009) values per fish to the 
316(b) fish reduction estimates (which exceed the maximum reference condition for Johnston et al. 
(2009)) to obtain a WTP value for this rulemaking. In order to conduct a benefit transfer that closely 
follows Johnston et al. (2009)’s study design for the Pawtuxet Watershed, resource improvements should 
be expressed as a percentage improvement relative to the existing resource condition. A variant of 
Johnston et al.’s (2009) model was hence used to conduct a benefit transfer predicated on percentage 
improvements in the fish condition, relative to the reference condition for each ecosystem. As 
improvements are bounded by the 100 percent reference condition in all cases, this at least partially 
ameliorates the scale concern described above. The remainder of this section describes EPA approach for 
estimating WTP per percentage improvement based on Johnston et al. (2009). 
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Figure 8-3: Example Choice Experiment Question from Johnston et al. (2009) 
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When specifying mixed logit models for SP choice experiments, economic theory provides guidance 
regarding certain aspects of model specification. For example, the parameter on program cost is expected 
to have a negative sign, reflecting a positive marginal utility of income. To ensure an appropriate sign for 
this parameter within mixed logit models, a common solution is to specify a lognormal distribution on the 
sign-reversed cost parameter. This solution, however, leads to well-known ambiguities for WTP 
estimation related to the long right-hand tail of the lognormal distribution, and often unrealistic mean 
WTP estimates over the entire distribution (Hensher and Greene 2003; Johnston and Duke 2007). As a 
result of this well-established problem, Hensher and Greene (2003, p. 148) recommend alternatives 
including the bounded triangular distribution for the program cost parameter. 

Here, following Hensher and Greene (2003), the random utility model is estimated using maximum 
likelihood ML with Halton draws in the likelihood simulation. Coefficients on program cost (cost) and 
migrants (the percentage point increase in the number of migratory fish able to reach watershed habitat) 
are important for estimating WTP for a percentage increase in fish numbers. Coefficients on all variables 
except that on program cost (cost) are specified as random with a normal distribution. This includes the 
variable migrants. The coefficient on annual household cost (cost) is specified as random with a bounded 
triangular distribution as specified above with the mean equal to the spread (m=s), ensuring a positive 
marginal utility of income. Sign-reversal is applied to the cost variable prior to estimation, so that the 
expected parameter sign is positive (Hensher and Greene 2003).33 Table 8-2 presents model results. 

Because the mixed logit model includes random coefficients, EPA estimated WTP using the welfare 
simulation approach of Johnston and Duke (2007; 2009) following Hensher and Greene (2003). The 
procedure begins with a parameter simulation following the parametric bootstrap of Krinsky and Robb 
(1986), with R=1000 draws taken from the mean parameter vector and associated covariance matrix. For 
each draw, the resulting parameters are used to characterize asymptotically normal empirical densities for 
fixed and random coefficients. For each of these R draws, a coefficient simulation is then conducted for 
each random coefficient, with S=1000 draws taken from simulated empirical densities. Here, all 
coefficient simulations draw from a normal distribution except for that on cost, which draws from a 
bounded triangular distribution with m=s=0.05148015. Because the use of a triangular distribution on 
program cost ameliorates the “long tails” problem of the lognormal distribution, and also due to 
differences in the estimated functional form, these results provide lower WTP estimates, particularly for 
relatively small increases in fish numbers. Welfare measures are calculated for each draw, resulting in a 
combined empirical distribution of R×S observations from which summary statistics are derived. The 
resulting empirical distributions accommodate both the sampling variance of parameter estimates and the 
estimated distribution of random parameters. Here, we follow Hu et al. (2005) and simulate welfare 
estimates as the mean over the parameter simulation of mean WTP calculated over the coefficient 
simulation (i.e., mean of mean WTP).  

 

                                                      
33 Because the mixed logit model includes random coefficients, we estimate WTP using the welfare simulation approach of 

Johnston and Duke (2007; 2009) following Hensher and Greene (2003). The resulting empirical distributions accommodate 
both the sampling variance of parameter estimates and the estimated distribution of random parameters. We follow Hu et al. 
(2005) and simulate welfare estimates as the mean over the parameter simulation of mean WTP calculated over the 
coefficient simulation (i.e., mean of mean WTP). 
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Table 8-2: Results of Mixed Logit Maximum Likelihood Estimation (Bounded Triangular 
Cost) 

Variable Coefficient Standard Error b/ St. Er. P[|Z|>z] 

Random parameters in utility functions 
NEITHER -5.412 1.489 -3.635 0.000 
ACRES 0.047 0.013 3.637 0.000 
MIGRANT 0.028 0.009 3.266 0.001 

ACCESS 1.538 0.274 5.609 0.000 

CATCH -0.004 0.008 -0.474 0.635 

WILD 0.024 0.009 2.755 0.006 

IBI 0.016 0.017 0.957 0.338 

COST 0.051 0.009 5.998 0.000 
Derived standard deviations of parameter distributions 

NsNEITHER 5.424 1.140 4.760 0.000 

NsACRES 0.076 0.028 2.686 0.007 

NsMIGRANT 0.004 0.017 0.214 0.831 

NsACCESS 1.950 0.372 5.239 0.000 

NsCATCH 0.030 0.031 0.981 0.326 

NsWILD 0.031 0.024 1.279 0.201 

NsIBI 0.043 0.036 1.181 0.238 

TsCOST 0.051 0.009 5.998 0.000 
Parameter Descriptions: 
neither – Alternative specific constant (ASC) associated with the status quo, or a choice of neither plan. 
acres – The number of acres of river habitat accessible to migratory fish. 
migrant - The percentage point increase in the number of migratory fish able to reach watershed habitat. 
access – Indicates whether the restored area is accessible to the public for walking and fishing. 
catch – The number of catchable-size fish in restored areas. 
wild – Number of fish-eating wildlife species that are common in restored areas. 
IBI – Index of biotic integrity (IBI) score reflecting the similarity of the restored area to the most undisturbed 
watershed in Rhode Island. 
cost – The household annual cost required to implement the restoration program. 

 

Estimated benefit functions from the EPA/STAR choice experiment survey allow one to distinguish 
benefits associated with resource uses from those associated primarily with nonuse motives. Within the 
benefit transfer application, WTP is quantified for increases in non-harvested fish alone based on the 
implicit price for migratory fish changes. This transfer holds constant all effects related to identifiable 
human uses (e.g., effects on catchable fish, public access, observable wildlife, etc.). The remaining 
welfare effects—derived purely from effects on forage fish with little or no direct human use—may 
therefore be most accurately characterized as a nonuse benefit realized by households. 

The above simulation provides a WTP estimate of $0.76 per percentage point increase in migratory fish, 
where zero represents no fish and 100 percent represents the maximum possible number of fish that may 
be supported by the ecosystem, following Johnston et al. (2009). Results for total household WTP for a 
series of percentage improvements in fish numbers are shown below in Table 8-3.34 These percentage 
improvements do not represent population increases; rather, they reflect new fish within a specific habitat 

                                                      
34 Within the Pawtuxet Watershed study area (the original study location), each percentage point increase in migratory fish is 

equivalent to 12,250 individual fish. 



 

March 28, 2011  8-12 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

area that may be counted. EPA transferred this estimate of $0.76 per percentage improvement to estimate 
nonuse benefits of 316(b) regulatory options. 

 

Table 8-3: WTP per Percentage Increase in the Number of Fish 

Percentage Point Increase 
in Number of Fish 

WTP per % Increase in the 
Number of Fish 

Total WTP per Household 

1 $0.76 $0.76 
12 $0.76 $9.13 
20 $0.76 $15.21 

33 $0.76 $25.10 

100 $0.76 $76.05 

 

8.3.2.2 Estimating Total WTP for Eliminating or Reducing I&E Mortality at CWISs 

The BSPV study was developed as a case study is for a watershed-level policy in Rhode Island. While it 
provides parameterized benefit functions that require the fewest assumptions to implement for benefit 
extrapolation to the 316(b) case, estimates are likely to be representative of nonuse values held by 
individuals residing in the Northeast U.S. EPA expects that it would provide less accurate estimates of 
nonuse values for residents of other U.S. regions outside the Northeast. EPA was unable to identify 
valuation studies conducted in other regions which would provide benefit functions of comparable quality 
and applicability to the 316(b) regulatory context. Although other studies in the literature value changes in 
aquatic resources, they don’t provide a good match to the 316(b) policy scenario in terms of the expected 
resource change. The large number of assumptions required for developing benefits transfer based on 
these studies would result in greater uncertainties compared to application of the BSPV study. Therefore, 
EPA restricted the benefits transfer to the North Atlantic and Mid-Atlantic EPA 316(b) study regions. 

The structure of the BVSP choice experiment dictates that WTP estimates for each species are not 
additive. Rather the overall WTP should be evaluated based on the single species that would experience 
the greatest relative increase in abundance from restoration. To match the original valuation scenario to 
the 316(b)policy scenario , EPA evaluated model results and available biological data to determine the 
species for which relative abundance is most affected by I&E mortality. By comparing baseline age-1 
equivalent losses to an estimate of total baseline fish abundance. EPA identified winter flounder as the 
species suffering the greatest from baseline I&E mortality in the Northeast U.S. (i.e., North Atlantic and 
Mid-Atlantic regions). EPA’s analysis was limited to species with readily available estimates of spawning 
stock biomass for the Northeast U.S. from stock assessments conducted by the NOAA Northeast 
Fisheries Science Center. This included a review of four species:winter flounder, striped bass, bluefish, 
and Atlantic butterfish. (Table 8-4). All four species are harvested commercially, however fish of 
commercial species may be forage during early life-stages and have nonuse values. The total baseline 
I&E mortality in the North-Atlantic and Mid-Atlantic regions were evaluated together to represent the 
Northeast U.S. for consistency with the available stock assessments, which include waters from Maine 
south to North Carolina.  
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Table 8-4: Baseline I&E Mortality Losses and Estimated Fish Numbers for the 
Northeast U.S. (North Atlantic and Mid-Atlantic Regions) 

Species
Baseline I&E Losses

(millions of A1E)
Estimated Fish Numbers 

(millions)a

Winter Flounder 6.502 21.1
Striped Bass 1.399 14.3
Bluefish 0.001 116.1
Atlantic Butterfish 0.008 28.9

a Estimated population size was calculated by applying a conversion factor (lbs per fish) to an 
esitmate of spawning stock biomass.

 
 

EPA expects that decreasing I&E mortality will lead to increased fish abundance in affected waterbodies. 
EPA assumes that the total number of fish introduced to local habitats throughout the Northeast under 
each regulatory option would be equivalent to the sum of age-1 equivalent reductions for the North 
Atlantic and Mid-Atlantic regions. Application of the BSPV model results requires that the increases be 
expressed as a percentage improvement from current conditions relative to a maximum number of fish 
that could be supported by the ecosystem. EPA assumed a maximum of 99 million fish based on the 
estimated biomass maximum sustainable yield from the Northeast Fisheries Science Center assessment of 
the Southern New England stock (NOAA 2006) and a conversion factor of 1.2 lbs pounds per fish. 

EPA’s calculation of nonuse values from eliminating or reducing I&E mortality losses for each regulatory 
option involved the following steps:  

1. Calculate the percent change increase in total winter flounder numbers in the Northeast U.S. (the 
North Atlantic and Mid-Atlantic regions combined) by comparing age-1 equivalent reductions 
under each regulatory option relative to a baseline of 99 million fish. 

2. Multiply the percentage change in fish numbers by $0.76 (Table 8-3) to calculate the WTP per 
household per year for the relative increase in winter flounder numbers resulting from the 
regulatory option. 

3. Calculate regional WTP for each regulatory option by multiplying WTP per household by the 
total number of households within the North Atlantic and Mid-Atlantic regions, respectively. 

The results from implementing these steps for each of the 316(b) regulatory options are described in 
Section 8.4. 

8.4 Estimates of Total WTP by Option and Region 

Table 8-5 summarizes EPA’s estimates of WTP for increased fish numbers resulting from the 316(b) 
regulatory options in the North Atlantic and Mid-Atlantic regions. EPA estimates that elimination of 
baseline losses would increase the number of winter flounder in the Northeast U.S. by more than 6.5 
million fish. This is equivalent to a 6.6 percent increase in winter flounder relative to a maximum of 99 
million fish (i.e., 6.5 million divided by 99.0 million). Multiplying the 6.6 percent increase by a value of 
$0.76 per percentage increase (as presented in Table 8-3) yields a household WTP of $4.99 per year. 
Applying the household WTP values to the number of households in each region results in annualized 
WTP values of $26.3 million and $102.3 million for the North Atlantic and Mid-Atlantic regions, 
respectively, using a discount rate of 3 percent. Annualized WTP values are $26.8 million for the North 
Atlantic and $104.0 million for the Mid-Atlantic using a discount rate of 7 percent. 
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EPA estimates that Option 1 would increase winter flounder numbers by less than 0.1 percent in the 
North Atlantic and Mid-Atlantic waters. Applying per household WTP to this percent increase in the 
number of winter flounder ($0.02) to the number of households in each region yields the total WTP for 
improvements in winter flounder abundance. The estimated annualized WTP values are approximately 
$0.1 million and $0.4 million for the North Atlantic and Mid-Atlantic regions, respectively, using both 3 
percent and 7 percent discount rates (Table 8-5). Table 8-5 also presents household WTP and annualized 
WTP for Option 2 and Option 3. 
 

Table 8-5:  Nonuse Value of Eliminating or Reducing Baseline I&E Mortality Losses by 
Regulatory Option for All In-scope Facilities in the North Atlantic and Mid-Atlantic Regions 

Baseline Option 1 Option 2 Option 3
Reduction in Northeast IM&EM (millions of age-1 
equivalents)

6.50 0.03 5.32 5.57

Maximum Population (millions of fish) 99.0 99.0 99.0 99.0
Percentage Increase in Fish within Northeast 
Waters

6.56% 0.03% 5.37% 5.63%

Household WTP per Percent Increase in Fish 
Numbers (2009$)

$0.76 $0.76 $0.76 $0.76

Annual WTP per Household (2009$) $4.99 $0.02 $4.08 $4.28

Number of Households (millions) 5.4 5.4 5.4 5.4
Annual WTP (millions of 2009$) $26.9 $0.1 $22.0 $23.1
Annualized WTP (3% discount rate; millions 
of 2009$)

$26.3 $0.1 $14.8 $15.5

Annualized WTP (7% discount rate; millions 
of 2009$)

$26.8 $0.1 $11.5 $12.0

Number of Households (millions) 21.0 21.0 21.0 21.0
Annual WTP (millions of 2009$) $104.6 $0.5 $85.6 $89.7
Annualized WTP (3% discount rate; millions 
of 2009$)

$102.3 $0.4 $57.3 $60.0

Annualized WTP (7% discount rate; millions 
of 2009$)

$104.0 $0.4 $44.5 $46.5

North Atlantic

Mid-Atlantic

Scenarios: Baseline = Elimination of Baseline I&E Mortality losses; Option 1 = I Everywhere; Option 2 = I 
Everywhere and E for Facilities with > 125 MGD; Option 3 = I&E Mortality Everywhere  

 

8.5 Limitations and Uncertainties 

A number of issues are common to all benefit transfers. Benefit transfer involves adapting research 
conducted for another purpose in the available literature to address the policy questions at hand. Because 
benefits analysis of environmental regulations rarely affords enough time to develop original SP surveys 
that are specific to the policy effects, benefit transfer is often the only option to inform a policy decision. 
Some of the limitations and uncertainties associated with implementing a benefits transfer using Johnston 
et al. (2009) are addressed below. Broader limitations and uncertainties associated with benefit transfer in 
general are discussed by Johnston and Rosenberger (2010). 
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8.5.1 Scale of Fishery Improvements 

Given the scale of the Johnston et al. (2009) survey upon which these results are based, the most reliable 
results apply within the range of the choice experiment data (e.g., fish percentage point increases < 33 
percent). Again, the maximum possible increase within the Pawtuxet policy context, 100 percent, is 
defined as the maximum number of fish that can be supported by the Pawtuxet Watershed with fish 
passage. Transfer to increases in fish below this magnitude may introduce uncertainty in the WTP 
estimate per percentage increase in fish numbers.  

8.5.2 Scale and Characteristics of the Affected Population 

The results of Johnston et al. (2009) reflect WTP for improvements in nearby watersheds, and there may 
be a decline in WTP as policy areas become more distant. The most reliable application of these results 
would be to calculate WTP for I&E mortality reductions in a single local watershed. However, the 316(b) 
regulation would reduce I&E mortality losses and would improve fish populations in multiple watersheds 
within some states. As noted, it was assumed for these purposes that households have consistent values 
for improvements in multiple watersheds within their state or region. Moreover, for transfers based on 
absolute fish numbers, it is assumed that the per household WTP for changes in the numbers of fish for all 
watersheds located within their state, including watersheds that are shared by multiple states, would be at 
least equal to the WTP value for improvements in a single watershed. Hence, estimated per household 
WTP is based on the average watershed improvement within the state—an approach to scale effects that 
likely provides conservative welfare estimates. 

The Johnston et al. (2009) study context was a single watershed in Rhode Island. Using the benefits 
transfer approaches outlined here, the benefit function is applied to all states in the North Atlantic and 
Mid-Atlantic regions without adjustment, based on mean household income or local watershed 
characteristics. Some heterogeneity in WTP would be expected across states and regions due to diversity 
in species and public values. EPA did not extend the benefits transfer beyond the North Atlantic and Mid-
Atlantic regions because of the potential for substantial differences in preferences, demographics, and 
species characteristics in other regions compared to the original context of Johnston et al. (2009).  

8.5.3 Fish Population Size, Type and Improvement from the Elimination of I&E Mortality 

For the purposes of the benefit transfer it was assumed that the number of fish gained by eliminating I&E 
mortality would be equal to baseline I&E mortality losses and reductions under each option. These 
increases are not intended to represent changes in fish population. 

There is some uncertainty regarding the geographic range of species included in the analysis. Based on 
information from NOAA Northeast Fisheries Science Center, the range of species included here extends 
south of the Mid-Atlantic region to North Carolina. The lack of adjustment based on the additional 
geographic range factor leads to more-conservative estimates of benefits to the North Atlantic and Mid-
Atlantic regions. 

Finally, while both the study and policy contexts involve forage fish, the specific species compositions 
involved differ between Johnston et al. (2009) and 316(b). For example, most of the fish affected within 
Johnston et al. (2009) are migratory fish such as river herring, while such species may make up a smaller 
proportion of those affected by CWISs. If WTP is sensitive to the specific type of forage fish involved, 
this could be a potential source of generalization error. 
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9 Habitat Based Methodology for Estimating Nonuse Values of Fish 
Production Lost to I&E Mortality 

9.1 Introduction 

The loss of commercially- or recreationally-important aquatic species due to impingement and 
entrainment mortality (I&E mortality) at CWISs is typically valued as a direct use loss (e.g., commercial 
and recreational harvest). However, aquatic species without any direct uses account for 97.3 percent of 
I&E mortality at cooling water intake structures (CWIS) (Chapter 3). Therefore, estimating the total 
(inclusive of nonuse) value of these losses is important when determining the benefits of reducing 
impingement and entrainment (I&E) mortality. 

One way to estimate the value of direct I&E mortality is to approximate the area of habitat required to 
produce and support these organisms. Because fish habitat has been valued by many existing studies, 
habitat provides an indirect basis for valuing the nonuse values of fish. These values may be transferred 
because members of the general public are aware of the fish production services provided by eelgrass 
(submerged aquatic vegetation, SAV) and wetlands; individuals express support for programs that include 
increasing SAV and wetland areas with the expressed goal of restoring depleted fish and shellfish 
populations (Mazzotta 1996; Opaluch et al. 1995; 1998). 

Thus, the habitat-based method for estimating nonuse values of fish lost to I&E mortality is a two-step 
process. First, the area of habitat required to replace fish and shellfish lost to I&E mortality is estimated. 
The public’s WTP for this habitat is then assessed. When combined, these data yield an estimate of 
household values for improvements in fish and shellfish habitat, which in turn provides an indirect 
estimate of the benefits of reducing or eliminating I&E mortality.  

This benefit transfer approach involves four general steps: 

1. Estimate the area of habitat necessary to support the number of organisms lost to I&E mortality. 

2. Develop WTP values for fish production services of habitat ecosystems. 

3. Estimate the total value of baseline nonuse I&E mortality by multiplying WTP values for fish and 
shellfish services by the area of habitat required to offset I&E mortality. 

4. Estimate the direct nonuse benefits of proposed regulatory options, in terms of the value of 
decreased I&E mortality, by multiplying WTP values for fish and shellfish services by the area of 
habitat required to offset I&E mortality. 

This methodology estimates only those nonuse values related to I&E mortality of organisms, and not any 
indirect ecosystem effects of I&E mortality, or or chemical effects of CWISs (Chapter 2). EPA does not 
include values generated using this habitat based approach within its estimates of total benefits for 
eliminating or reducing I&E mortality under the 316(b) regulatory options. While they illustrate the 
potential magnitude of nonuse values, EPA does not consider HEA appropriate for a primary analysis of 
nonuse benefits. The remainder of this chapter describes the methodology and estimates of total WTP 
values for lost aquatic organisms, using a habitat equivalency analysis in conjunction with a benefit 
transfer of habitat values. It also includes a description of limitations and uncertainties of this approach. 
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9.2 Estimating the Amount of Habitat Needed to Offset I&E Mortality 

The first step in the habitat-based method for valuing nonuse I&E mortality values is estimating the area 
of habitat needed to offset I&E mortality. The process of quantitatively adjusting the size of the 
restoration action such that the services that it provides equal those that were lost due to I&E mortality of 
aquatic organisms is referred to as restoration scaling (NOAA 2006; Strange et al. 2002). A restoration 
project is correctly “scaled” when it achieves ecological equivalence. Ecological equivalence is met when 
the magnitude of a restoration reproduces the ecological services provided by a resource prior to injury. 

Restoration scaling approaches are based on the principles of Habitat Equivalency Analysis (HEA). HEA 
was developed by the National Oceanic and Atmospheric Administration (NOAA) to determine public 
compensation for natural resource losses following natural resource damage assessments (NRDAs) that 
occur under the auspices of the Oil Pollution Act (OPA). HEA is a service-to-service scaling approach: it 
does not assume a one-to-one trade-off in resources, but instead in the natural resource services that these 
resources provide (NOAA 2006). In order to fully compensate for natural resource damages, restoration 
action must provide services of the same type and quality as those lost.  Discounting is used to account for 
time lags between the loss of services and their restoration.35 

To estimate the impact of I&E mortality and the benefits of regulation using a habitat-based methodology, 
EPA selected a trophic transfer approach to scale restoration. The trophic transfer approach is based on 
food-web connectivity that occurs between primary producers and the production of resident and transient 
fish (French McCay and Rowe 2003; Kneib 2003). Using this approach, the area of habitat necessary to 
provide fish and shellfish lost due to I&E mortality is calculated through food-web interactions to 
estimate the area of habitat necessary to compensate for these losses. Such an approach has been used to 
scale restoration to compensate for injuries to aquatic resources under various NRDAs as well as for 
estimating restoration necessary to compensate for I&E mortality under the National Pollutant Discharge 
Elimination System (NPDES) permitting process (Balletto et al. 2005; French McCay et al. 2002; NOAA 
2009; Penn and Tomasi 2002; PSEG 2006; Teal and Weinstein 2002). The trophic transfer approach 
requires four basic steps to estimate the area of habitat restoration necessary to compensate for I&E 
mortality (Figure 9-1). 

EPA estimated values in each region using a single habitat characteristic of the region. Although the 
Agency recognizes that many species lost to I&E mortality rely upon more than one habitat during their 
life history, a single habitat was chosen as most representative for each region to ensure data availability, 
ensure calculation simplicity, and provide a representative habitat required by many species in the region. 

9.2.1 Quantify the Mass of Production Lost to I&E Mortality 

The first step in application of the trophic transfer is estimating the mass of production lost to I&E 
mortality. This calculation requires estimating the number of organisms lost to I&E mortality on an 
annual basis (Chapter 3) as well as determining the annual reduction of productivity as a consequence of 
these losses. Additionally, this step requires estimating the benefits projected to accrue as a result of 
regulation.  

                                                      
35 “The discount rate incorporates the standard economic assumptions that people place a greater value on having resources 

available in the present than on having their availability delayed until the future” (p.7) (NOAA 2006). For the methods 
discussed, the standard discount rate is 3%. 
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Within the trophic transfer framework, losses are calculated as the annual biomass production associated 
with organisms lost to I&E mortality. The vast majority of organisms lost to I&E mortality are less than 1 
year of age at the time of loss (numerically, the greatest losses occur for eggs and larvae, as discussed in 
Chapter 3). For this reason and to simplify computation, EPA converted all I&E mortality to age-1 
equivalents. These losses were then multiplied by the mass of age-1 equivalents and the ratio of dry to 
wet mass to estimate the dry mass of lost productivity on an annual basis (Appendix Equation J-1). 

 

Quantify regional I&E Mortality as 
a measure of lost productivity

Select a restoration habitat 
for all benefits regions

Quantify expected 
productivity increases  
from habitat restoration

Scale habitat restoration
to offset I&E Mortality and estimate 

benefits under regulatory options

Step 1:

Step 2:

Step 3:

Step 4:

 

Figure 9-1: Implementation of the Trophic Transfer Approach 

9.2.2 Production per Unit of Habitat 

The second step for implementation of the trophic transfer is the calculation of production per unit of 
habitat. Each acre of restored habitat generates some quantity of primary productivity per year, measured 
here as the annual accumulation rate of dry biomass (i.e., kg dry mass per acre per year). Some proportion 
of this productivity is exported from the ecosystem due to factors such as water movement; this 
productivity is not available to the ecosystem. Remaining primary productivity is then converted to 
secondary productivity using trophic conversion based on a highly simplified four-level food chain 
(Figure 9-2). Trophic conversion efficiencies (or trophic transfers) refer to the inefficiency of energy 
exchange between trophic levels. They can be thought of as the production rate of biomass of predatory 
organisms per unit biomass of food (Penn and Tomasi 2002; Strange 2008). EPA assumed that all 
consumers in the simplified food chain model are food-limited, and that the production of consumers is 
proportional to gains in prey abundance based on trophic conversion efficiencies (French McCay and 
Rowe 2003). 

EPA specified all I&E mortality species as secondary consumers when scaling restoration.36 Thus, to 
compare fish production lost to I&E mortality to production gained through habitat restoration, primary 
productivity from habitat must to be converted to an equivalent amount of production of secondary 

                                                      
36 EPA’s assumption that I&E mortality species are secondary consumers is consistent with PSEG’s assumptions when scaling 

restoration for the Salem facility (e.g., Balletto et al. 2005; PSEG 2006) and assumptions in multiple NRDAs when scaling 
restoration to compensate for fish losses due to oil spills (e.g., French McCay et al. 2002; Penn and Tomasi 2002). 
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consumer. This calculation requires estimated values for primary production, carbon export, and 
conversion efficiencies from primary production to detritus, detritus to primary consumers, and primary 
consumers to secondary consumers (Appendix Equation J-2). The remainder of this section describes 
these parameters in detail, and how EPA obtained estimates of these values. 

Primary Productivity
Accumulation of energy 

and nutrients by autotrophs

Detritus
Freshly dead or partially 

decomposed organic matter

Primary Consumers
Organisms that consume detritus 

and/or primary production. Includes 
macroinvertebrates and plankton.

Secondary Consumers
Consumers of primary consumers, 

including young-of-year fish

Carbon Export
Loss of productivity by 

water movement

Trophic Conversion
Loss of energy due 

to metabolic processes

Trophic Conversion

Trophic Conversion

 

Figure 9-2: Trophic Levels and Processes Calculated with the Simplified, 
Four Level Trophic Transfer Model 

9.2.2.1 Primary Production per Acre 

EPA identified five habitat types for scaling regional I&E mortality losses based on (1) importance as 
foundation species (i.e., species involved in habitat formation) with trophic linkages to secondary 
production, (2) regional geographic distribution, and (3) the availability of published values of primary 
productivity (Section 9.2.3). These habitats include: eelgrass (Zostera marina) meadows in the North 
Atlantic; saltmarsh dominated by smooth cordgrass (Spartina alterniflora) in the Mid-Atlantic, South 
Atlantic and Gulf of Mexico; giant kelp (Macrocystis pyrifera) forests in California; and wetlands 
dominated by broadleaf cattail (Typha latifolia) in the Inland and Great Lakes regions.  

Although estimates of primary productivity (PP) are best generated through site-specific study, it is 
common for analysts to use estimates from the literature when scaling restoration (e.g., French McCay et 
al. 2002; Penn and Tomasi 2002). EPA identified peer-reviewed sources for each habitat type used to 
scale I&E mortality. For each of the seven 316(b) regions, EPA compiled net primary productivity (NPP) 
values from the primary scientific literature as well as reviews or past compilations of primary 
productivity values. EPA standardized these values to the metric of kg dry mass per acre per year. In 
cases when multiple sites were measured within an investigation, EPA used the average value. 

Primary production depends on several factors, including but not limited to the conditions and 
characteristics of the study site and study methodology. Due to geographic variations in growing season 
and climate, primary productivity of species may differ substantially both within and among regions 
(Appendix Table J-1). For example, regional productivity estimates used in past salt marsh scaling 
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applications include 2,204 kg dry mass acre-1 in Rhode Island (French McCay and Rowe 2003), 6,636 kg 
dry mass acre-1 yr-1 in New Jersey, (PSEG 2006; Strange 2008), and 11,716 kg dry mass acre-1 in 
Louisiana (Penn and Tomasi 2002) (Appendix Table J-1).37 To obtain regionally-applicable values for 
primary productivity, EPA used an average of habitat-specific productivity values from a minimum of 
four published values in all calculations (Appendix Table J-1).  

The NPP fraction most easily converted to detritus (freshly dead or partially decomposed organic matter 
(Ricklefs 2001)), and therefore available for secondary production, is above-substrate primary production. 
Consequently, EPA included above-substrate primary production in its calculations. This includes all 
emergent stems and leaf tissue in cordgrass and cattail, and leaf tissue for eelgrass and turtle grass. For 
giant kelp, which uses a benthic holdfast, all biomass production in the water column was included in 
estimates of NPP.38 Estimates of NPP also include primary production of epiphytic periphyton or 
macroalgae (e.g., attached to root stalks in wetland and saltmarsh, or to submerged leaves of eelgrass or 
kelp). Additionally, EPA included algal productivity in NPP estimates. In the North and Mid-Atlantic 
regions, NPP estimates include 533 kg dry mass acre-1 yr-1 of algal productivity [based on scaling 
assessments conducted in Rhode Island, New Jersey and Delaware salt marshes (French McCay and 
Rowe 2003; PSEG 2006; Strange 2008)]. This is equivalent to 16 percent of average mean aboveground 
macrophyte productivity within the North Atlantic and Mid-Atlantic regions (Appendix Table J-1).39  
For all other habitats, the contribution of epiphytes and algae was set to 10 percent of annual aboveground 
NPP of the foundation species. 

9.2.2.2 Trophic Conversion Efficiencies 

Trophic conversion efficiencies (or trophic transfer) account for the relative inefficiency of energy 
transfer between trophic levels (Penn and Tomasi 2002; Strange 2008). Trophic conversion efficiency is 
normally described as the production of predator per unit of prey or food item. Using a highly simplified 
trophic structure, trophic conversion efficiencies were applied to three trophic steps: 

 Primary productivity to detritus 

 Detritus to primary consumers 

 Primary consumers to secondary consumers 

There is evidence that algae and vascular plant detritus40 is important for production at higher trophic 
levels (Kneib 2003). However, there is substantial uncertainty regarding the most appropriate 
specification of the trophic conversion efficiency from primary productivity to detritus. For example, the 
trophic conversion efficiency of smooth cordgrass (S. alterniflora) biomass to detrital material has been 
estimated to be between 0.50 and 0.60. EPA conservatively assigned a transfer efficiency of 0.40 from 

                                                      
37 Estimates of NPP were converted to kg dry mass/acre/year. Measurements reported as g carbon (C)/area/time were converted 

using a species-specific organic carbon content and appropriate adjustment for areal and time increments. Although EPA 
recognizes that the proportion of organic carbon in vascular plants is seasonally dynamic, this variability was not considered 
critical for estimation. 

38 This assumption is likely to underestimate NPP for some species, since it does not consider conversion of roots and rhizomes 
to the organic detritus pool that may be used by the secondary consumers. 

39 French McCay and Rowe (2003) assumed 429 kg dry mass acre-1 yr-1 when scaling salt marsh in Rhode Island, while PSEG 
assumed 636 kg dry mass acre-1 yr-1 while scaling salt marsh in New Jersey and Delaware (PSEG 2006; Strange 2008).   

40 Vascular plant detritus includes dead organic material from plants having a vascular system of xylem and phloem (Walker 
1995) such as S. alterniflora. 
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primary productivity to detritus to account for uncertainty regarding the importance of detritus for nekton 
production.41 Some past NRDAs have not explicitly included this trophic step (e.g., French McCay et al. 
2002; Penn and Tomasi 2002), but have included a low efficiency from primary productivity to primary 
consumers, reflecting the fact that a high percentage of primary productivity is broken down by 
decomposers such as bacteria, molds and fungi (French McCay and Rowe 2003).   

In its simplified trophic model, EPA assumed that primary consumers subsist off the detrital complex, 
which includes macroinvertebrates and zooplankton. A trophic conversion efficiency of 0.2 is assumed in 
the transfer of detritus material to primary consumers. Conversion efficiencies for fish and invertebrate 
consumers in freshwater and marine environments range from 0.1 to 0.3 (French et al. 1996). EPA used a 
value of 0.2, the mid-point of the range commonly used for scaling injuries (e.g., Balletto et al. 2005; 
French McCay et al. 2002; Penn and Tomasi 2002).  

Secondary consumers are assumed to include fish in their first year (i.e., young-of-year; defined as age-0 
fish). EPA assumed a trophic conversion efficiency of 0.2 from primary to secondary consumers, 
consistent with past scaling assessments (e.g., Balletto et al. 2005; French McCay et al. 2002; Penn and 
Tomasi 2002).42 

9.2.2.3 Carbon Export 

Although quantifying local production is necessary to develop estimates of restoration area, it is not 
realistic to assume that all NPP remains within the local ecosystem. Export from aquatic ecosystems may 
be substantial, particularly in open or semi-enclosed ecosystems with substantial riverine or tidal flux. In 
these systems, tidal exchange and flushing may remove a large proportion of the local productivity before 
it is consumed and assimilated by local consumers (e.g., Cebrian 2002; Teal 1962). Consequently, if NPP 
export is not considered in trophic transfer models, the amount of habitat restoration required to 
compensate for lost ecosystem goods and services is likely to be underestimated. Although some scaling 
calculations conducted as part of NRDAs do not explicitly include an export adjustment (e.g., French 
McCay et al. 2002; Penn and Tomasi 2002), others acknowledge that productivity many be transported 
out of the area (French McCay and Rowe 2003).43 

The rate at which net primary productivity is exported (E) depends on site-specific characteristics 
including marsh height, tidal flushing dynamics, and species mix. An examination of annual NPP from a 
variety of U.S. and international studies in wetlands had a median value of 22 percent NPP export 
(Appendix Table J-2). The uncertainty inherent in estimating carbon flux from ecosystems is large 
(Cebrian 2002) and variability in carbon export high. Accordingly, estimating trophic transfer values for 
habitats with unknown nutrient dynamics is fraught with uncertainty. EPA recognizes that the amount of 
NPP exported from the habitats (1) is not available locally to sponsor trophic transfer and secondary 
production, and (2) will be highly variable from site to site, depending on several factors including tidal 
or riverine flushing, droughts, storm events, and year-to-year variability in plant production. Recognizing 

                                                      
41 The assumed value of 0.40 is consistent with the trophic transfer model that PSEG used to scale habitat restoration for the 

Salem facility. PSEG refers to its trophic model as the “Aggregate Food Chain Model” (PSEG 2006; Strange 2008). 

42 The trophic steps outlined match those used by PSEG for the Aggregate Food Chain Model (Balletto et al. 2005; PSEG 2006), 
and are generally consistent with those used in miscellaneous NRDAs (e.g., French McCay et al. 2002; Penn and Tomasi 
2002). 

43 The PSEG AFCM assumed that 45% of primary productivity is lost to the ocean and was not converted to fish and invertebrate 
secondary productivity (PSEG 2006; Strange 2008), based on values from a Georgia salt marsh (Teal 1962).   
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these limitations, EPA assumed, in all habitats, that 25 percent of net primary production is exported from 
the system and is not transferred to higher trophic levels. 

9.2.3 Select Preferred Restoration Habitat 

To best compensate for I&E mortality, restored habitats should produce the full complement of impacted 
species in each region. However, uncertainties regarding the species-specific benefits of restoration 
actions make scaling habitat loss on a per-species basis impractical. EPA’s application of the trophic 
transfer approach treats the production of secondary consumers as a proxy for the provision of food and 
nutrient cycling considered to be important ecological services (French McCay and Rowe 2003). Under 
this assumption, services are considered to be restored when production of secondary consumers due to 
restoration is equivalent to that lost annually due to I&E mortality. It is unnecessary for restored habitats 
to compensate for losses on a species-by-species basis.44 This approach underestimates restoration to the 
extent that the public has higher total nonuse values for individual species that may have commercial, 
recreational or nonuse values. 

To simplify analysis, one habitat type was chosen in each region as the basis for scaling I&E mortality. 
To select the most appropriate habitat type within each region, a subset of species, broader taxonomic, or 
functional groupings that accounted for 50-90 percent of the biomass lost to I&E mortality (typically, the 
top 5-6 species/groupings) for each 316(b) region were identified. Nursery habitat and life history traits 
for young-of-year fish were obtained (Fishbase 2009), and a habitat type that benefitted the greatest 
percentage of A1E losses was selected in each region (Appendix Section J.3). Because many aquatic 
organisms experience I&E mortality early in their life history (e.g., eggs, larvae, and juveniles), this step 
directly addresses the life stages most at risk of I&E mortality. Where available information for ecological 
habitat and nursery characteristics did not indicate a preferred habitat, ecosystems characterized with 
higher primary productivity per acre were favored.   

 

Table 9-1: Summary of Productivity Values of Preferred Scaling Habitats by Region (kg 
dry mass acre-1 yr-1) 

Region Species Sample Size
Macrophyte 

NPP Algal NPP Total NPP 
California Giant kelp  

Macrocystis pyrifera 
4 7,300 730 8,030 

North Atlantic Eelgrass  
Zostera marina 

6 3,750 375 4,125 

Mid-Atlantic Smooth cordgrass Spartina 
alterniflora 

10 3,350 533 3,880 

South Atlantic Smooth cordgrass Spartina 
alterniflora 

13 6,350 533 6,883 

Gulf of Mexico Smooth cordgrass Spartina 
alterniflora 

13 6,350 533 6,883 

Great Lakes Broadleaf cattail  
Typha latifolia 

14 6,200 620 6,820 

Inland Broadleaf cattail  
Typha latifolia 

14 6,200 620 6,820 

For ease of calculation, the mean values were rounded to the nearest 50 kg dry mass per acre-1 yr-1. 

 
                                                      
44 EPA’s treatment of productivity as a proxy for important ecosystem services is consistent with the implicit assumptions of 

various past scaling assessments conducted as part of NRDAs (e.g., French McCay et al. 2002; French McCay and Rowe 
2003; Penn and Tomasi 2002).   
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9.2.4 Scaling Habitat Restoration Alternatives to Offset I&E Mortality 

Calculating the area required to compensate for annual I&E mortality combines estimates in increased 
biomass production of secondary consumers (Section 9.2.2) from preferred restoration habitats (Section 
9.2.3) with quantified I&E mortality (Chapter 3; Section 3.3 ). 

The scale of restoration required to compensate for I&E mortality is the quotient of annual I&E mortality 
divided by the expected increase in secondary production associated with a unit area of habitat (Appendix 
Equation J-3). Thus, a CWIS causing I&E mortality of 20,000 kg dry mass per year (across all species) 
would have to restore 200 acres of habitat that produced 100 kg dry mass of secondary production per 
acre per year. Conversely, if a regulatory option reduces I&E mortality by 5,000 kg dry mass per year, 
then its annual benefit is equivalent to 50 acres of similarly-productive habitat.  

Table 9-2 presents the I&E mortality reductions and equivalent habitat restoration area for each region 
under the proposed regulatory options. Among regions, habitat restoration area equivalent to baseline I&E 
mortality ranged from 410 acres in the South Atlantic region, to 76,432 acres in the Inland region. The 
total habitat area equivalent to I&E mortality reductions for all regions is approximately 54,000 acres 
under Option 1, 127,000 acres under Option 2, and 129,000 acres under Option 3. The rank order of 
regions by area of habitat equivalent to estimated I&E mortality reductions due to policy options differed 
among options, due to differences in the effectiveness of 316(b) regulatory options. Notably, however, the 
equivalent habitat restoration area was always greatest in the Inland region (Table 9-2).
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Table 9-2: Baseline I&E Mortality (metric tons A1E year-1) and Habitat Restoration Area (acres) Equivalent to Baseline I&E Mortality, and I&E 
Mortality Reductions (metric tons A1E year-1) and Habitat Restoration Area (acres) Equivalent to These Reductions, by Region and 
Regulatory Option  

I&E 
Losses 
(metric 

tons A1E, 
dry 

weight)

Equivalent 
Restoration 
Area (acres)

I&E 
Losses 
(metric 

tons A1E, 
dry 

weight)

Equivalent 
Restoration 
Area (acres)

I&E 
Losses 
(metric 

tons A1E, 
dry 

weight)

Equivalent 
Restoration 
Area (acres)

I&E 
Losses 
(metric 

tons A1E, 
dry 

weight)

Equivalent 
Restoration 
Area (acres)

California Giant kelp
Macrocystis 
pyrifera

96 282 2,930 3 36 241 2,503 252 2,617

North Atlantic Eelgrass
Zostera marina

50 158 3,183 1 23 129 2,601 135 2,727

Mid-Atlantic Smooth cordgrass
Spartina 
alterniflora

47 1,735 37,242 240 5,150 1,608 34,511 1,626 34,890

South Atlantic Smooth cordgrass 
Spartina 
alterniflora

83 34 410 13 159 29 346 29 347

Gulf of Mexico Smooth cordgrass
Spartina 
alterniflora

83 1,252 15,158 340 4,122 988 11,958 989 11,978

Great Lakes Broadleaf cattail
Typha latifolia

82 463 5,654 253 3,091 425 5,195 428 5,229

Inland Broadleaf cattail
Typha latifolia

82 6,255 76,432 3,424 41,834 5,723 69,927 5,843 71,390

Total
(All Regions)

- - 10,179 141,009 4,275 54,415 9,142 127,041 9,301 129,178

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for Facilities >125 DIF MGD; Option 3 = I&E 
Mortality Everywhere

Secondary 
Productivity 

(kg acre-1 
year-1)

Option 2 Option 3

Region Habitat

Baseline Option 1
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9.3 Development of WTP Values for Fish Production Services of Habitat 

The approach EPA used to develop WTP values for fish production services is to 1) estimate the number 
of acres of habitat required to produce fish equivalent to those lost due to I&E mortality; and 2) evaluate 
citizens’ WTP for this habitat—not for the fish produced by the habitat. This method is consistent with 
NOAA’s preferred methods for NRDA under the Oil Pollution Act (OPA), since NOAA’s NRDA 
regulations focus on restoration of injured resources, rather than monetary compensation for damages. For 
lost interim values pending restoration, additional habitat may be restored in lieu of monetary 
compensation. NOAA refers to this as “compensatory restoration” (NOAA 1997). EPA calculated the 
amount of “service-to-service” compensatory restoration—in the form of restored habitat—required to 
offset losses, and then evaluated WTP for restoring this area of habitat. Whereas NOAA recommends 
restoring such acreage to compensate for I&E mortality, EPA does not suggest that the restoration be 
carried out. Instead, EPA quantifies the benefits, in the form of fish production, that the restored habitat 
would provide. This value provides a proxy for the nonuse values not otherwise estimated in this 
document. 

EPA performed an in-depth search of the economic literature to identify valuation studies that estimate 
WTP for aquatic habitat services. From this review, EPA identified seven studies relevant for its analysis 
(Appendix Section J.4). For inclusion in this list, studies were required to meet the following criteria: 

 Specific Amenity Valued: Environmental quality change being valued affects habitat similar to 
those habitat types included in the trophic transfer model.45 

 U.S. Studies: Studies surveyed U.S. populations to value domestic resources. 

 Research Methods: Valuation methods were supported by journal literature and inclusive of 
nonuse values (e.g., contingent valuation, conjoint analysis). 

EPA applied values from seven studies for all 316(b) regions, based on consideration of the study 
location, habitat type, and services provided relative to biological scaling assumptions (i.e., Section 9.2). 
If a study was not applicable in a region, EPA transferred values from studies conducted in other 316(b) 
regions for the same habitat type. Reported WTP values per acre of habitat restored represent the average 
of mean values from individual valuation studies (Table 9-3). 

Eelgrass habitat was selected for restoration scaling in the North Atlantic region. The Peconic Estuary 
study (Johnston et al. 2002a; Johnston et al. 2001; Mazzotta 1996; Opaluch et al. 1995; Opaluch et al. 
1998), conducted on the East End of Long Island, NY within the Mid-Atlantic region, was the only study 
identified by EPA that estimates WTP per acre of eelgrass habitat. Although EPA recognizes that there is 
uncertainty when applying WTP values to external 316(b) regions, substantial differences in values are 
unlikely in this case due to the close proximity of the study area to the North Atlantic region and 
similarity in resource characteristics including assemblage of species supported by eelgrass habitat. 

 

                                                      
45 Valuation studies were excluded from consideration if the habitat services provided by the study habitat were substantially 

different, or provided in drastically different ratios, than the restoration habitat used for scaling (e.g., Dillman et al. 1993; 
Roberts and Leitch 1997).  
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EPA was unable to identify studies estimating the value of saltmarsh habitat in the South Atlantic and 
Gulf of Mexico regions. Therefore, it was necessary to apply wetland values from valuation studies 
conducted in other 316(b) regions: EPA identified two applicable saltmarsh habitat values, from Rhode 
Island (Bauer et al. 2004) and New York (Johnston et al. 2002a; Johnston et al. 2001; Mazzotta 1996; 
Opaluch et al. 1995; Opaluch et al. 1998). EPA recognizes that substantial uncertainty may occur when 
applying wetland values outside the region from which they were obtained, due to variation in habitat 
condition and resident preferences. However, it is not clear that application of these results will 
overestimate or underestimate WTP for wetland habitats. 

Only one study was identified that estimated WTP for wetland restoration in the Great Lakes region 
(Bishop et al. 2000). However, riverine wetlands inland of the Great Lakes provide fish production, which 
contributes to fish populations in the Great Lakes. Consequently, EPA also applied studies that estimated 
WTP for riverine wetland habitat in states adjacent to the Great Lakes (de Zyosa 1995; Mullarkey 1997; 
Mullarkey 1999). These studies were also applied to the Inland 316(b) region.   

9.3.1 Estimating the Importance of Fish Habitat as a Proportion of Habitat WTP Values: 
Salt Marshes 

To estimate the proportion of value associated with fish habitat, EPA used data from the 2001 Survey of 
Rhode Island Residents. The survey instrument, Rhode Island Salt Marsh Restoration: 2001 Survey of 
Rhode Island Residents, was designed to assess tradeoffs among attributes of salt marsh restoration plans 
in Narragansett Bay, Rhode Island (Johnston et al. 2002b). Development involved extensive background 
research, interviews with experts in salt marsh ecology and restoration, and 16 focus groups with more 
than 100 residents (details on survey development are in Appendix Section J.5.1). 

Survey data indicate that respondents favored plans that restored larger areas of salt marsh. Comparisons 
among specific improvements to habitat and mosquito control revealed that respondents placed the 
greatest weight on mosquito control, followed by habitat improvements for shellfish, fish, and birds, 
respectively (Johnston et al. 2002b). 

From the survey data, EPA calculated the proportion of wetland restoration value associated with 
different wetland services. Across all scenarios presented in the survey, the proportion of WTP values 

Table 9-3:  Total Annual Household WTP Per Acre of Aquatic Habitat 
316(b) Region WTP acre-1 yr-1 (2009$) Valuation Studies Applied 
California - -  
North Atlantic 0.0761 Peconic Estuary Study (Johnston et al. 2002a; Johnston et al. 

2001; Mazzotta 1996; Opaluch et al. 1995; Opaluch et al. 1998) 
Mid-Atlantic 0.0672 Peconic Estuary Study (Johnston et al. 2002a; Johnston et al. 

2001; Mazzotta 1996; Opaluch et al. 1995; Opaluch et al. 1998) 
South Atlantic 0.0431 Bauer, Cyr, and Swallow (2004), Peconic Estuary Study 

(Johnston et al. 2002a; Johnston et al. 2001; Mazzotta 1996; 
Opaluch et al. 1995; Opaluch et al. 1998) 

Gulf of Mexico 0.0431 Bauer, Cyr, and Swallow (2004), Peconic Estuary Study 
(Johnston et al. 2002a; Johnston et al. 2001; Mazzotta 1996; 
Opaluch et al. 1995; Opaluch et al. 1998) 

Great Lakes 0.0131 de Zoysa (1995), Mullarky (1997), Mullarky (1999),  Bishop et 
al. (2000) 

Inland 0.0118 de Zoysa (1995), Mullarky (1997), Mullarky (1999), Blomquist 
and Whitehead (1998), Whitehead and Blomquist (1991) 

EPA was unable to identify an applicable valuation study for kelp habitat, the preferred scaling habitat for the California region. 
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associated with fish habitat, bird habitat, shellfish habitat, mosquito control, and other services were 
0.256, 0.198, 0.278, 0.121, and 0.147, respectively. (Additional results and discussion are in Appendix 
Section J.5.2.)  

EPA assumed that 25.6 percent of WTP per acre of salt marsh is associated with fish production services 
for all regions based on these data. EPA recognizes that the findings of the Johnston et al. (2002b) study 
are best applied to areas within or near the North Atlantic region for which coastal populations (i.e., 
preferences) are similar and salt marsh services are most similar. However, EPA was unable to identify 
comparable stated preference studies conducted within the Mid-Atlantic, South Atlantic, and Gulf of 
Mexico regions.  

There is general consensus that marine tidal wetlands and seagrasses provide good to excellent fish 
production function for many important commercial, recreational and forage species (Graff and 
Middleton 2003; Street et al. 2005), by providing favorable conditions for the growth and survival of 
juveniles and young-of-year (Deegan et al. 2000). It is true that the precise role of such habitats as 
nurseries for juvenile fish has recently been critically re-examined, suggesting the need for better 
quantification of the precise role of nearshore ecosystems in producing more adult fish (Beck et al. 2003). 
However, the fish production function of tidal wetlands would be considered high. By applying survey 
findings from Rhode Island across these regions, EPA assumes that preferences for salt marsh restoration 
and salt marsh services are not substantially different among regions. However, true regional WTP values 
may be higher or lower than those estimated within Narragansett Bay. 

9.3.2 Estimating the Importance of Fish Habitat as a Proportion of Habitat WTP Values: 
Freshwater Wetlands 

EPA was unable to identify any studies that permitted the apportionment of WTP for freshwater wetlands 
among habitat services. However, EPA reviewed the published literature to identify and estimate the 
proportion of WTP value that is associated with fish production.  

Tidal freshwater wetlands are located inland of estuaries. They experience tidal fluctuations, but are not 
regularly exposed to water with substantial salinity. As such, these communities are dominated by 
freshwater plants (e.g., cattails, bulrushes, etc).  These wetlands are commonly used by freshwater, 
estuarine, marine and migratory fish: their dense vegetation provides refuges for juveniles, and protected 
spawning areas. Additionally, because nutrient cycling in these marshes is rapid, food is readily available 
(Graff and Middleton 2003). As described by Mitchell et al. (2009b) and consistent with the findings of 
Johnston et al. (2002b), EPA assumed that 25 percent of WTP per tidal marsh acre is associated with fish 
production services. 

Non-tidal freshwater wetlands connected to large bodies of water (including the Great Lakes) may also 
have enhanced fish production function. For example, it has been estimated that 75 percent of fish species 
in the Great Lakes use coastal marshes during some part of their life cycle (Jude and Pappas 1992; 
Meixler et al. 2005; Stephenson 1990). Moreover, Lake Erie is reported to support the best fishery of the 
Great Lakes, in terms of diversity and number, partly because of its extensive system of adjoining coastal 
marshes (Graff and Middleton 2003). Consequently, EPA assumed that 20 percent of WTP per acre for 
freshwater marshes in the Great Lakes is associated with fish production services based on the generally-
recognized importance of this habitat to fisheries. EPA used a value lower than recognized for marine 
marshes to reflect the absence of a regular tidal cycle that can provide habitat diversity within the 
ecosystem. 



 

March 28, 2011  9-13 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

The importance of fish production in isolated non-tidal freshwater wetlands, forested wetlands (i.e., 
seasonally flooded areas), swamps, bogs, etc., has not been well-quantified. Although wetlands attached 
to lakes or fringing marshes on rivers may be locally productive, isolated shallow depressions, headwater 
swamps, or seepage-derived wetlands may have poor or non-existent fish production (Graff and 
Middleton 2003). Consequently, EPA believes the average importance of isolated non-tidal freshwater 
marshes is far lower than similarly-sized marshes in marine systems or freshwater marshes connected to 
significant water bodies. Thus, EPA conservatively assumed that 10 percent of the WTP per acre is 
associated with fish production services. 

9.3.3 Estimated Proportion of Household WTP Estimates Attributed to Fish Production 
Services 

EPA assumed that 25.6 percent of household WTP values for salt marsh restoration are attributable to fish 
production services (Section 9.3.1). Similarly, EPA assumed values of 20 percent for freshwater marshes 
in the Great Lakes Region, and 10 percent for wetlands in the Inland region (Section 9.3.2). Finally, 
because the Peconic surveys used to estimate WTP for eelgrass habitat were described specifically as fish 
and shellfish habitat, EPA assigned 100 percent of the estimated WTP for eelgrass restoration to fish 
production services. Consequently, by multiplying total WTP per acre restored habitat per year (Table 
9-3) by estimates of the proportional contribution of fish production services, EPA obtained WTP per acre 
per year for fish production services in preferred habitats for all 316(b) regions with the exception of 
California (Table 9-4). 

 

Table 9-4:  Household WTP per Acre per Year for Fish Production Services 

316(b) Region 
Total WTP acre-1 yr-1 

(2009$) 
% Attributed to Fish 
Production Services 

WTP acre-1 yr-1 for Fish 
Production Services (2009$) 

California - - - 
North Atlantic1 0.0761 100.0% 0.0761 
Mid-Atlantic 0.0672 25.6% 0.0172 
South Atlantic 0.0431 25.6% 0.0110 
Gulf of Mexico 0.0431 25.6% 0.0110 
Great Lakes 0.0131 20.0% 0.0026 
Inland 0.0118 10.0% 0.0012 
Note: EPA was unable to identify an applicable valuation study for kelp habitat, the preferred scaling habitat for the California 
region. 

 

9.4 Estimating the Value of Habitat Needed to Offset I&E Mortality 

9.4.1 Determining the Extent of Nonuse Values 

Evaluating the total regional WTP value per acre of wetlands or eelgrass requires estimating the extent of 
the population holding nonuse values for these resources. EPA defined the population as the total number 
of households in the state following the methods used by several published studies (e.g., Bauer et al. 
2004; Blomquist and Whitehead 1998; Mullarkey 1997; Whitehead and Blomquist 1991). 

Households in close proximity are likely to value gains of fish in affected waterbodies, as will households 
in counties that do not directly abut affected water bodies. Evidence from Johnston et al. (2002b) 
indicates that this value can extend to the statewide level.  Analysis of data from the Rhode Island Salt 
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Marsh Restoration Survey (Johnston et al. 2002b) reveals that values ascribed to even relatively small-
scale salt marsh restoration actions (i.e., 3-12 acres) were stated by respondents from various parts of the 
state. A study by Pate and Loomis (1997) found that respondents outside the state in which a study site is 
located were also willing to ascribe stated preference values to the amenity being studied. It compared 
WTP values for environmental programs designed to improve wetland habitat in the San Joaquin Valley, 
CA across households in the Valley, California households outside the Valley, and households in 
Washington State, Oregon, and Nevada. They found that CA households outside the San Joaquin Valley 
expressed similar WTP compared to residents of the Valley, with households outside the state even 
holding positive WTP for the environmental programs. Thus, it is reasonable to assume in the context of 
316(b) analysis that residents within an affected state would have positive values for fish habitat 
improvements within state waters.   

The magnitude of habitat restoration efforts sufficient to compensate for I&E mortality would require a 
large geographical footprint. EPA recognized that, if implemented, this footprint would be divided into 
many sites dispersed throughout each region. To estimate WTP for fish production services that best 
reflect compensation for I&E mortality, EPA assigned habitat restoration based on the estimated 
distribution of I&E mortality throughout each 316(b) region based on the proportion of total AIF of in-
state facilities relative to total regional AIF. The proportional breakdown of restoration area by state and 
region is presented in Appendix Table J-7.  

9.4.2 Estimating Aggregate Values 

EPA calculated aggregate WTP for each 316(b) region as follows based on the area of habitat required to 
compensate for I&E mortality (Table 9-2), estimates of household WTP per acre per year for fish 
production services (Table 9-4), and the size of the affected population (Appendix Table J-7). 

1. Multiply the number of regional habitat acres needed to offset I&E mortality under the baseline 
condition or equivalent to I&E mortality reduction effect on fish production under the proposed 
316(b) regulation (Table 9-2) by the percentage of area attributed to each state within the 316(b) 
region (Appendix Table J-7) to obtain the magnitude of habitat restoration by state. 

2. Multiply regional household value per acre of restored habitat (Table 9-4) by the estimated 
number of habitat acres within 316(b) region (from 1, above) to obtain total household WTP for 
improved fish production in the waters affected by the 316(b) regulation by state for each region. 

3. For each region, multiply total WTP per household for each state (Step 2) by the number of 
households within the state, and sum across all states within the region to obtain unadjusted WTP 
for habitat restoration within the 316(b) region. 

EPA recognizes that WTP per household per acre is likely to be marginally decreasing as the scale of 
restoration increases (e.g., Bishop et al. 2000), particularly if all statewide households are simultaneously 
valuing fish production services provided by large-scale restoration of multiple habitat types. Household 
values for policy changes may not be additive, and the sum of WTP values when policies are assessed 
separately may exceed the total value of policies when assessed simultaneously. Simply summing the 
statewide values for multiple 316(b) regions may overestimate the value of fish production services from 
additional habitat acreage.  

Based on this assessment, EPA incorporated a weighting adjustment in order to limit the potential for 
overestimation of total WTP in cases where households within a given state are assigned values for 
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multiple 316(b) benefits regions (e.g., Mid-Atlantic and Inland). State-level WTP values within a 316(b) 
region were adjusted based on the relative magnitude of regional restoration area compared to total 
restoration area assigned to the state. For example, if a state were to be assigned 100 acres from the Mid-
Atlantic region and 300 acres from the Inland region, the statewide WTP for the Mid-Atlantic and Inland 
regions would be multiplied by factors of 0.25 (100 acres/400 acres) and 0.75 (300 acres/400 acres), 
respectively. In the final step of estimating aggregating values for each region, weighted WTP values 
were summed across all states to calculate the total annual WTP associated with each 316(b) region. 

9.5 WTP Results 

Table 9-5 presents the estimated WTP for habitat restoration area necessary to compensate for I&E 
mortality under baseline conditions, as well as estimated WTP for habitat restoration area equivalent to 
I&E mortality reductions under proposed regulatory options. EPA was unable to identify household WTP 
for the preferred scaling habitat (giant kelp) in the California region (Table 9-3). As such, national 
estimates of WTP are understated. 

National WTP for habitat restoration to compensate for baseline I&E mortality is approximately $3.6 
billion and $3.7 billion using 3 percent and 7 percent discount rates, respectively (Table 9-5). Under both 
discount rates, WTP for habitat restoration in the Mid-Atlantic region represents 61 percent of the 
national total. Despite representing 54 percent of the national area of restoration necessary to compensate 
for baseline I&E mortality (Table 9-2), WTP for habitat restoration in the Inland region represented only 
7 percent of national WTP. This difference is in large part due to lower household WTP values for habitat 
restoration than values found in other regions.  

At a 3 percent discount rate, total national WTP for habitat restoration equivalent to I&E mortality 
reductions under Option 1 is $513.3 million (Table 9-5). Because they reduce entrainment losses in the 
majority of facilities, and because 66 percent of national I&E mortality occurs due to entrainment 
mortality (Chapter 3), WTP for Options 2 and 3 is about four times greater than WTP for Option 1. 
Assuming a 3 percent discount rate, national WTP for both Options 2 and 3 is approximately $2.1 billion 
(Table 9-5).  
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Table 9-5: Weighted WTP for Habitat Restoration Area Equivalent to Baseline I&E Mortality, and Weighted WTP for Habitat 
Restoration Area Equivalent to I&E Mortality Reductions by Region and Regulatory Option  

Baseline Option 1 Option 2 Option 3 Baseline Option 1 Option 2 Option 3
California Giant kelp

Macrocystis 
- - - - - - - - -

North Atlantic Eelgrass
Zostera marina

0.076 388.7 0.5 216.2 226.9 395.2 0.4 168.0 176.2

Mid-Atlantic Smooth cordgrass
Spartina 

0.017 2,234.2 210.3 1,280.4 1,295.4 2,271.5 195.5 929.1 940.7

South Atlantic Smooth cordgrass 
Spartina 

0.011 0.8 0.4 0.5 0.5 0.8 0.3 0.4 0.4

Gulf of Mexico Smooth cordgrass
Spartina 

0.011 732.2 153.4 390.6 389.6 744.4 142.6 305.9 305.0

Great Lakes Broadleaf cattail
Typha latifolia

0.003 18.9 10.4 12.2 12.2 19.2 9.7 9.6 9.6

Inland Broadleaf cattail
Typha latifolia

0.001 264.3 138.5 167.8 170.6 268.7 128.7 130.0 131.6

Total 
(All Regions)

- - 3,639.0 513.3 2,067.6 2,095.1 3,699.8 477.2 1,542.8 1,563.4

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for Facilities >125 DIF MGD; Option 3 = 
I&E Mortality Everywhere

7% Discount Rate
Weighted WTP for Regulatory Options (2009$, millions)

Region Habitat

Household 

WTP acre-1 

year-1

3% Discount Rate
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9.6 Limitations and Uncertainties 

Benefit transfer involves adapting research conducted for another purpose in the available literature to 
address the policy questions at hand. Because benefits analysis of environmental regulations rarely 
affords sufficient time to develop original stated preference surveys that are specific to the policy effects, 
benefit transfer is often the only option to inform a policy decision. Consequently, there are several 
limitations and uncertainties to this approach.  

9.6.1 Estimating the Extent of the Affected Population 

The magnitude of the affected population has a multiplicative effect on total WTP values for I&E 
mortality. EPA acknowledges that I&E mortality can have impacts not restricted to state boundaries, due 
to the migratory nature of fish populations, and the fact that multiple states may share impacted 
watersheds. EPA’s approach underestimates WTP if members of a population value I&E mortality 
occurring in different states. 

9.6.2 Not All Species and Losses Are Compensated 

EPA scaled restoration to compensate total production lost annually in each region rather than on a 
species-specific basis. This assumes that secondary production is a proxy for important ecosystem 
services such as food provision and nutrient cycling. This approach is likely to underestimate needed 
restoration to the extent that the public has higher nonuse values for specific species (for example, 
threatened and endangered species) that are under-compensated when habitat restoration is scaled based 
on total losses. 

9.6.3 Timing of Losses and Restoration 

Fish production services provided by a restored habitat may increase over time as the habitat undergoes 
natural successional processes, or conversely, fish production services may decline or cease if habitat 
restoration is not successful. EPA scaled restoration using primary productivity values reflective of 
mature habitat: scaling based on mature habitat is consistent with valuation studies that provide WTP for 
marginal habitat acres. EPA is not suggesting that restoration of habitat area estimated by the described 
approaches actually be implemented. If restoration were implemented, primary productivity values used 
in the calculation would likely overestimate marginal gains of restored habitats and would therefore 
underestimate WTP. If available, the inclusion of site-specific information regarding the trajectory and 
duration of restoration benefits would improve the accuracy of scaling estimates. 

9.6.4 Application of the Approach to Large Geographic Areas 

Application of the habitat-based approach for compensating I&E mortality on a regional scale is uncertain 
because of the diversity of habitats and species within a region. Many species of fish require more than 
one habitat: the non-restored habitat may represent the limiting factor for fish populations. Moreover, due 
to site-specific effects, species losses due to I&E mortality are likely to vary both among and within 
regions. Similarly, people may have diverse values for habitats across a state. Although such effects exist, 
EPA assigned ecological parameter values based on average values for a region. Also, most valuation 
studies included in the analysis used statewide survey populations. Consequently, mean values reflect the 
diversity of valuation that occurs throughout a state. 



 

March 28, 2011  9-18 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

Valuation studies were not available for all habitats and regions. Primary WTP values were applied in 
regions when a reasonable value for the restored habitat was unavailable. Valuation studies are most 
accurately applied to areas near the original study location, and may underestimate or overestimate values 
in other states or regions. 

Uncertainty also exists in estimates of proportionate habitat value associated with fish production 
services. Application of the Johnston et al. (2002b) study may lead to overestimation or underestimation 
of WTP for fish habitat services of wetlands outside Rhode Island: the study is most appropriately 
transferred within southern New England and nearby areas where coastal populations (i.e., preferences) 
and coastal wetland conditions (i.e., ecology) are similar. In the absence of comparable studies conducted 
within individual regions, however, the estimate of Johnston et al. (2002b) was applied across regions for 
saltmarsh habitat. 

9.6.5 Specification of Parameter Assumptions 

EPA’s implementation of a trophic transfer approach required the estimation of several parameter inputs 
(e.g., primary productivity values, carbon export, trophic conversion efficiencies). These values represent 
extrapolations from different scales, regions, or ecosystems, and are dependent on many simplifying 
assumptions. Scaling results may exhibit substantial sensitivity to these assumptions. For example, EPA 
applied a simple four-level food chain to all fish species, and used mean value for trophic transfer 
efficiencies across all habitats (French et al. 1996). The scientific literature indicates substantial 
uncertainty in values estimated in local habitats, and fish species vary greatly in their position in natural 
food webs. Additionally, natural variability will impact production and consumption in all habitats. 
Consequently, productivity estimates cannot be viewed as representing anything more than a simplified 
average value. 



 

March 28, 2011  10-1 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

10 National Benefits  

10.1 Introduction 

This chapter summarizes the results of the seven regional analyses, and presents EPA’s estimates of the 
national benefits of the regulatory options for in-scope 316(b) facilities:  

 Option 1: I Everywhere. Establish Impingement Mortality Controls at All Existing Facilities 
that Withdraw over 2 MGD DIF; Determine Entrainment Controls for Facilities Greater than 2 
MGD DIF On a Site-specific Basis. 

 Option 2: I Everywhere and E for Facilities > 125 MGD. Establish Impingement Mortality 
Controls at All Existing Facilities that Withdraw over 2 MGD DIF; Require Flow Reduction 
Commensurate with Closed-cycle Cooling By Facilities Greater Than 125 MGD DIF. 

 Option 3: I&E Mortality Everywhere. Establish Impingement Mortality Controls at All 
Existing Facilities that Withdraw over 2 MGD DIF; Require Flow Reduction Commensurate with 
Closed-Ccycle Cooling at All Existing Facilities over 2 MGD DIF. 

Greater detail on the methods and data used in the regional analyses is provided in the previous chapters 
of this report. See Chapter 3 for a discussion of the methods used to estimate impingement mortality and 
entrainment (I&E mortality), and a summary of the estimated baseline I&E mortality losses and 
reductions in I&E mortality under the proposed 316(b) regulatory options. See Chapters 5 through 8 for a 
discussion of the methods used to estimate the value of I&E mortality losses and the benefits of the 
alternative policy options.  

EPA was unable to estimate monetized nonuse benefits for I&E mortality losses in all regions. Therefore, 
the benefits estimates presented in this section do not reflect total benefits associated with reducing I&E 
mortality at in-scope facilities, and overall national benefits may accordingly be higher. Section 10.2 
describes EPA’s methodology for aggregating benefits at the national level; Section 10.3 summarizes 
baseline losses and expected reductions in I&E mortality; Section 10.4 presents national benefits; and 
Section 10.5 discusses nonuse benefits and presents a break-even analysis. 

10.2 Methodology 

EPA notes that quantifying and monetizing the benefits that result from reductions in I&E mortality under 
the regulatory options considered for the Section 316(b) facilities rulemaking is challenging. The 
preceding sections of this report discuss specific limitations and uncertainties associated with estimating 
reductions in I&E mortality losses and monetized benefits. EPA estimated national-level benefits by 
summing benefit estimates over the seven study regions. Thus, national benefit estimates are subject to 
the same uncertainties inherent in the valuation approaches used for assessing each of the four benefit 
categories (threatened and endangered species, commercial fishing, recreational fishing, and nonuse 
values). The national benefits estimates do not include habitat-based values presented in Chapter 9; the 
habitat-based analysis was conducted for illustrative purposes to demonstrate the potential magnitude of 
total value inclusive of nonuse values. The combined effect of these uncertainties is of unknown 
magnitude and direction (i.e., the estimates may over- or understate the anticipated national level of use 
benefits). Nevertheless, EPA has no data to indicate that the results for any of the benefit categories are 
atypical or unreasonable. 



 

March 28, 2011  10-2 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

10.3 Summary of Baseline Losses and Expected Reductions in I&E Mortality 

Based on the results of the regional analyses, EPA calculated total I&E mortality losses under baseline 
(i.e., pre- regulatory) conditions and the total amount by which losses would be reduced under each of the 
regulatory options. The number of fish lost at in-scope facilities is presented in terms of age-1 equivalent 
(A1E) losses (i.e., the number of individual fish of different ages impinged and entrained by facility 
intakes, expressed as A1Es).  

Table 10-1 presents baseline impingement, entrainment, and total I&E mortality losses. The table shows 
that total national losses for all in-scope facilities are 2.2 billion fish in terms of A1Es. EPA notes that the 
count of total lost organisms is larger than values expressed in A1Es. This table shows that about 46 
percent of all A1E losses, or 1.0 billion fish, occur in the Mid-Atlantic region, followed by the Inland 
region with 0.9 billion fish lost. More-detailed discussions of the I&E mortality losses in each region are 
provided in Chapter 3 of this report. 
 

Table 10-1: Baseline National A1E Losses at All In-scope Facilities (millions of A1Es) 

Region Impingement Mortality Entrainment Mortality I&E Mortality
California 0.8 36.0 36.8
North Atlantic 0.6 59.4 60.0
Mid-Atlantic 50.7 939.4 990.1
South Atlantic 22.5 10.9 33.4
Gulf of Mexico 45.1 90.6 135.6
Great Lakes 44.1 9.4 53.5
Inland 583.6 295.9 879.5
National Total 747.4 1,441.5 2,188.9  

 

EPA also calculated the total national I&E mortality losses prevented by each of the regulatory options. 
These prevented losses are based on the expected reductions in I&E mortality at each facility due to 
technology installation required under each option. Table 10-2 through Table 10-4 present expected 
reductions in I&E mortality, expressed as A1Es, by region, under regulatory options considered in EPA’s 
analysis. The tables show that at in-scope facilities, Option 1 reduces A1E losses by 0.6 billion fish. In 
comparison, Option 2 and Option 3 both reduce A1E losses by approximately 2.0 billion fish. 

 

Table 10-2: Reductions in National A1E Losses for All In-scope Facilities (millions of 
A1Es) Under Option 1 (I Everywhere) 

Region Impingement Mortality Entrainment Mortality I&E Mortality
California 0.7 0.0 0.7
North Atlantic 0.4 0.0 0.4
Mid-Atlantic 38.7 0.0 38.7
South Atlantic 14.2 0.0 14.2
Gulf of Mexico 34.5 0.0 34.5
Great Lakes 38.2 0.0 38.2
Inland 488.2 0.0 488.2
National Total 615.0 0.0 615.0  
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Table 10-3: Reductions in National A1E Losses for All In-scope Facilities (million A1Es) 
Under Option 2 (I Everywhere and E for Facilities > 125 MGD) 

Region Impingement Mortality Entrainment Mortality I&E Mortality
California 0.8 30.7 31.5
North Atlantic 0.6 48.4 49.0
Mid-Atlantic 49.5 860.3 909.7
South Atlantic 19.2 9.1 28.3
Gulf of Mexico 44.7 61.3 106.0
Great Lakes 43.7 7.5 51.1
Inland 564.1 241.8 805.9
National Total 722.5 1,259.0 1,981.6  

 

Table 10-4: Reductions in National A1E Losses for All In-scope Facilities (millions of A1Es)
Under Option 3 (I&E Mortality Everywhere) 

Region Impingement Mortality Entrainment Mortality I&E Mortality
California 0.8 32.1 32.9
North Atlantic 0.6 50.8 51.4
Mid-Atlantic 49.6 871.3 920.9
South Atlantic 19.2 9.1 28.3
Gulf of Mexico 44.8 61.4 106.2
Great Lakes 43.8 7.6 51.3
Inland 569.6 252.9 822.5
National Total 728.3 1,285.2 2,013.5  

 

Table 10-5 presents EPA’s estimates of the current level of total annual I&E mortality losses and the 
reduction in total annual I&E mortality by option for the three metrics presented in Section 3.2.2. Option 
3 (I&E Mortality Everywhere) results in the greatest reduction in I&E mortality, followed by Option 2 (I 
Everywhere and E for Facilities > 125 MGD) and Option 1 (I Everywhere), respectively, for all of the 
metrics.  

 

Table 10-5: Baseline National I&E Mortality and I&E Mortality Reductions for All In-
scope Facilities by Regulatory Option 

Regulatory Option Millions of A1Es
Forgone Fishery Yield 

(million lbs)
Biomass Production Forgone 

(million lbs)
Baseline 2,188.9 71.5 637.8
Option 1 615.0 13.3 137.6
Option 2 1,981.6 58.6 542.2
Option 3 2,013.5 59.2 556.2

Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E 
for Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere  

 

As shown for all regions in Table 10-6, and by region in Chapter 3 of this report, the harvested 
commercial and recreational fish species that have direct use values comprise between 1 and 9 percent of 
baseline I&E mortality losses in each region, resulting in a national average of only 3 percent of I&E 
mortality losses receiving a monetary value based on direct use. The remaining 97 percent of I&E 
mortality losses include unharvested recreational and commercial fish and forage fish which do not have 
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direct use values. EPA’s nonuse analysis was limited two of the seven benefits regions and nonuse values 
were not estimated for unharvested fish in the remaining five benefits regions. The total estimated 
benefits are likely to be significantly understated due to the regional limitations of EPA’s nonuse analysis 
and the relatively large fraction of I&E mortality reductions which are not commercially or recreationally 
harvested.  

 

Table 10-6: Distribution of National I&E Mortality for All In-scope Facilities by Regulatory 
Option 

Baseline 2,188.9 1,654.8 534.1 59.4 2.7%
Option 1 615.0 525.7 89.3 15.7 2.5%
Option 2 1,981.6 1,512.6 468.9 53.3 2.7%
Option 3 2,013.5 1,535.4 478.1 54.0 2.7%

Regulatory Option

a Harvestable fish are adult fish of the age at which they can legally be harvested.
Scenarios: Baseline = Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for 
Facilities > 125 MGD; Option 3 = I&E Mortality Everywhere

(a)
All Species
(millions of 

A1Es)

(b)
Forage Species

(millions of 
A1Es)

(c)
Commercial and 

Recreational 
Species

(millions of A1Es)

(d)
Harvested 

Commercial and 
Recreational 

Species
(millions of fish 

harvested)a

A1E Fish Assigned 
a Direct Use Value 

as Percentage of 
Total 

(column d / 
column a)

 
 

10.4 National Monetized Benefits from Eliminating and Reducing I&E Mortality 
Losses 

EPA’s estimates of total national baseline losses and total national benefits under each option are based 
on EPA’s regional estimates of monetized baseline losses and regulatory option benefits. To address the 
differences in the timing of benefits and costs, EPA developed a time profile of total benefits from all in-
scope facilities that reflects when benefits from compliance-related changes at each facility would be 
realized. The methodology that EPA used to develop this time profile is detailed in Appendix D. For each 
study region, EPA first calculated the undiscounted benefits (i.e., commercial and recreational fishing 
benefits, including recreational fishing benefits from an increased abundance of T&E species) from the 
expected annual I&E mortality reductions under the regulatory options, based on the assumptions that all 
facilities in each region would achieve compliance and that benefits would be realized immediately 
following compliance. Then, since there would be regulatory and biological time lags between 
promulgation of the regulatory options and the realization of benefits, EPA created a time profile of 
benefits that takes into account the fact that benefits do not begin immediately. Using this time profile of 
benefits, EPA discounted the total benefits generated in each year of the analysis to 2012, the year when 
the rule becomes effective, using discount rates of 3 percent and 7 percent.46 Appendix D of this report 
provides detail on EPA’s development of the time profile of benefits.  

                                                      
46  The 3 percent rate represents a reasonable estimate of the social rate of time preference. The 7 percent rate represents an 

alternative discount rate, recommended by the Office of Management and Budget (OMB), that reflects an estimated 
opportunity cost of capital. 
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EPA estimated mean national use values, as well as values that include the 5th percentile lower bound and 
95th percentile upper bound of the recreational benefits estimates.47 Table 10-9 through Table 10-11 
present these results for each region and for the nation as a whole. As described in above, the national 
benefits estimates do not include habitat-based values presented in Chapter 9. 

Table 10-7 shows that the total annual national value of losses due to CWIS at in-scope facilities, 
discounted at 3 percent, includes $76.9 million in recreational fishing losses, $8.0 million in commercial 
fishing losses, $1.1 million in T&E species losses, and $128.6 million in forgone nonuse benefits. The 
total benefits of elimination of baseline CWIS, discounted at 3 percent, are $214.7 million per year, with 
estimates based on the 5th percentile lower bound and 95th percentile upper bound for recreational values, 
totaling $180.5 million and $281.0 million, respectively.  

Discounted at 7 percent, the total annual national value of losses due to CWIS includes $75.6 million in 
recreational fishing losses, $7.9 million in commercial fishing losses, $1.1 million in T&E species losses, 
and $130.8 million in forgone nonuse benefits. The total use value of fishery resources lost, discounted at 
7 percent, is $215.5 million per year, with estimates based on the 5th percentile lower bound and 95th 
percentile upper bound for recreational values, totaling $181.8 million and $280.8 million, respectively. 
Total monetized losses are greatest in the Mid-Atlantic region. More-detailed discussions of the valuation 
of impacts under the baseline conditions in each region are provided in Chapters 5 through 8 of this 
document. 

Table 10-8, Table 10-9, and Table 10-10 present EPA’s estimates of the regional and national benefits of 
reducing I&E mortality under each of the regulatory options (2009$, discounted at 3 percent and 7 
percent). The national value of these reductions in I&E mortality losses, evaluated at a 3 percent discount 
rate, is as follows: 

 Option 1 (I Everywhere) results in national benefits of $17.6 million per year, with estimates 
based on the 5th percentile lower bound and 95th percentile upper bound for recreational values, 
totaling $10.0 million and $30.3 million (Table 10-8). 

 Option 2 (I Everywhere and E for Facilities > 125 MGD) results in national benefits of $120.8 
million per year, with estimates based on the 5th percentile lower bound and 95th percentile 
upper bound for recreational values, totaling $101.3 million and $158.7 million (Table 10-9). 

 Option 3 (I&E Mortality Everywhere) results in national benefits of $125.6 million per year, 
with estimates based on the 5th percentile lower bound and 95th percentile upper bound for 
recreational values, totaling $105.5 million and $164.9 million (Table 10-10). 

Evaluated at a 7 percent discount rate, the national use benefits of the regulatory analysis options are 
somewhat smaller: 

 Option 1 (I Everywhere) results in national benefits of $16.0 million per year, with estimates 
based on the 5th percentile lower bound and 95th percentile upper bound for recreational values, 
totaling $9.1 million and $30.3 million (Table 10-8). 

 Option 2 (I Everywhere and E for Facilities with > 125 MGD) results in national benefits of 
$92.2 million per year, with estimates based on the 5th percentile lower bound and 95th 

                                                      
47  The lower estimates of value presented in this chapter are measured by the sum of the 5th percentile lower bound estimates 

of recreational values plus the mean value estimates for all other categories of value. The higher estimates of value presented 
in this chapter are measured by the sum of the 95th percentile upper bound estimates of recreational values plus the mean 
value estimates for all other categories of value. 
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percentile upper bound for recreational values, totaling $77.6 million and $120.6 million (Table 
10-9). 

 Option 3 (I&E Mortality Everywhere) results in national use benefits of $95.7 million per year, 
with estimates based on the 5th percentile lower bound and 95th percentile upper bound for 
recreational values, totaling $80.7 million and $124.9 million (Table 10-10). 

The majority of benefit values are attributable to recreational fishing and nonuse benefits. Table 10-11 
provides a convenient summary of benefits for the three regulatory options. More detailed discussions of 
regional benefits under each option are provided in Chapters 5 through 8 of this report. 
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Table 10-7: Summary of National Benefits from Eliminating Baseline I&E Mortality Losses for All In-scope Facilities (2009$) 

Low Mean High Low Mean High

California $1.7 $2.9 $4.9 $1.2 - - $3.0 $4.2 $6.2
North Atlantic $1.8 $2.8 $4.6 $0.4 - $26.3 $28.5 $29.6 $31.3
Mid-Atlantic $15.2 $25.6 $44.5 $2.8 - $102.3 $120.4 $130.7 $149.6
South Atlantic $0.3 $0.3 $0.5 $0.0 - - $0.3 $0.4 $0.5
Gulf of Mexico $6.0 $8.9 $13.5 $3.5 - - $9.5 $12.3 $17.0
Great Lakes $1.1 $2.0 $3.5 $0.1 - - $1.2 $2.1 $3.6
Inland $16.6 $34.4 $71.7 - $1.1 - $17.7 $35.5 $72.8

Total $42.7 $76.9 $143.2 $8.0 $1.1 $128.6 $180.5 $214.7 $281.0

California $1.7 $2.8 $4.8 $1.2 - - $2.9 $4.0 $5.9
North Atlantic $1.7 $2.7 $4.4 $0.4 - $26.8 $28.9 $29.9 $31.6
Mid-Atlantic $14.7 $24.7 $43.0 $2.7 - $104.0 $121.5 $131.5 $149.7
South Atlantic $0.2 $0.3 $0.5 $0.0 - - $0.3 $0.4 $0.5
Gulf of Mexico $6.0 $8.8 $13.5 $3.4 - - $9.4 $12.3 $16.9
Great Lakes $1.1 $2.0 $3.5 $0.1 - - $1.2 $2.1 $3.6
Inland $16.5 $34.2 $71.4 - $1.1 - $17.6 $35.4 $72.5

Total $42.0 $75.6 $141.0 $7.9 $1.1 $130.8 $181.8 $215.5 $280.8
a All benefits presented in this table are annualized, i.e., equal to the value of all benefits generated over the time frame of the analysis, discounted to 2012, and then annualized over the entire period 
of this analysis (2012 to 2062). See Appendix D for detail.
b A range of recreational fishing benefits is provided, based on the Krinsky and Robb technique, to estimate the 5th and 95th percentile limits on the marginal value per fish predicted by the meta-
analysis. Commercial fishing benefits are computed based on a region-and species-specific range of gross revenue, as explained in Chapter 6 of this report. EPA estimated recreational use benefits 
for some T&E species, as explained in Chapter 5. To calculate the total monetizable value columns (low, mean, high), the values for commercial fishing benefits and T&E species benefits are added 

to the respective low, mean, and high values for recreational fishing benefits.c No significant commercial fishing takes place in the Inland region. Thus, this region is excluded from the commercial 
fishing analysis.
d Recreational use benefits from increased abundance of T&E species with potentially high recreational use values (e.g., paddlefish and sturgeon). See Chapter 5 of this report 
for more detail on EPA’s analysis of T&E benefits.
e Zeros represent values less than 1,000.
Source:  U.S. EPA analysis for this report.

3% Discount Rate

7% Discount Rate

Region

Annualized Benefitsa (2009$, millions)

Recreational Fishing Benefits
Commercial 

Fishing 

Benefitsc
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Total Benefitsb

Nonuse 
Benefits
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Table 10-8: Summary of National Benefits of Option 1 (I Everywhere) for All In-scope Facilities (2009$)

Low Mean High Low Mean High

California $0.1 $0.1 $0.1 $0.0 - - $0.1 $0.1 $0.1
North Atlantic $0.0 $0.0 $0.0 $0.0 - $0.1 $0.1 $0.1 $0.1
Mid-Atlantic $0.8 $1.6 $3.1 $0.3 - $0.4 $1.6 $2.3 $3.9
South Atlantic $0.0 $0.0 $0.1 $0.0 - - $0.0 $0.0 $0.1
Gulf of Mexico $1.4 $2.4 $4.3 $0.6 - - $2.0 $3.0 $4.9
Great Lakes $0.6 $1.0 $1.6 $0.0 - - $0.6 $1.0 $1.7
Inland $5.1 $10.5 $22.0 - $0.5 - $5.6 $11.0 $22.5

Total $8.0 $15.6 $31.4 $1.0 $0.5 $0.5 $10.0 $17.6 $33.4

California $0.0 $0.1 $0.1 $0.0 - - $0.0 $0.1 $0.1
North Atlantic $0.0 $0.0 $0.0 $0.0 - $0.1 $0.1 $0.1 $0.1
Mid-Atlantic $0.7 $1.4 $2.8 $0.3 - $0.4 $1.4 $2.1 $3.5
South Atlantic $0.0 $0.0 $0.0 $0.0 - - $0.0 $0.0 $0.1
Gulf of Mexico $1.3 $2.2 $4.0 $0.5 - - $1.8 $2.7 $4.5
Great Lakes $0.5 $0.9 $1.5 $0.0 - - $0.6 $0.9 $1.5
Inland $4.6 $9.6 $20.1 - $0.5 - $5.1 $10.1 $20.6

Total $7.2 $14.2 $28.5 $0.9 $0.5 $0.5 $9.1 $16.0 $30.3

Nonuse 
Benefits

a All benefits presented in this table are annualized, i.e., equal to the value of all benefits generated over the time frame of the analysis, discounted to 2012, and then annualized over the entire period 
of this analysis (2012 to 2062). See Appendix D for detail.
b A range of recreational fishing benefits is provided, based on the Krinsky and Robb technique, to estimate the 5th and 95th percentile limits on the marginal value per fish predicted by the meta-
analysis. Commercial fishing benefits are computed based on a region-and species-specific range of gross revenue, as explained in Chapter 6 of this report. EPA estimated recreational use benefits 
for some T&E species, as explained in Chapter 5. To calculate the total monetizable value columns (low, mean, high), the values for commercial fishing benefits and T&E species benefits are added 

to the respective low, mean, and high values for recreational fishing benefits.c No significant commercial fishing takes place in the Inland region. Thus, this region is excluded from the commercial 
fishing analysis.
d Recreational use benefits from increased abundance of T&E species with potentially high recreational use values (e.g., paddlefish and sturgeon). See Chapter 5 of this report 
for more detail on EPA’s analysis of T&E benefits.
e Zeros represent values less than 1,000.
Source:  U.S. EPA analysis for this report.

3% Discount Rate

7% Discount Rate

Region

Annualized Benefitsa (2009$, millions)

Recreational Fishing Benefits Commercial 
Fishing 

Benefitsc

T&E Species 

Benefitsd,e

Total Benefitsb
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Table 10-9: Summary of National Benefits of Option 2 (I Everywhere and E for Facilities > 125 MGD) for All In-scope Facilities (2009$) 

Low Mean High Low Mean High

California $1.0 $1.7 $2.9 $0.8 - - $1.8 $2.5 $3.7
North Atlantic $0.9 $1.5 $2.4 $0.2 - $14.8 $15.9 $16.5 $17.4
Mid-Atlantic $8.4 $14.1 $24.5 $1.6 - $57.3 $67.3 $73.0 $83.5
South Atlantic $0.1 $0.2 $0.3 $0.0 - - $0.2 $0.2 $0.3
Gulf of Mexico $3.2 $4.9 $7.6 $1.8 - - $5.0 $6.7 $9.4
Great Lakes $0.7 $1.3 $2.2 $0.1 - - $0.8 $1.3 $2.3
Inland $9.6 $19.9 $41.4 - $0.7 - $10.3 $20.6 $42.2

Total $24.0 $43.5 $81.5 $4.5 $0.7 $72.1 $101.3 $120.8 $158.7

California $0.8 $1.3 $2.2 $0.6 - - $1.4 $1.9 $2.8
North Atlantic $0.7 $1.1 $1.8 $0.2 - $11.5 $12.3 $12.7 $13.4
Mid-Atlantic $5.8 $9.8 $17.0 $1.1 - $44.5 $51.4 $55.4 $62.7
South Atlantic $0.1 $0.1 $0.2 $0.0 - - $0.1 $0.1 $0.2
Gulf of Mexico $2.5 $3.8 $5.9 $1.4 - - $3.9 $5.2 $7.3
Great Lakes $0.6 $1.0 $1.7 $0.0 - - $0.6 $1.0 $1.8
Inland $7.4 $15.3 $31.9 - $0.6 - $7.9 $15.8 $32.4

Total $17.8 $32.4 $60.8 $3.3 $0.6 $55.9 $77.6 $92.2 $120.6
a All benefits presented in this table are annualized, i.e., equal to the value of all benefits generated over the time frame of the analysis, discounted to 2012, and then annualized over the entire period 
of this analysis (2012 to 2062). See Appendix D for detail.
b A range of recreational fishing benefits is provided, based on the Krinsky and Robb technique, to estimate the 5th and 95th percentile limits on the marginal value per fish predicted by the meta-
analysis. Commercial fishing benefits are computed based on a region-and species-specific range of gross revenue, as explained in Chapter 6 of this report. EPA estimated recreational use benefits 
for some T&E species, as explained in Chapter 5. To calculate the total monetizable value columns (low, mean, high), the values for commercial fishing benefits and T&E species benefits are added 

to the respective low, mean, and high values for recreational fishing benefits.c No significant commercial fishing takes place in the Inland region. Thus, this region is excluded from the commercial 
fishing analysis.
d Recreational use benefits from increased abundance of T&E species with potentially high recreational use values (e.g., paddlefish and sturgeon). See Chapter 5 of this report 
for more detail on EPA’s analysis of T&E benefits.
e Zeros represent values less than 1,000.
Source:  U.S. EPA analysis for this report.

3% Discount Rate

7% Discount Rate

Region

Annualized Benefits a (2009$, millions)

Recreational Fishing Benefits

Nonuse 
Benefits

Commercial 
Fishing 

Benefitsc

T&E Species 

Benefitsd,e

Total Benefitsb
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Table 10-10: Summary of National Benefits of Option 3 (I&E Mortality Everywhere) for All In-scope Facilities (2009$) 
 

Low Mean High Low Mean High

California $1.1 $1.8 $3.1 $0.8 - - $1.9 $2.6 $3.9
North Atlantic $1.0 $1.6 $2.7 $0.2 - $15.5 $16.7 $17.3 $18.3
Mid-Atlantic $8.6 $14.4 $25.1 $1.6 - $60.0 $70.2 $76.1 $86.7
South Atlantic $0.1 $0.2 $0.3 $0.0 - - $0.2 $0.2 $0.3
Gulf of Mexico $3.3 $4.9 $7.7 $1.8 - - $5.1 $6.7 $9.5
Great Lakes $0.7 $1.3 $2.3 $0.1 - - $0.8 $1.3 $2.3
Inland $10.0 $20.7 $43.1 - $0.7 - $10.7 $21.4 $43.8

Total $24.8 $44.9 $84.2 $4.5 $0.7 $75.5 $105.5 $125.6 $164.9

California $0.8 $1.4 $2.3 $0.6 - - $1.4 $2.0 $2.9
North Atlantic $0.8 $1.2 $2.0 $0.2 - $12.0 $12.9 $13.4 $14.1
Mid-Atlantic $6.0 $10.0 $17.5 $1.1 - $46.5 $53.6 $57.7 $65.1
South Atlantic $0.1 $0.1 $0.2 $0.0 - - $0.1 $0.1 $0.2
Gulf of Mexico $2.5 $3.8 $5.9 $1.4 - - $3.9 $5.2 $7.3
Great Lakes $0.6 $1.0 $1.8 $0.0 - - $0.6 $1.0 $1.8
Inland $7.6 $15.8 $32.8 - $0.5 - $8.1 $16.3 $33.4

Total $18.3 $33.3 $62.5 $3.3 $0.5 $58.5 $80.7 $95.7 $124.9
a All benefits presented in this table are annualized, i.e., equal to the value of all benefits generated over the time frame of the analysis, discounted to 2012, and then annualized over the entire period 
of this analysis (2012 to 2062). See Appendix D for detail.
b A range of recreational fishing benefits is provided, based on the Krinsky and Robb technique, to estimate the 5th and 95th percentile limits on the marginal value per fish predicted by the meta-
analysis. Commercial fishing benefits are computed based on a region-and species-specific range of gross revenue, as explained in Chapter 6 of this report. EPA estimated recreational use benefits 
for some T&E species, as explained in Chapter 5. To calculate the total monetizable value columns (low, mean, high), the values for commercial fishing benefits and T&E species benefits are added 

to the respective low, mean, and high values for recreational fishing benefits.c No significant commercial fishing takes place in the Inland region. Thus, this region is excluded from the commercial 
fishing analysis.
d Recreational use benefits from increased abundance of T&E species with potentially high recreational use values (e.g., paddlefish and sturgeon). See Chapter 5 of this report 
for more detail on EPA’s analysis of T&E benefits.
e Zeros represent values less than 1,000.
Source:  U.S. EPA analysis for this report.

3% Discount Rate

7% Discount Rate

Nonuse 
BenefitsRegion

Annualized Benefitsa (2009$, millions)

Recreational Fishing Benefits Commercial 
Fishing 

Benefitsc

T&E Species 

Benefitsd,e

Total Benefitsb
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Table 10-11: Summary of National Benefits by Regulatory Option for All In-scope Facilities (2009$) 

 

Low Mean High Low Mean High

Baseline $42.7 $76.89 $143.2 $8.05 $1.14 $128.64 $180.5 $214.72 $281.0

Option 1 $8.0 $15.62 $31.4 $0.99 $0.50 $0.52 $10.0 $17.63 $33.4

Option 2 $24.0 $43.52 $81.5 $4.47 $0.72 $72.10 $101.3 $120.80 $158.7

Option 3 $24.8 $44.94 $84.2 $4.52 $0.72 $75.48 $105.5 $125.65 $164.9

Baseline $42.0 $75.64 $141.0 $7.89 $1.14 $130.78 $181.8 $215.45 $280.8

Option 1 $7.2 $14.21 $28.5 $0.89 $0.45 $0.48 $9.1 $16.04 $30.3

Option 2 $17.8 $32.40 $60.8 $3.31 $0.56 $55.94 $77.6 $92.21 $120.6

Option 3 $18.3 $33.30 $62.5 $3.34 $0.55 $58.52 $80.7 $95.71 $124.9
Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for Facilities >125 MGD; Option 3 = I&E Mortality 

Everywhere
a All benefits presented in this table are annualized, i.e., equal to the value of all benefits generated over the time frame of the analysis, discounted to 2012, and then annualized over the 
entire period of this analysis (2012 through 2062). See Appendix D for detail.
b A range of recreational fishing benefits is provided, based on the Krinsky and Robb technique, to estimate the 5th and 95th percentile limits on the marginal value per fish predicted by the 
meta-analysis. Commercial fishing benefits are computed based on a region- and species-specific range of gross revenue, as explained in Chapter 6 of this report. EPA estimated 
recreational use benefits for some T&E species, as explained in Chapter 5. To calculate the total monetizable value columns (low, mean, high), the values for commercial fishing benefits 
and T&E species benefits are added to the respective low, mean, and high values for recreational fishing benefits.
c No significant commercial fishing takes place in the Inland region. Thus, this region is excluded from the commercial fishing analysis.
d Recreational use benefits from increased abundance of T&E species with potentially high recreational use values (e.g., paddlefish and sturgeon). 
See Chapter 5 of this report for more detail on EPA’s analysis of T&E benefits.
Source: U.S. EPA analysis for this report.

3% Discount Rate

7% Discount Rate

Regulatory Option

Annualized Benefitsa (2009$, millions)
Recreational Fishing Benefits Commercial Fishing 

Benefitsc
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Benefitsd,e
Total BenefitsNonuse 

Benefits
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10.5 Break-Even Analysis 

Comprehensive estimates of total resource value include both use and nonuse values, such that the 
resulting total value estimates may be compared to total social cost. Recent economic literature provides 
substantial support for the hypothesis that mean nonuse values are greater than zero. Moreover, when 
small per-capita nonuse values are held by a substantial fraction of the population, they can be very large 
in the aggregate. While the general proposition is true, in this specific context we have been able to 
estimate nonuse values for only two of the seven benefits regions. 

As shown in Table 10-6 above, nearly all—97 percent—I&E mortality losses at cooling water intake 
structures under current conditions (the baseline scenario) consist of either forage species or unlanded 
recreational and commercial species that are not harvested and thus were not assigned direct use values. 
Although individuals do not use these resources directly, they may value changes in the status or quality 
of these resources. EPA did not estimate nonuse values for forage and unlanded species occurring in five 
of the seven benefits regions. Due to the uncertainties of providing estimates of the magnitude of nonuse 
values associated with the regulatory options for all regions, this section provides an alternative approach 
for evaluating the potential relationship between benefits and costs. The approach used here applies a 
“break-even” analysis to identify what the unmonetized nonuse values would have to be in order for the 
proposed options to have benefits that are equal to costs. 

The break-even approach uses EPA’s estimates of monetized commercial and recreational use benefits for 
the regulatory options, and subtracts them from the estimated annual compliance costs incurred by 
facilities subject to the options. The resulting “net cost” enables one to work backwards to estimate what 
the nonuse values would need to be (in terms of willingness to pay per household per year) in order for 
total annualized benefits to equal annualized costs. Table 10-12 provides this assessment for the proposed 
options. The table shows benefit values using a 3 percent or 7 percent discount rate, respectively.  

As shown in Table 10-12, for total annualized benefits to equal total annualized costs, nonuse values per 
household would have to be at least $3, but may be as great as $40 under the 3 percent discount rate, 
depending on the regulatory option. The 7 percent discount estimates show that nonuse values per 
household would have to be $4 to $42, depending on the regulatory option.  
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Table 10-12: Implicit Nonuse Value—Break-Even Analysis, 3 Percent and 7 Percent Discount 
Rates (2009$) 

Regulatory Optiona

Use Benefits 
(2009$, 

millions)a

Annual Social 
Cost (2009$, 

millions)b

Annual Nonuse 
Benefits Necessary to 

Break Even (2009$) c, d

Number of Households 
in States with In-scope 

316(b) Facilities 

(millions)e

Annual Break-
Even Nonuse WTP 

per Household 

(2009$)f

Option 1 $17.11 $383.80 $366.69 114.5 $3.20

Option 2 $48.71 $4,462.90 $4,414.19 114.5 $38.54

Option 3 $50.17 $4,631.62 $4,581.45 114.5 $40.00

Option 1 $15.55 $458.81 $443.26 114.5 $3.87

Option 2 $36.27 $4,699.35 $4,663.08 114.5 $40.71

Option 3 $37.19 $4,862.05 $4,824.86 114.5 $42.12

Scenarios: Option 1 = I Everywhere; Option 2 = I Everywhere and E for Facilities >125 MGD; Option 3 = I&E Mortality Everywhere
a Benefits are discounted using a 3% or 7% discount rate, respectively. Use benefits include estimated commercial fishing benefits, recreational 
fishing benefits, and use benefits for T&E species.
b The total social cost of the final rule includes facility compliance costs and administrative costs.
c Annualized compliance costs minus annualized use benefits.
d Nonuse benefits may also include unmonetized use benefits, i.e., improvements in bird watching.
e From U.S. Census 2000 (BLS): http://factfinder.census.gov. 
f Dollars per household per year that, when added to use benefits, would yield a total annualized benefit (use plus nonuse) equal to the 
annualized costs.

3% Discount Rate

7% Discount Rate

 
 

While this approach of backing out the “break-even” nonuse value per household does not answer the 
question of what nonuse values might actually be for the regulatory options, these results do frame what 
the unknown values would have to be in order for benefits to equal or exceed costs. The break-even 
approach poses the question: “Is the true per-household willingness to pay for the nonuse amenities 
(existence and bequest) associated with an option likely to be greater or less than the ‘break-even’ benefit 
levels displayed in Table 10-12?” The results of EPA’s Habitat Equivalency Analysis (HEA) (Chapter 9) 
illustrate the potential magnitude of nonuse values for 316(b) regulatory options. However, EPA does not 
consider HEA appropriate for a primary analysis of nonuse benefits due to limitations of the approach and 
assumptions required for its application to 316(b) regulatory options. 
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11 Option 4 Results 

11.1 Introduction 

In addition to the three regulatory options presented in the preceding chapters of this report, i.e., Options 
1, 2, and 3, EPA analyzed an additional regulatory option – Option 4: I for Facilities > 50 MGD – in 
developing the Proposed 316(b) Existing Facilities Regulation. Option 4 is the same as Option 1: I 
Everywhere, in all respects except for not requiring I mortality control for facilities less than 50 MGD. 
Because EPA analyzed Option 4 after completing the analysis and documentation of the three main 
regulatory options, the analysis results for Option 4 are presented separately in this chapter. The 
methodology used to estimate the benefits of Option 4 are identical to those used for Options 1, 2, 3. See 
Chapters 3 through 9 for additional detail regarding EPA’s methodology. This chapter presents the results 
for Option 4 in two parts:  

 The expected reductions in I&E Mortality under Option 4; and 

 The monetized benefits under Option 4, including recreational fishing, commercial fishing, T&E 
species, and nonuse benefits.  

11.2 Expected Reductions in I&E Mortality under Option 4 

Based on the results of the regional analyses, EPA calculated the total amount by which I&E mortality 
losses would be reduced under Option 4. The number of fish lost at in-scope facilities is presented in 
terms of age-1 equivalent (A1E) losses within Table 11-1. All reductions in I&E mortality under Option 4 
are associated with reduced impingement. The reduction in national A1E losses is 602 million, or 
approximately 98 percent of the reductions under Option 1 (I Everywhere). The percentage of national 
A1E losses assigned a direct use value is 2.6 percent, slightly higher than the percentage observed under 
Option 1. The remaining 97 percent of I&E mortality losses include unharvested recreational and 
commercial fish and forage fish which are not assigned direct use values. Reductions in I&E mortality for 
T&E species are slightly less than Option 1 (Table 5-5). Appendix C provides additional detail regarding 
reductions in I&E mortality losses under Option 4. 

Table 11-1:  Distribution of I&E Mortality for All In-scope Facilities by Region Under Option 4 (I 
Everywhere without New Units Requirements) 

Region
All Species   

(million A1E)
Forage Species 
(million A1E)

Commercial & 
Recreational Species 

(million A1E)

Commercial & 
Recreational Harvest 

(million fish)

A1E Losses 
with Direct Use 

Value (%)
California 0.7 0.2 0.5 0.1 8.0%
North Atlantic 0.4 0.4 0.1 <0.1 1.5%
Mid-Atlantic 38.6 14.3 24.4 6.1 15.8%
South Atlantic 14.2 13.4 0.8 0.1 0.7%
Gulf of Mexico 34.2 4.3 30.0 4.6 13.3%
Great Lakes 37.9 33.2 4.7 0.5 1.3%
Inland 476.3 448.4 27.9 4.2 0.9%
Total 602.4 514.1 88.3 15.5 2.6%
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11.3 Monetized Benefits Under Option 4 

EPA’s estimation of regional and national benefits under Option 4 are based on EPA’s regional estimates 
of reductions in I&E mortality losses. Option 4 would result in an estimated increase of approximately 5.7 
million harvestable recreational fish and an estimated annual increase of 5.5 million pounds of 
commercial harvest (Table 11-2Error! Reference source not found.). Monetized nonuse benefits are 
based on estimated increase in winter flounder abundance of 0.03 percent, calculated using the approach 
described in Chapter 8. Under Option 4, recreational fishing benefits account for the majority of the 
national benefits similar to Option 1 (I Everywhere). As described in Chapter 10, EPA estimated mean 
values, as well as values that include the 5th percentile lower bound and 95th percentile upper bound of the 
recreational benefits estimates. 

Table 11-2: Annual Increase in Recreational and Commercial Harvest Under 
Option 4 (I Everywhere without New Units Requirements) 

Region
Annual Increase in Recreational 

Harvest
(harvestable adult fish)

Annual Increase in Commercial 
Harvest

(thousand lbs)
California 35,421 6.5
North Atlantic 1,495 2.9
Mid-Atlantic 548,496 3746.3
South Atlantic 15,882 45.1
Gulf of Mexico 660,672 1448.4
Great Lakes 174,601 225.1
Inland 4,215,546 -
Total 5,652,113 5474.3  

 

Overall, monetized benefits under Option 4 are slightly less than those estimated for Option 1: 

 Using a 3% discount rate, Option 4 results in national benefits of $17.3 million per year, with 
estimates based on the 5th percentile lower bound and 95th percentile upper bound for 
recreational values, totaling $9.8 million and $32.8 million (Table 11-3). Use benefits are 
estimated to be $16.8 million with an annual break-even nonuse WTP of $2.70 per household 
based on total social costs of $326.6 million. 

 Using a 7% discount rate, Option 4 results in national benefits of $15.8 million per year, with 
estimates based on the 5th percentile lower bound and 95th percentile upper bound for 
recreational values, totaling $8.9 million and $29.8 million (Table 11-3). Use benefits are 
estimated to be $15.3 million with an annual break-even nonuse WTP of $3.21 per household 
based on total social costs of $383.1 million. 

Table 11-4 summarizes results from applying the habitat-based approach described in Chapter 9. Similar 
to other options, the Inland region accounts for the majority of habitat acres. National weighted WTP is 
estimated to be $510 million and $474 million using discount rates of 3% and 7%, respectively. As 
described in previous chapters, EPA did not include values estimated using the habitat-based approach 
within its estimate of national benefits as presented in Table 11-3. 
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Table 11-3: Summary of National Benefits of Option 4 (I for Facilities > 50 MGD) (2009$) 

Low Mean High Low Mean High

California $0.1 $0.1 $0.1 $0.0 - - $0.1 $0.1 $0.1
North Atlantic $0.0 $0.0 $0.0 $0.0 - $0.1 $0.1 $0.1 $0.1
Mid-Atlantic $0.8 $1.6 $3.1 $0.3 - $0.4 $1.6 $2.3 $3.9
South Atlantic $0.0 $0.0 $0.1 $0.0 - - $0.0 $0.0 $0.1
Gulf of Mexico $1.4 $2.4 $4.3 $0.6 - - $2.0 $3.0 $4.9
Great Lakes $0.6 $0.9 $1.6 $0.0 - - $0.6 $1.0 $1.7
Inland $4.9 $10.3 $21.5 - $0.5 - $5.4 $10.8 $22.0

Total $7.8 $15.3 $30.8 $1.0 $0.5 $0.5 $9.8 $17.3 $32.8

California $0.0 $0.1 $0.1 $0.0 - - $0.0 $0.1 $0.1
North Atlantic $0.0 $0.0 $0.0 $0.0 - $0.1 $0.1 $0.1 $0.1
Mid-Atlantic $0.7 $1.4 $2.8 $0.3 - $0.4 $1.4 $2.1 $3.5
South Atlantic $0.0 $0.0 $0.0 $0.0 - - $0.0 $0.0 $0.1
Gulf of Mexico $1.3 $2.2 $3.9 $0.5 - - $1.8 $2.7 $4.5
Great Lakes $0.5 $0.9 $1.5 $0.0 - - $0.6 $0.9 $1.5
Inland $4.5 $9.4 $19.6 - $0.4 - $5.0 $9.8 $20.1

Total $7.1 $13.9 $28.0 $0.9 $0.4 $0.5 $8.9 $15.8 $29.8

Region

Annualized Benefitsa (2009$, millions)

Recreational Fishing Benefits

Commercial Fishing 

Benefitsc

T&E Species 

Benefitsd,e
Nonuse 
Benefits

Total Benefitsb

3% Discount Rate

7% Discount Rate

a All benefits presented in this table are annualized, i.e., equal to the value of all benefits generated over the time frame of the analysis, discounted to 2012, and then annualized over the entire period of 
this analysis (2012 to 2062). See Appendix D for detail.
b A range of recreational fishing benefits is provided, based on the Krinsky and Robb technique, to estimate the 5th and 95th percentile limits on the marginal value per fish predicted by the meta-
analysis. Commercial fishing benefits are computed based on a region-and species-specific range of gross revenue, as explained in Chapter 6 of this report. EPA estimated recreational use benefits for 
some T&E species, as explained in Chapter 5. To calculate the total monetizable value columns (low, mean, high), the values for commercial fishing benefits and T&E species benefits are added to the 

respective low, mean, and high values for recreational fishing benefits.c No significant commercial fishing takes place in the Inland region. Thus, this region is excluded from the commercial fishing 
analysis.
d Recreational use benefits from increased abundance of T&E species with potentially high recreational use values (e.g., paddlefish and sturgeon). See Chapter 5 of this report 
for more detail on EPA’s analysis of T&E benefits.
e Zeros represent values less than 1,000.
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Table 11-4: Weighted WTP for Habitat Restoration Area Equivalent to I&E Mortality Reductions by 
Region under Option 4 (I for Facilities > 50 MGD) 

3% 
Discount 

Rate

7% 
Discount 

Rate
California 96 3 35 - 0.0 0.0
North Atlantic 50 1 23 0.076 0.5 0.4
Mid-Atlantic 47 240 5,145 0.017 211.1 196.3
South Atlantic 83 13 159 0.011 0.4 0.3
Gulf of Mexico 83 338 4,091 0.011 152.7 142.0
Great Lakes 82 251 3,065 0.003 10.4 9.6
Inland 82 3,340 40,813 0.001 134.8 125.4
Total
(All Regions) - 4,186 53,331 - 509.9 474.0

Region

Household 

WTP acre-1 

year-1

(2009$)

Weighted WTP (2009$, 
millions)Secondary 

Productivity 
(kg acre-1 year-1)

I&E Losses 
(metric tons 

A1E, dry 
weight)

Equivalent 
Restoration 
Area (acres)
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Appendix A: Extrapolation Methods 

A.1 Introduction 

Survey sample weights for manufacturing facilities and electric power generating facilities were used in 
the analysis of 316(b) Phase II and Phase III regulations (USEPA 2004b; USEPA 2006b). To account for 
differences between electric power facilities that received the DQ and those that received the Short 
Technical Questionnaire (STQ), and to account for 316(b) study regions, new weights were developed. 
These weights are referred to as new benefits weights. This appendix explains the development of these 
facility-level weights and their use in the benefits analysis for the proposed 316(b) regulation. 

A.2 Manufacturing Facilities 

The current analysis of manufacturing facilities incorporates a set of technical weights developed for the 
2006 Final Phase III Rule. These technical weights are based on engineering information obtained from 
the 316(b) Manufacturers Questionnaire, including an estimate of the number of affected facilities and the 
cost of installing new technology. However, because technical weights do not account for facility location 
or intake flow, they cannot be used to directly estimate intake flow at a regional level, a key parameter for 
the benefits analysis. This section presents new benefits weights developed by EPA for in-scope 
manufacturing facilities. 

New benefits weights were developed by adjusting technical weights for traditional manufacturers (MN 
facilities)48 and non-utility manufacturers (MU facilities) such that estimates of regional mean operational 
flow are consistent with EPA’s best estimates for manufacturing facilities. EPA chose this characteristic 
because operational intake flow is the most important factor in the benefits analysis: I&E mortality losses 
as a function of mean operational intake flow. EPA included eight regions when developing weights for 
MN and MU facilities: North Atlantic, Mid-Atlantic, South Atlantic, Gulf of Mexico, California, Pacific 
Northwest,49 Great Lakes, and Inland regions.50  

Information on total regional flow was not available for MN and MU facilities. Thus, EPA used the 
number of facilities present in any single region as a control variable. This presumes that the flow 
characteristics of these represented facilities are the same as the DQ facilities. The following two sections 
describe development of weight adjustment factors for MN and MU facilities, respectively. 

A.2.1 Traditional Manufacturers (MN Facilities) 

EPA stratified the universe of MN facilities by study region and industry category so that the regional 
distribution of in-scope MN facilities corresponds to the actual geographic distribution of all MN facilities 

                                                      
48 MN facilities include aluminum, steel, chemical, pulp and paper, and petroleum refining manufacturing industries. Note that 

Food and Kindred Products is not included in this list of industries for two reasons: a) this industry was not included in the 
original stratification of manufacturers, and b) all facilities later identified to be in the Food and Kindred Product industries 
were part of the MU universe. 

49 The Pacific Northwest region is ultimately excluded from the benefits analysis because it includes a single DQ facility which is 
projected to close as baseline. 

50 See Chapter 1 for additional information regarding regional definitions.  
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in a given industry.51 Under this approach, EPA first determined the distribution of in-scope facilities by 
study region, and then calculated adjusted benefits weights based on this distribution.  

Determining the Distribution of In-scope Facilities by Study Region 

EPA obtained latitude-longitude coordinates (lat-long) for all facilities in relevant Standard Industrial 
Classification (SIC) codes52 that have NPDES permits within PCS (Permit Compliance System) and 
ICIS-NPDES (Integrated Compliance Information System- NPDES). Facilities within relevant SIC codes 
were assigned to a study region using lat-long. A map of RF1 reaches53 was also used to indicate whether 
the facility location is coastal/estuarine or inland. Table A-1 presents the distribution of the facility 
universe according to region and industry based on the PCS/ICIS data. 

The sample frame for the survey screener of manufacturing facilities did not include all facilities in the 
relevant SIC codes. Information on which facilities were included in the sample frame for the screener is 
not available. Therefore, EPA used two simplifying assumptions to develop weight adjustment factors: 
(1) the universe of in-scope facilities in any single industry equals the sum of DQ facilities weights and 
(2) the geographic distribution of NPDES permitted facilities in the relevant SIC codes is representative 
of the geographic distribution of in-scope facilities.  

For each industry, EPA assumed that the geographic distribution of facilities included in the EPA 
PCS/ICIS database was equivalent to the geographic distribution of the DQ frame. To meet this 
assumption, EPA redistributed the weights of in-scope DQ facilities in each study region to match the 
geographic distribution of facilities in the PCS/ICIS database. The second and third columns in Table A-1 
present the estimated distribution of in-scope MN facilities based on PCS/ICIS data.54 

Calculating Adjusted Weights for Benefits Analysis 

EPA first compared the regional distribution of weighted of in-scope DQ facilities to the distribution of 
facilities present in the PCS/ICIS universe. Table A-1 presents the distribution of DQ facilities based on 
technical weights, the weight adjustment factors for MN facilities, and the expected number of DQ 
facilities for all regions. The number of DQ facilities in each region was re-estimated using the PCS/ICIS 
distribution of facilities in that region. This adjustment factor was defined as the quotient of the number of 
DQ facilities within a region and industry divided by the original number of weighted DQ facilities 
assigned to the same stratum. If the PCS/ICIS facilities universe indicated that a region had a small 
number of facilities within a single industry and did not have DQ facilities (e.g., the North Atlantic region 
for the Aluminum sector), EPA assumed that no in-scope facilities existed within the stratum. Because 
regions without DQ facilities comprised a small fraction of the PCS/ICIS facility universe, this 
assumption is likely to introduce negligible error. If the adjusted weight for a sample DQ facility was less 
than one, it was assigned a weight of one so that its actual flow would be fully counted. The cost analysis 

                                                      
51Weights were not adjusted for petroleum refineries because survey screeners were sent to the entire universe and DQs were sent 

to all in-scope facilities. Weights for facilities determined to be in other industries after receipt of the DQ were given 
weights of 1, which were not adjusted. 

52The SIC code describes the primary activity of the facility. 

53EPA’s reach file (RF1) is a database of interconnected steam segments of “reaches” that comprise the surface water drainage 
system for the United States. 

54EPA used the following databases to obtain information on the number of facilities in each SIC code: FRS (Federal Registry 
System), PCS (Permit Compliance System), ICIS-NPDES (Integrated Compliance Information System- NPDES) and TRI 
(Toxics Release Inventory). None of these databases records intake flow. 
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estimates 32 facilities to close under baseline conditions. Accordingly, EPA excluded the baseline 
closures and their weights from the benefits analysis and weights readjustment. 

The final two columns of Table A-1 present estimated total flow for each sector and region when both 
original DQ and adjusted weights have been applied. In many sectors, estimated flow is slightly smaller 
due to the lack of DQ facilities combinations of region and industry. Conversely, weight-adjusted flow in 
the chemical sector increases slightly due to good coverage of DQ facilities which shifted weights to 
facilities with above-average flow.  
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Table A-1: MN DQ Distribution and Calculation of Weight Adjustment Factors 

Benefits Region 

Distribution of 
Facilities in 
PCS/ICIS 
Databases 

Number of 
Regional Mean 

Operational Flow 
(MGD) 

Number % 
DQ-

weighted 
Facilities1 

Adjustment 
Factor 

Adjusted 
Weight 

Estimates 

DQ-
weighted 

Adjusted 
Weight 

Estimates 
Aluminum 

North Atlantic 7 6% No DQs2  0 No DQs 0.0 
Mid-Atlantic 11 9% No DQs2  0 No DQs 0.0 
South Atlantic 1 1% No DQs  0 No DQs 0.0 
Great Lakes 2 2% 3 0.09 1 30.3 9.7 
Gulf of Mexico 1 1% No DQs  0 No DQs 0.0 
Pacific Northwest 0 0% No DQs  0 No DQs 0.0 
California 0 0% No DQs  0 No DQs 0.0 
Inland 95 81% 13 1.01 13 87.0 88.3 
Total 117 100% 16  14 117.3 98.0 

Chemical
North Atlantic 16 1% No DQs  0 No DQs 0.0 
Mid-Atlantic 75 6% 4 2.14 9 28.7 61.3 
South Atlantic 9 1% 4 0.26 1 56.4 14.5 
Great Lakes 32 3% 17 0.23 4 331.0 77.1 
Gulf of Mexico 100 8% 4 2.85 12 283.9 809.8 
Pacific Northwest 4 0% No DQs  0 No DQs 0.0 
California 5 0% 4 0.14 1 1.5 0.4 
Inland 951 80% 112 1.04 117 1,782.8 1,860.0 
Total 1,192 100% 146  144 2,484.3 2,823.1 

Paper
North Atlantic 2 1% No DQs  0 No DQs 0.0 
Mid-Atlantic 7 2% No DQs  0 No DQs 0.0 
South Atlantic 8 2% No DQs  0 No DQs 0.0 
Great Lakes 19 5% 3 1.684 5 6.7 11.2 
Gulf of Mexico 2 1% No DQs  0 No DQs 0.0 
Pacific Northwest 3 1% No DQs  0 No DQs 0.0 
California3 0 0% 3 1.00 3 32.2 32.2 
Inland 354 90% 91 0.95 86 1,242.9 1,181.4 
Total 395 100% 96  94 1,281.8 1,224.8 

Steel 
North Atlantic 3 1% No DQs  0 No DQs 0.0 
Mid-Atlantic 5 2% No DQs  0 No DQs 0.0 
South Atlantic 1 0% No DQs  0 No DQs 0.0 
Great Lakes 25 10% 6 0.54 3 2,054.3 1,112.1 
Gulf of Mexico 3 1% No DQs  0 No DQs 0.0 
Pacific Northwest 1 0% No DQs  0 No DQs 0.0 
California 2 1% No DQs  0 No DQs 0.0 
Inland 214 84% 28 1.03 29 519.6 535.0 
Total 254 100% 34  32 2,573.9 1,647.1 

Petroleum
North Atlantic 0 0% No DQs  0 No DQs 0.0 
Mid-Atlantic 2 11% 2 1.00 2 203.4 203.4 
South Atlantic 0 0% No DQs  0 No DQs 0.0 
Great Lakes 0 0% No DQs4  0 No DQs 0.0 
Gulf of Mexico 1 6% 1 1.00 1 42.6 42.6 
Pacific Northwest 0 0% No DQs  0 No DQs 0.0 
California 1 6% 1 1.00 1 31.8 31.8 
Inland 15 78% 15 1.00 15 250.7 250.7 
Total 19 100% 19  19 528.4 528.4 

 



 

March 28, 2011  A-5 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

Table A-1: MN DQ Distribution and Calculation of Weight Adjustment Factors 

Benefits Region 

Distribution of 
Facilities in 
PCS/ICIS 
Databases 

Number of 
Regional Mean 

Operational Flow 
(MGD) 

Number % 
DQ-

weighted 
Facilities1 

Adjustment 
Factor 

Adjusted 
Weight 

Estimates 

DQ-
weighted 

Adjusted 
Weight 

Estimates 
Other 

Inland 1 100% 1 1.00 1 4.1 4.1 
Total 1 100% 1  1 4.1 4.1 

Total for All Industries 
North Atlantic 28 1% No DQs   0 No DQs 0.0 
Mid-Atlantic 100 5% 6   11 232.0 264.7 
South Atlantic 19 1% 4   1 56.4 14.5 
Great Lakes 78 4% 29   13 2,422.3 1,210.0 
Gulf of Mexico 107 5% 5   13 326.5 852.4 
Pacific Northwest 8 0% No DQs   0 No DQs 0.0 
California 8 0% 8   5 65.5 64.4 
Inland 1,630 82% 259   260 3,887.0 3,919.5 
Total 1,978 100% 312   304 6,989.8 6,325.5 
1EPA did not adjust weights for petroleum refineries because the DQ was a census of in-scope facilities, nor for facilities in “other” 
industries because they were outside the five SIC codes for which weights were developed and are not assumed to represent any 
other facilities. 
2Though these regions account for more than 5% of Aluminum manufacturers but have no DQs, the average flow for Aluminum 
manufacturers is less than 10 MGD. Potential benefits associated with these facilities would be relatively minor.  
3While the PCS/ICIS data did not identify any Paper facilities in the California Region, there was 1 DQ facility in this region with a 
weight of 3. This weight was not adjusted. 
4There was 1 DQ refinery in the Great Lakes region. However this facility was assessed as a baseline closure in the economic 
analysis and thus receives an adjustment factor of 0. 

 

A.2.2 Non-utility Manufacturers (MU Facilities) 

EPA accounted for the geographic distribution of MU facilities using a methodology similar to that used 
for MN facilities. Weights were adjusted so that the distribution of the weighted number of DQ facilities 
matched the actual geographic distribution of the facility universe. Under this approach, EPA first 
determined the distribution of in-scope facility by study region, and then calculated adjusted weights for 
use in the benefits analysis. 

Determining the Distribution of In-scope Facilities by Study Region 

The entire universe of MU facilities was known based on the survey screener and the OTIS Facility-finder 
tool was used to obtain facility location data.55 EPA distributed the universe of facilities among study 
regions based on the regional distribution of MU facilities with location data from OTIS Facility-finder. 

Calculating Adjusted Weights for Benefits Analysis 

For each study region, EPA compared the estimated number of MU facilities with the DQ-weighted 
number of facilities in the region. An adjustment factor was calculated as the quotient of the estimated 
number of facilities in each region divided by the DQ-weighted number of facilities in each region. If the 
adjusted weight for a facility was less than one, it was assigned a weight of one to fully account for the 

                                                      
55 While the survey screener asked for facilities’ flow, EPA was unable to develop adjustment factors using total flow as a control 

variable. 
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flow of the sampled facility. Adjustment factors and adjusted flow by benefits region are presented in 
Table A-2. 

 

Table A-2: MU Adjustment Factors and Adjusted Flow by Benefits Region

Benefits Region 

Estimated 
Facilities 

from In-scope 
Distribution 

DQ-
weighted 
Facilities 

Adjustment 
Factor 

Total Original 
Weighted Flow 

(MGD) 

Total Adjusted 
Weighted Flow 

(MGD) 

MU Facilities 
North Atlantic 6 5 1.2 220.9 275.3 
Mid-Atlantic 3 6 0.5 440.8 369.0 
South Atlantic 2 No DQs   No DQs 0.0 
Great Lakes 14 12 1.2 1,186.4 1,400.0 
Gulf of Mexico 8 6 1.3 577.0 744.0 
Pacific Northwest 0 1 0.0 0 0.0 
California 2 1 2.0 3.6 7.3 
Inland 163 174 0.9 9,464.7 8,880.9 
Total 198 205   11,893.5 11,676.6 

NU Facilities Determined to be Manufacturers1

Inland N/A 12 16 392.9 392.9 
Paper

Grand Total N/A  217  12,286.4 12,069.5 
1Two facilities that were surveyed as non-utilities (NU) were later determined to be non-utility manufacturers and are analyzed as such in 
the cost analysis. Their weights were not adjusted because they were not part of the original MU facility universe and are both in the 
inland region. Given that the majority of MU facilities are located in the Inland region the use of original weights is unlikely to bias 
regional benefit results 

 

A.3 Electric Power Generating Facilities 

The benefits analysis for electric power generating facilities uses a combination of weights from the 
316(b) Phase II and Phase III analyses and sample weights developed to support the 2010 analysis. 
Weights from Phase II and Phase III accounted for non-sampled facilities and non-respondents to industry 
surveys and are referred to as the original survey weights.56  

When estimating national-level benefits, sample weights based on facility-specific (e.g., size and 
engineering) characteristics can lead to conditional bias. In particular, this approach does not consider 
factors influencing the occurrence and size of benefits such as the location of facilities subject to the 
regulatory options, actual intake flow, similarities among aquatic species affected by these facilities, and 
characteristics of commercial and recreational fishing activities in the area. EPA used a post-stratification 
weight adjustment to calculate benefits weights that account for data dimensions not included in the 
original sample design. These benefits weights re-scale DQ-based weights using additional information 
from the STQ so that total regional flows represented by both weighting systems are equivalent.  

The remainder of this appendix describes the post-stratification weight adjustment for electric power 
generating facilities. Section A.3.1 describes how the strata were defined. Section A.3.2 presents and 
discusses the estimates resulting from the post-stratified weighting schemes and compares these to the 
original DQ weights.  

                                                      
56In general, the original survey weights are numerically very low, as EPA had either DQ or STQ information for 621 out of the 

634 electric generating facilities presumed to be in scope of the regulation. For more information on EPA’s Section 316(b) 
Industry Surveys, please refer to the Information Collection Request (USEPA 2000b). 
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AA 

A.3.1 Defining the Strata and Control Variables 

EPA included six study regions when developing benefits weights for electric power generating facilities: 
North Atlantic, Mid-Atlantic, South Atlantic, Gulf of Mexico, Great Lakes, Inland, and California 
regions. Strata characteristics used to adjust weights are presented in Table A-3.  

I&E mortality losses are largely a function of mean operational intake flow and characteristics of local 
fishery resources. Therefore, regional non-recirculated operational flow is the most important factor in 
defining strata for the benefits estimation, and it is more important to group estimated total benefits by 
non-recirculated intake flow in a study region than by number of facilities. When calculating weights, 
EPA included a strata based on a 125 MGD DIF so that benefit estimates accurately reflect changes in 
technology under the options analyzed under the regulation.  

 

Table A-3: Matrix of Strata and Control Variables for Adjusting DQ Weights 

Strata 

Mean Operational Flow (GPD) 

Facilities with Recirculation 
Technology1 

Facilities without Recirculation 
Technology 

DIF < 125 
MGD 

DIF > 125 
MGD 

DIF < 125 
MGD 

DIF > 125 
MGD 

North Atlantic 0 0 238 6,510 

Mid-Atlantic 68 0 257 26,518 

South Atlantic 46 0 0 7,033 

Gulf of Mexico 0 0 0 9,049 

Great Lakes 57 181c 343 15,428 

Inland 1,258 2,221 1,900 117,989 

California2 0 0 0 1,135 

Total 1,429 2,402 2,738 183,663 
1Includes all electric generating facilities with recirculating technology regardless of intake velocity. 
2Generators in the state of California were excluded from the analysis; however, the California region includes 
three facilities in Hawaii. 

 

A.3.2 Comparison of Results of the Detailed Questionnaire and Post-Stratified 
Weighting Schemes  

EPA assigned post-stratification weights (Table A-3) so that tabulations of total mean operational flow by 
region and DIF threshold correspond to the best estimates of operational flow based on information 
provided by both DQ and STQ questionnaires. Estimated mean operational flow under various weighting 
procedures are presented in Table A-4. Regional control total is calculated using operational flow data 
from DQ and STQ and facility-level original sample weights that account for non-sampled facilities and 
non-respondents. The DQ total is the total operational flow of facilities to which weights are applied. By 
design, the post-stratification estimate of mean operational flow equals the control total estimate. Benefits 
weights are determined as the quotient of the control total divided by the DQ total. The number of 
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facilities estimated using these weights may not match the control estimate of the population of facilities. 
For example, when average mean operational flow in the DQ sample of facilities is lower than the total 
operational flow of all facilities in a given region, larger sample weights must be assigned to ensure the 
estimated sample-weighted operational flow is equivalent to the control total. Thus, although total 
operational flow is equivalent, the number of facilities estimated using these weights may be an 
overestimate of facilities within the region. This shortcoming is not important, however, because DQ 
weights are not used to estimate the number of facilities. 

During the weight development process, EPA assessed the variance of the new weights to examine their 
reasonableness. Weights with smaller variance generally lead to estimates with smaller variance unless 
the larger variance of the weights reflects the characteristics on which the estimates depend. Since mean 
operational flow is the most important factor in determining benefits, EPA believes that accounting for 
this factor while minimizing the variance of the weights is the best approach. This is accomplished by 
assigning an equal weight to all facilities within a given stratum. One alternative would be to adjust the 
original DQ weight. However, adjusting original DQ weights increases the variance of new weights. The 
additional variance is not likely to reflect the characteristics on which the estimates depend, and therefore 
these weights are inferior.  

 

Table A-4: Mean Operational Flow by Benefits Region: Post-Stratification by Mean 
Regional Operational Flow for Facilities Without Recirculation (MGD) 

Region 

Recirculating Flow Non-recirculating Flow 

< 125 DIF (MGD) > 125 DIF (MGD) < 125 DIF (MGD) > 125 DIF (MGD) 

DQ 
Total  

Control 
Total  

DQ 
Total 

Control 
Total  

DQ 
Total 

Control 
Total  

DQ 
Total 

Control 
Total  

North Atlantic 0 0 0 0 209 238 2,978 6,510 

Mid-Atlantic 58 68 0 0 231 257 8,743 26,518 

South 
Atlantic1a 0 46 0 0 0 0 3,481 7,033 

Gulf of 
Mexico 0 0 0 0 0 0 6,751 9,049 

Great Lakes 0 57 0 181c 120 343 5,199 15,428 

Inland 528 1,258 620 2,221 1,003 1,900 51,560 117,989 

Total 587 1,429 620 2,402 1,625 2,799 80,631 194,997 
1A total of five STQ facilities with baseline (one in the South Atlantic and four in the Great Lakes) did not have a DQ facility to 
represent them within the region and DIF strata. Their flow was added to the respective non-recirculating totals when calculating 
benefits weights, and are assigned the same benefits weights as non-recirculating facilities within the same region and DIF category. 
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B 
  

Appendix B: Consideration of Potential Ecological Effects due to 
Thermal Discharges 

B.1 Introduction 

Impacts of thermal discharges, along with other stressors, are a relevant consideration when assessing the 
potential impacts of electric power plant cooling water intakes (CWIS) and associated discharges. Several 
studies have demonstrated the adverse effects that increased temperatures or altered seasonal thermal 
regimes have on local biota and fauna. In some cases, studies have indicated little or no apparent harm is 
caused by the thermal discharges. This emphasizes the need for NPDES permit writers to consider site-
specific factors when assessing the potential ecological effects due to thermal discharges.  

This appendix provides information on the general effects of thermal discharges on aquatic biota and 
ecosystems, considers the influence of site-specific factors and environmental settings on determining the 
level (if any) of ecological impacts, and discusses limitation and uncertainty associated with thermal 
studies. It also presents three case studies from power plants in different environmental settings (Brayton 
Point Station, Quad Cities Nuclear Station, and Point Beach Nuclear Plant) which underwent detailed 
thermal studies under Clean Water Act (CWA) Section 316(a) provisions and which show the importance 
of site specific factors in determining the potential for appreciable harm.  The Section 316(a) 
demonstrations described in the three case studies represent unusually complete and thorough 
investigations of thermal impacts to receiving aquatic ecosystems.  Thermal investigations at other power 
plants are highly site-specific, but typically have a much reduced scope and effort compared to those 
portrayed by the case studies. 

It should be noted that even at power plants where demonstrations of no appreciable harm have been 
made to regulatory authorities under Section 316(a), supporting thermal studies nonetheless often show 
periods during which thermal limits are exceeded. Impacts of thermal discharges should therefore be 
revisited on a case-by-case basis as conditions change, for example(i) if plants increase their power 
capacity (i.e., “uprate”) and increase thermal loads to the receiving waterbody; (ii) if the thermal 
assimilative capacity of the receiving waterbody is otherwise compromised; or (iii) in the face of new 
evidence that cooling water discharges are causing appreciable harm to the balanced, indigenous 
population/community of shellfish, fish, and wildlife or fail to ensure the protection or propagation of the 
population. Such assessments need to consider the extent, duration, timing, and frequency of adverse 
thermal impacts, the target threshold temperature for each species, the potential for adverse temperature 
effects on larger ecological processes, and other relevant site-specific factors. 

B.2 General Effects of Thermal Discharges on Aquatic Biota and Ecosystems 

Thermal discharges affect aquatic organisms by elevating water temperatures or altering seasonal patterns 
of temperature change.  Temperature is considered a master environmental variable for aquatic 
ecosystems, affecting virtually all biota and biologically mediated processes, chemical reactions, as well 
as structuring the physical environment of the water column. There is a well-established scientific 
literature cataloguing the impacts of elevated or variable temperature on a wide spectrum of aquatic life, 
including numerous species-specific determinations of thermal tolerance limits for growth, survival, 
reproduction and behavior (e.g., Beitinger et al. 2000; Leffler 1972; McMahon 1975). 
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Much of the relevant primary research on power plant thermal discharges dates from the 1970's-1980's; 
typically based on laboratory studies, field investigations, or environmental impact assessments 
associated with the siting, permitting, and/or operation of power plants with significant thermal plumes 
(e.g., Barnett 1972; Coles 1984; Hillman et al. 1977; Langford 1990 (for review); Squires et al. 1979). 
These studies found that the thermal discharges may affect aquatic species growth, survival and 
reproduction, altered community diversity and density, and may have led to shifts in ecological habitat. 
The character and magnitude of the observed impacts varies among the studies, however.   

Interest in this topic and relevant studies have also re-emerged in the last decade as part of a greater effort 
associated with the assessment and characterization of potential effects of global climate change (e.g., 
Schiel et al. 2004). The material below provides a representative, exemplary mix of studies on thermal 
effects for organisms and communities in a range of trophic levels or ecosystems with some emphasis on 
more recent research. The majority of the cited studies were identified from internet searches and cross-
referencing appropriate permitting databases57.  

Primary Producers 

Thermal discharges affect aquatic primary production through direct effects on photosynthetic activity 
and selection of temperature-tolerant species in phytoplankton, periphyton, macroalgae and submerged 
aquatic vegetation (SAV) and indirectly through temperature-related changes in nutrient availability and 
grazer activities. Several studies reported that thermal discharges substantially altered the local abundance 
and structure of the aquatic community, particularly benthos and periphyton (e.g., Chuang et al. 2009; 
Martinez-Arroyo et al. 2000; Schiel et al. 2004; Squires et al. 1979). Studies by Mallin et al. (1994) 
suggest that indirect effects of discharge altered the phytoplankton community taxonomic structure near 
the outfall and in general, support different communities of algae than those present in the background 
waters. Several authors suggest that residual chlorine (anti-fouling agent) may also influence these 
patterns (Choi et al. 2002; Moss Landing Marine Laboratories 2006; Poornima et al. 2005).  

Primary Heterotrophs 

The bacterial and microbial components of aquatic ecosystems generally have a positive response to 
increasing water temperature – growth rates and bacterially mediated processes are enhanced until 
temperature tolerance limits are approached. Most studies found that the growth rates of bacteria and 
water temperatures are positively correlated.  In contrast, Choi et al. (2002) found lower rates of bacteria 
production near outfalls but attributes this effect to residual chlorine in the discharge water rather than 
temperature alone.  

Zooplankton 

Zooplankton and other pelagic macroinvertebrates typically increase their grazing activities and growth 
rate in response to increased temperature. Marasse et al. (1992) observed a higher rate of bacteria 
consumption (i.e., bacterivory) by samples of plankton that were incubated at higher temperatures.  Jiang 
et al. (2009) suggests that copepod species with larger body sizes are more sensitive to thermal increases 
and that this water temperature increase induces mortalities of copepods.  As noted for other organisms, 

                                                      
57 Abt Associates used several general search engines for preliminary searches for scientific and grey literature including Scirus: 
http://www.scirus.com/; Google Scholar: http://scholar.google.com/; and Dogpile: http://www.dogpile.com/, as well as publicly 
available information from NPDES permits and related Section 316a/316b studies.   
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estuarine copepods have more tolerance to thermal stress than those from more stenothermal, deepwater 
environments.  

Benthic Community 

Benthic species and communities are often particularly vulnerable to thermal discharge due to their 
association with the substrate and limited ability to migrate from impacted areas. Growth rates and 
spawning times are usually accelerated by increased temperature (Barnett 1972). McMahon (1975) and 
Leffler (1972) found that snails and blue crabs, respectively, exhibit more rapid growth at higher 
temperatures, but both studies also observe greater species mortality. The study by Coles (1984) found a 
positive effect with the thermal effluent as both the number of organisms and the colonization by coral 
reef propagules near the outfall were significantly greater than background areas. A recent study of 
benthic communities and associated biota near a nuclear power plant discharge show that the thermal 
pollution alters composition and decreases richness in benthic cover (Teixeira et al. 2009).  

Fish 

Fish are extremely well-studied with regard to temperature tolerance and thermal limits in both the 
laboratory and field. The thermal habitat requirements of coldwater, coolwater, and warmwater fish 
species are well-characterized (e.g., Beitinger et al. 2000; Sullivan et al. 2000) and these may be the basis 
for regulatory sub-classification of water bodies. Thermal discharges can influence the spatial distribution 
of fish due to direct responses to altered temperature (i.e., attraction, avoidance), effect on dissolved 
oxygen concentrations, and impacts to prey and habitat availability (Cooke et al. 2004; Sullivan et al. 
2000). Rapid fluctuations and decreases in water temperature, usually associated with steep thermal 
gradients in temperate winter waters, can lead to “cold shock” with reduced survival (Ash et al. 1974; 
Deacutis 1978). Smythe and Sawyko (2000) evaluated the effect of “cold shock” on fish and found no 
effect on larger predator species, though a forage species (gizzard shad) had lower survival rates. Some 
studies of thermal discharges have not observed significant effects in local fish communities. Hillman et 
al. (1977) and Krishnamoorthy et al. (2008) found that impacts on shore-zone fish and fingerlings from 
power station discharges were minimal. A study of salmonids by Sullivan et al. (2000) maintains that 
direct mortality from temperature is unlikely since acute lethal temperatures are rarely, if ever, observed 
in the field. Specifically, this study suggests that there is little or no risk of mortality if the annual 
maximum temperature is less than 26°C, but suggests a site-specific analysis when annual maximum 
temperatures exceed 24°C.   

Ecosystem Functions and Services  

In addition to the species-specific impacts, investigators have looked at the effects of thermal discharges 
on the structuring of species assemblages and communities, as well as secondary ecosystem function and 
services. Thermal discharges may have both detrimental and beneficial effects. For example, the 
bleaching and destruction of coral reefs by elevated thermal discharges is well documented, but Coles 
(1984) in the Moss Landing study found that the thermal effluent may have some beneficial effects, such 
as enhancing new coral regrowth or providing preferred water temperatures for avian birds and mammals.  

Work in seven Southeastern U.S. cooling reservoirs indicated that direct thermal effects on phytoplankton 
communities were generally minimal, but that the smaller reservoirs were more prone to algal blooms due 
to nutrient trapping and elevated temperatures (Mallin et al. 1994). Indirect effects of excessive thermal 
loads in these reservoirs caused ecosystem-wide alterations arising from both top-down (higher trophic 
consumers) and bottom-up (primary producers) effects. Martinez-Arroyo et al. (2000) found that 
phytoplankton subjected to elevated water temperature exhibited lowered photosynthetic capacity and 
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light harvesting efficiency and required more light to reach a net oxygen production. Thus, primary 
production and oxygen levels, both critical ecosystem functions, may be decreased as a result of elevated 
temperatures.  

Teixeira et al. (2009) evaluated the effect of thermal discharge on fish communities and habitat structure 
in rocky substrates near a nuclear power plant in southeastern Brazil. Their studies indicate the heated 
effluents affected the habitat structure as well as fish community structure and its eco-spatial distribution. 
Lowered fish species richness was observed in the impacted area and this was attributed to effects to 
differences in benthic cover of a habitat former (i.e., reduced abundance of Sargassum weed). 

B.3 Influence of Site-Specific Factors and Environmental Setting on Thermal 
Effects 

As noted above, the environmental setting (i.e., the nature of the receiving waters) can have a pronounced 
influence on the potential for and the magnitude of adverse thermal impacts on biota. While physical 
features near the discharge and temporal climatic patterns usually dictate the observed level of thermal 
deviations for any given discharge, several environmental factors may be important in determining the 
magnitude of potential impacts, including: geographic location, marine vs. freshwater environments, 
volume of receiving water, rate of water exchange, other heat loads, and local habitats.  

Geographic location 

Geographic location determines the duration and intensity of annual solar heating and usually dictates the 
resulting maximum ambient temperatures for the receiving waters. The more southerly the facility, the 
higher the seasonal temperature maxima is likely to be, increasing the possibility of reaching upper 
thermal temperature limits for sensitive organisms. Despite acclimation, relatively few North American 
aquatic organisms will tolerate chronic water temperatures in excess of 35-40oC (Brock 1985). Northerly 
receiving waters will have lower maximum ambient temperatures in summer, but will also exhibit greater 
seasonal variation; with a more extreme temperature gradient between discharge and surface water during 
winter. Conversely, sub-tropical water temperatures have less seasonal variation and a more consistent 
thermal gradient is maintained between discharge and ambient conditions. Adverse effects to aquatic 
organisms are generally most pronounced at the acute and chronic high lethal temperatures and/or due to 
rapid fluctuations (e.g., "cold shock"). 

Marine vs. Freshwater Receiving Waters 

Adverse thermal impacts have been documented in both freshwater and marine ecosystems, but the 
likelihood of impacts may be considered slightly greater in freshwaters simply due to the presumption 
that marine waters constitute a greater thermal reservoir due to larger volume and tidal flushing. 
However, as noted above, site-specific features will dictate the effective volume and the flushing rate, 
which are likely to be the key to vulnerability of receiving water ecosystem to thermal impacts. Clearly, 
the magnitude of thermal impacts also depends on the composition of the local biota and whether such 
organisms are temperature-sensitive. The sensitivity of coldwater freshwater fish (e.g., trout, salmonids, 
darters) to increased water temperature and associated lowering of available dissolved oxygen has been 
well characterized (Beitinger et al. 2000; Sullivan et al. 2000). There is less temperature-sensitivity in 
marine estuarine fish, which are often more tolerant than offshore fish, since they are subject to regular 
environmental fluctuations. 

Receiving Water Volume 
The volume of the receiving water is a critical factor since it determines the total amount of heat that can 
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be absorbed by a water body while still remaining at an acceptable temperature. The effective volume 
subject to the thermal discharge may be significantly less than that of the entire water body if it is 
constrained physically (e.g., narrow discharge channel, small coastal embayment) or can vary in the short 
term (e.g., low tide, hydropower releases), seasonally (e.g., thermally stratified lakes, salinity stratified 
estuary), or longer (e.g., multi-year droughts). Due to the buoyant properties of warm water, the effective 
mixed volume can be reduced even further if the thermal plume is not effectively or rapidly mixed into 
the receiving waters.  

Rate of water exchange  

The rate of water exchange is another factor which can compensate for a small effective volume.  A short 
hydraulic residence time (HRT) (i.e., rapid flushing) of the receiving water at the point of the thermal 
discharge can rapidly dissipate a high heat load. Large fast rivers, open ocean outfalls, and coastal 
embayments with sweeping longshore currents, etc. can generally better tolerate thermal discharges and 
have limited or highly localized impacts to biota. Poorly flushed systems, those with seasonal flow 
minima, or episodic hydrologic inputs, are more likely to experience widespread or persistent thermal 
impacts. In some cases, the flow or volume of the thermal discharge may be very much greater than the 
receiving water.  

Local land use 

Local land uses may also be influential in that they can provide additional thermal loads to the water body 
independent of the thermal discharge. Developed urban areas having watersheds with large percentages of 
impervious cover may produce large storm water flows with temperatures that are well above ambient 
temperatures in the receiving waters. Agricultural lands and irrigation return water may also increase 
local thermal loading. Channelization and removal of riparian buffer vegetation can increase water 
temperature through lack of shading, reflective artificial substrates, and removal of deep pool habitats.   

Local Habitats 

Benthic biota and/or habitats (e.g., oyster reefs, eelgrass, and mussel beds) found in nearshore 
environments are often subject to greater impact since these largely sessile communities are affixed to the 
substrate. On the other hand, mobile aquatic organisms can track temperature change and fine-tune their 
temporal and spatial distribution (Cooke et al. 2004). Biota can sometimes avoid adverse thermal impacts 
by seeking out localized areas of cooler or better aerated waters (e.g., deep pool, tributary stream, bottom 
waters) for short-term or seasonal residence. These areas provide habitat that may allow the temperature-
sensitive organisms to persist and emigrate back into the affected water body once the thermal stress is 
reduced. Thermal effects could be more severe in homogenous environments (e.g., open water column, 
unstratified reservoir) where the biota does not have access to these refugia. Thermal displacements from 
spawning habitat due to dam construction and operation (e.g., bottom water releases) has also been a 
concern in western rivers and elsewhere (Bartholow et al. 2004; Hayes et al. 2006).  

B.4 Uncertainties and Limitations of Assessing Thermal Impacts 

One of the major difficulties in accurately characterizing the influence of thermal discharges on aquatic 
communities is the uncertainty due to the potential influence of other abiotic water quality factors.  
Thermal discharges from power plant cooling systems often contain elevated levels of additional 
constituents including, but not restricted to: residual chlorine, total suspended solids, total dissolved 
solids, cleaning agents and surfactants, metals, and nutrients. The presence of these constituents may 
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complicate the interpretation of the environmental factor(s) that are responsible for observed changes in 
biotic communities.   

For example, several of our studies on thermal effects on primary producers noted that residual chlorine 
in the discharge may be responsible for some of the observed effects (Chuang et al. 2009; Poornima et al. 
2005). Interaction of thermal effects and heavy metals was responsible for some phytoplankton taxonomic 
changes in one reservoir investigated by Mallin et al. (1994). Looking at the behavior of smallmouth bass, 
Cooke et al (2004) found that a majority of a local radio-tagged population overwintered in the warmest 
portions of a thermal discharge to Lake Erie. However, this area also was high in habitat complexity, had 
adequate flow velocity refuges, and abundant forage so selection for this habitat may not be a simple 
thermal preference.  

Adverse temperature effects may also be more pronounced in aquatic ecosystems which are already 
subject to other environmental stressors such as high biochemical oxygen demand (BOD) levels, sediment 
contamination, or pathogens. Thermal discharges may have indirect effects on fish and other vertebrate 
populations through increasing pathogen growth and infection rates. Langford (1990) reviewed several 
studies on disease incidence and temperature, and while he found no simple, causal relationship between 
the two, he did note that it was clear that warmer water enhances the growth rates and survival of 
pathogens, and that infection rates tended to be lower in cooler waters. 

B.5 Case Studies 

Three case studies were selected for large power generating stations whose thermal discharges may have 
a potential impact to the local aquatic community/ecosystem. These three case studies provide examples 
of investigations of thermal impacts in different environmental settings (marine coastal embayment, 
coastal Great Lake, and freshwater river) and with potential effects investigated at differing spatial scales 
(community, habitat, ecosystem).   

B.5.1 Brayton Point Station 

Brayton Point Station (BPS) is a 1538 megawatt (MW) coal and oil-fired electrical generating station 
located in Somerset, MA. This facility takes cooling water from and discharges heated effluent to Mount 
Hope Bay (MHB), a large coastal embayment whose waters lie within Massachusetts and Rhode Island. 
Generation Unit 1 began operating in 1963, Unit 2 in 1964, Unit 3 in 1969, and Unit 4 in 1974 (Dominion 
2011). One of the most thorough examinations of the individual and cumulative effects of a power plant 
thermal discharge was conducted as part of the regulatory review of the CWA Section 316(a) variance 
request application submitted in May 2001 as part of the NPDES discharge permit (Permit No. MA 
003654) renewal for BPS. The permitee’s 316(a) variance request application looked to keep the existing 
permit temperature criteria (maximum temperature of 95oF; delta (departure from ambient) temperature of 
22o F) and to reduce the total heat load from the existing permit limits. However, these thermal criteria 
were still less stringent than what would be required by either technology-based or water quality-based 
discharge limits.   

CWA 316(a) authorizes alternative thermal discharge limits when it is demonstrable that the proposed 
thermal limits “will assure the protection and propagation of a balanced indigenous population (BIP) of 
shellfish, fish and wildlife in and on that body of water.” To evaluate whether the thermal limits proposed 
in the May 2001 316(a) variance request application would meet this protective criterion, EPA, in 
accordance with the 316(a) Technical Guidance Manual (USEPA 1977), conducted a review of the 
historical and current conditions of MHB biota on a community-by-community evaluation and considered 
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potential thermal impacts to phytoplankton, zooplankton, habitat formers, shellfish, finfish, and other 
vertebrate (i.e., sea turtles and mammalian) wildlife. The findings of the community impact analyses are 
contained in the “Clean Water Act NPDES Permitting Determinations for Thermal Discharge and 
Cooling Water Intake from Brayton Point Station in Somerset, MA” (USEPA 2002b) dated July 22, 2002 
(hereafter “Determinations”) and summarized below.  

For each of the community types, the Determinations provides a preliminary consideration of whether the 
community’s nature, estuarine setting, and water column distribution within MHB relative to the location 
and magnitude of the BPS thermal discharge would result in a finding of “low potential impact areas” and 
lessened environmental concerns for the granting of the 316(a) variance. For those communities in MHB 
for which a “low potential impact” conclusion was not possible, the severity of the thermal effect was 
gauged by comparison to a list of a priori decision criteria for each community.   

EPA judged that MBH was not a low potential impact area for phytoplankton.  As seagrasses and salt 
marshes have historically declined in importance in MHB, the phytoplankton community is the dominant 
primary producer (USEPA 2002b). The recent (2001) occurrence of a nuisance blue-green algal bloom 
(dominated by the cyanophyte Anacystis aeruginosa) in MHB near BPS may be due to the high nutrients 
and warm water temperatures which favor formation of such bloom. It was considered likely that thermal 
plume from BPS was a contributing factor. Perhaps of greater importance is the finding that the MHB 
phytoplankton community does not undergo the typical winter-spring phytoplankton bloom cycle (Keller 
et al. 1999). Extensive work was conducted on plankton communities in experimental mesocosms where 
temperature was shifted to mimic the expected thermal conditions in MHB surface waters. Extrapolating 
these changes seen in the mesocosms, such changes in phytoplankton population dynamics could very 
likely lead to significant impacts within the trophic dynamics of the MHB food web. Redirecting carbon 
away from benthic consumers and into pelagic food webs could represent a reduction in prey species for 
benthic-feeding finfish such as winter flounder, windowpane flounder, hogchoker, and tautog.  

EPA judged that MHB was not a low potential impact area for zooplankton since it is an estuary that 
serves as a spawning site for numerous fish and invertebrate species (USEPA 2002b). The most 
noticeable thermal effect in this community is the recent increase in abundance of the ctenophore 
Mneimiopsis leidyi and increased overwintering in MHB for this formerly seasonal resident. Dramatic 
increases in comb jellies (i.e., ctenophores) are usually indicative of stressed ecosystems with symptoms 
of increased water temperatures, increased nutrient levels, and depleted fish stocks (Pohl 2002). Since M. 
leidyi is a voracious consumer of pelagic fish eggs as well as zooplankton by which it competes with 
young-of-year winter flounder, it was concluded that BPS was significantly contributing to thermal 
increases in MHB and facilitating expansion of the range and time of year distribution of the comb jellies. 

Eelgrass is a coldwater plant that ranges from North Carolina to Canada and grows well in soft-bottom, 
low energy environments. Despite the current lack of eelgrass, the EPA judged that MBH was not a low 
potential impact area for habitat formers since the historic presence of extensive eelgrass meadows shows 
that it is capable of supporting this habitat type (USEPA 2002b). Experimental work has shown that 
optimal temperature ranges for photosynthesis decrease with increasing turbidity (Bulthuis 1987) so that 
in turbid waters, eelgrass growth decreases with increased temperature, because photosynthetic rates 
decrease and respiration rates increase. Based on the current lack of eelgrass, it was concluded that the 
combination of poor water quality and increased water temperature result in an “exclusion zone” for 
eelgrass growth in MHB (USEPA 2002b).  Since BPS helps to elevate the water temperature over 
significant portions of the bay, it is considered a contributory cause to this exclusion. 
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EPA judged that MBH was not a low potential impact area for shellfish and macroinvertebrates due to the 
presence of commercially important species, their “substantial” densities, the spawning and nursery areas 
in MHB, and the important role in ecosystem function that this community provides (USEPA 2002b). 
Benthic sampling indicated that there have been no significant changes in the benthic community between 
the 1970’s and mid-1990’s or over the span of time when BPS has been active and the annual heat flux 
was increased. The sampling also indicates a strong representation in the benthic community of the 
amphipod Ampelisca which is a preferred prey item for juvenile winter flounder. Overall, EPA found no 
substantial evidence of harm to shellfish and macroinvertebrates from the current thermal discharge, and 
any alternative which reduces the thermal discharge would be acceptable. 

EPA judged that MHB was not a low potential impact area for finfish due to the presence of numerous 
recreational and commercially important species, the important spawning and nursery areas, and the 
potential for blockage of fish migration (USEPA 2002b). The analysis for finfish was specifically targeted 
at determining the appropriate thermal discharge limits for BPS in order to protect finfish populations and 
included a retrospective examination of total finfish abundance trends in relation to plant operations. The 
analysis determined an acceptable annual flux of heat into MHB that is protective of finfish populations, 
based on the temperature thresholds for acute and chronic mortality as well as for several sub-lethal 
effects for some representative important species (RIS). 

The finfish stocks in MHB have declined precipitously since 1984-1985, a period which marked the shift 
of Unit 4 at BPS from closed-cycle to once-through cooling operations. Further, work by Gibson (2002) 
suggests that winter flounder have been declining since at least the initiation of sampling in 1972. While 
BPS had been operational for 9 years at that point, no fishery data are available to estimate what the 
finfish community was like prior to 1972. Comparison of the record of annual heat flux to MHB over that 
last 28 year period to records of finfish abundance led EPA to conclude that an annual heat flux of 28 
trillion British thermal units (tBTU) to MHB, as proposed in the 316(a) variance request application, 
would be unable to stop or reverse a decline in fish populations and thus would not be protective of the 
finfish community. 

The temperature tolerance limits of 16 RIS were reviewed to establish temperature thresholds for the 
more sensitive of these species (winter flounder, striped bass). These thresholds were used to establish 
critical temperatures for three target depth strata (surface, middle, and bottom waters) at two key seasonal 
periods (winter, summer). Winter corresponds to the period (March 1 -31) of active winter flounder 
spawning and when large numbers of larval planktonic winter flounder are present in MHB. The summer 
index period (July 15 – August 15) corresponds to the warmest time of the year.   

Predictive hydrothermal models (CORMIX for near-field effects; WQMAP for far-field effects) of MHB 
provided a means of evaluating the potential thermal impacts caused by the current (i.e., existing permit), 
the proposed (i.e., the requested 316(a) variance), and two alternative reduced heat flux options for BPS 
operations, as well as a “no-plant” condition. During warm summer conditions, the proposed operational 
heat flux would impact 62% of the bottom water strata as compared to 4% under a no-plant scenario, 
while other alternative operating options would have reduced impact proportional to their proposed total 
heat fluxes. Using this method, it is possible to show impacts to all target depth strata during summer 
conditions and impacts to the bottom strata during winter.   

The study also considered other heat effects on finfish caused by the thermal discharge. The first involved 
the attractive nuisance nature of the thermal plume (USEPA 2002b). The plume acts as an attractant for 
large numbers of striped bass and bluefish in the fall and winter and disrupts their seasonal migration. The 
crowding of large numbers of these species into a restricted area increases the potential for weakening or 
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diseases to occur since the warm temperatures increase their metabolism at the same time there is reduced 
feeding due to a lack of prey.  Similarly, the trapping of Atlantic menhaden in the thermal plume affects 
their migration and likely increases I&E losses due to longer periods spent in proximity to intake 
structures and which has been evidenced by several recent large winter impingement loss events. Another 
effect noted was the establishment in MHB of smallmouth flounder (Etropus microstomus) which is at the 
northern limit of its geographic distribution range. It is important to note that an increased abundance or 
distribution shift to a warm water species is not indicative of protection of a BIP.   

EPA judged that MBH is a low potential impact area for other vertebrate life since it is not a significant 
habitat for marine mammals or sea turtles (USEPA 2002b). Overall, there is no potential for harm from 
the current thermal discharge and any alternative which reduces the thermal discharge would be 
acceptable. 

A summary of current ecosystem thermal effects and predicted impacts associated with the proposed 
thermal flux was prepared (USEPA 2002b). The current thermal effects for which there appears to be no 
disagreement include: 

 Appearance of nuisance algal blooms; 
 Absence of normal winter-spring phytoplankton bloom;  
 Overwintering of the ctenophore Mneimiopsis leidyi;  
 Overwintering of striped bass and bluefish in discharge canal; 
 Increased abundance of smallmouth flounder in MHB; 
 Thermal avoidance of most of MHB by adult winter flounder; and 
 Multiple fish kills as a result of large impingement events in the winter. 

Evaluating the proposed 316(a) variance request, EPA predicted that, under the proposed thermal 
discharge under the 316(a) variance request, the following would occur: 

 Large areas of MHB would be avoided by juvenile winter flounder and striped bass during warm 
summer months; 

 Extensive areas of MHB would experience water temperatures resulting in chronic toxicity to 
juvenile winter flounder; 

 Reduced winter flounder egg hatching success for the entire MHB for the warmest winter 
months; 

 Increased predation on winter flounder eggs and larvae by sand shrimp; and  
 Potential exclusion of eelgrass. 

EPA also considered potential impacts from other stressors that could be responsible for mortality of 
finfish in MHB; including overfishing, predators, water quality, brown tides, and I&E (USEPA 2002b).  
Each of these stressors was examined for its potential role in causing or contributing to the finfish 
collapse. Analyses of these other potential stressors indicated that while possibly contributory, the adverse 
effects of each were generally exacerbated by the thermal conditions caused by the BPS plume.  

Based on the hydrothermal and ecological analyses conducted and documented in the Determinations 
document, EPA concluded that a BIP has not been maintained in MHB and that the current BPS thermal 
discharge is a significant contributor to this problem (USEPA 2002b). Further, the proposed thermal 
reductions in annual heat flux contained in the 316(a) variance request application would not allow for the 
recovery of the winter flounder or the wider balanced indigenous ecosystem. Accordingly, EPA denied 
the permitee’s variance request and reissued the NPDES permit in 2003 with the provision for installing 
closed-cycle cooling in all four of the power units. 
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B.5.2 Quad Cities Nuclear Station (QCNS) 

Quad Cities Nuclear Station (QCNS) is a dual-unit nuclear fueled steam electric generating facility (SIC 
4911) located on a 765-acre site along the Mississippi River in Cordova, Illinois. QCNS Units I (866 net 
megawatts (MW)) and 2 (871 net MW) began commercial production of electricity in 1973. QCNS 
withdraws water from the Mississippi River for non-contact condenser cooling and various service water 
uses. After passing through the condensers, the cooling water from Units 1 and 2 mixes and then exits to 
the River via a discharge canal. QCNS is located on Pool 14 of the Mississippi River, at approximate 
River Mile 506.5 above the confluence of the Ohio River. 

The thermal discharge is authorized under the Station’s NPDES Permit, issued by the ILEPA. Thermal 
limits in the NPDES Permit are based on Illinois environmental regulations, and studies and 
Demonstrations related to the thermal plume are performed under CWA Section 316(a). During the latest 
NDPES permit renewal cycle, QCNS requested issuance of a 316(a) variance for a proposed alternative 
thermal standard, specifically relaxation of a maximum thermal excursion temperature limits by 2oF 
during late summer months (July-September), which would increase the predicted frequency of expected 
thermal excursions from 1% to 3%.  This variance request was based on a demonstration that future 
operations of QCNS would assure the protection and propagation of a balanced indigenous community 
(BIC) of fish, wildlife, and shellfish, particularly within Pool 14. 

To evaluate the potential thermal impacts of QCNS’ discharge on Pool 14, a number of comprehensive 
studies were conducted (including thermal plume modeling and field surveys, review of current 
(“prospective analysis”) and historic (“retrospective demonstration”) biota monitoring, and water quality 
assessment.  The thermal plume modeling is contained in “River temperature predictions downstream 
of Quad Cities Nuclear Generating Station” (Holly Jr. et al. 2004). The elements and findings of the 
biological and water quality assessments are contained in the “Quad Cities Nuclear Station Adjusted 
Thermal Standard CWA 316(a) Demonstration. Final Draft” (HDR 2009) dated November 2009 
(hereafter “Demonstration”) and summarized below. 

The thermal plume model study was able to successfully reproduce temperature field data (collected 
September 2003) without any adjustment of non-physical parameters (Holly Jr. et al. 2004). The model 
was used to show compliance of the thermal plume with the proposed alternative standard. The model 
validation revealed the importance of including site-specific river-entraining structures such as wing dams 
and chute closure dams in the model, as they have an important influence on the thermal flow patterns in 
the vicinity of the QCNS and local Steamboat Island (Holly Jr. et al. 2004).  

Current and past monitoring efforts have collected data on a variety of aquatic communities, including 
phytoplankton, zooplankton, benthic macroinvertebrates (including freshwater mussels), ichthyoplankton, 
and finfish, which are summarized in the Demonstration (HDR 2009).  For the prospective assessment, 
QCNS conducted comprehensive literature surveys, analyzed field data, and followed EPA approved 
protocols for assessing potential thermal impacts on Representative Important Species (RIS) of fish. RIS 
species selected for the QCNS Demonstration included largemouth bass, channel catfish, spotfin shiner, 
and walleye. River and plant operating conditions were selected to provide a conservative assessment of 
potential power plant-related biological effects (i.e., the biothermal assessment focused on the months of 
June, July, August, and September). The results indicate that the proposed alternative thermal standard 
would have a negligible impact on largemouth bass, channel catfish, and a slightly positive one for spotfin 
shiner (i.e., increased growth) (HDR 2009). Walleye chronic mortality could be increased by 8.5% 
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immediately downstream of the mixing zone, but placed in the areal relationship of the discharge to Pool 
14, this would translate to a <1% effect on the walleye population in the Pool (HDR 2009).  

The retrospective assessment indicated some changes in the upper trophic levels (i.e., finfish) in Pool 14 
since the Station began operating, but concluded that those changes are not attributable to the thermal 
input from QCNS (HDR 2009). In addition, the overall stability and health of upper trophic levels over 
the length of the monitoring period suggests that lower trophic levels (i.e., zooplankton, phytoplankton) 
have remained stable and abundant, providing an adequate food supply to allow and sustain growth of the 
finfish and mussel populations. The retrospective assessment also found that neither nuisance species 
(e.g., zebra mussel) nor heat tolerant species of fish have come to predominate in Pool 14 due to QCNS 
operations (HDR 2009). 

In addition, the Demonstration examined the potential for harmful interactions between the QCNS 
thermal discharge and other pollutants, including dissolved organic carbon, total phosphorus, total 
nitrogen, biocides (i.e., anti-fouling chemicals), heavy metals, and other thermal discharges located 
upstream. This analysis indicated that there was no evidence to suggest that the small amount of 
additional heat that would be permitted to be discharged to Pool 14 under the proposed alternative 
standard would have an adverse synergistic effect with other pollutants (HDR 2009). 

QCNS, based on their interpretation of EPA guidance documents and 316(a) Demonstrations for other 
facilities, maintained that the overall standard of compliance (i.e., protection of the BIC) would be 
demonstrated by meeting a series of functional criteria. Because this is a request for a change in the 
thermal standard, the Demonstration needed to show that these conditions will be satisfied in the future if 
the proposed standard was adopted: 

 No substantial increase in abundance or distribution of any nuisance species or heat tolerant 
community; 

 No substantial decreases in formerly abundant indigenous species or community structure to 
resemble a simpler successional stage than is natural for the locality and season, other than 
nuisance species; 

 No unaesthetic appearance, odor, or taste of the water; 

 No elimination of an established or potential economic or recreational use of the waters;  

 No reduction in the successful completion of life cycles of indigenous species, including those of 
migratory species; 

 No substantial reduction of community heterogeneity or trophic structure; 

 No adverse impact on threatened or endangered species; 

 No destruction of unique or rare habitat, without a detailed and convincing justification of why 
the destruction should not constitute a basis of denial; and 

 No detrimental interaction with other pollutants, discharges, or water-use activities. 

Based on the results of the thermal plume modeling study, the prospective analysis, the retrospective 
assessment, and the successful meeting of the criteria listed above, QCNS concluded that past or future 
operations have not caused appreciable harm to the BIC. 

B.5.3 Point Beach Nuclear Station 

Point Beach Nuclear Plant (PBNP) is located on the western shore of Lake Michigan in Two Rivers, 
Manitowoc County, WI. The facility consists of two nuclear powered steam electric generating units with 
a total net capacity of 1,540 megawatts thermal (MWt) each. Generation Unit 1 began commercial 
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operation in December 1970 and Unit 2 in October 1972 (EA 2008). The units operate with a once-
through cooling water system (EA 2008). Cooling water is withdrawn from a deep intake (22 ft contour) 
in Lake Michigan and current pumping capacity is estimated to be 680,000 gallons per minute. Each unit 
discharges the non-contact cooling water to Lake Michigan via its own outfall located at a mean 
temperature increase of 11.5°C (20.7°F) above the intake water temperature at the maximum flow rate 
(EA 2008).  

PBNP planned to implement an extended power uprate (EPU) at both units in the 2010/2011 time frame 
that was expected to increase the existing plant output by approximately 17 percent. The proposed EPU 
does not result in an increase in water being withdrawn from Lake Michigan, nor will it result in an 
increase in the amount of water discharged to Lake Michigan (NRC 2010). However, EPU did require 
modification of the facility’s Wisconsin Discharge Elimination System (WPDES) permit for the discharge 
of a pollutant from a point source into waters of the state (which includes the addition of heat from a 
point source). According to a modeling study performed by PBNP in 2008, the temperature of the 
discharge water was expected to increase by a maximum of 3.6 °F (2.0 °C) and the thermal plume expand 
as a result of the proposed EPU (NRC 2010).  

In support of the permit modification request, PBNP prepared an assessment of the potential impacts of 
the thermal discharge from the planned EPU (i.e., the “Planned Change”). This assessment is summarized 
in “Point Beach Nuclear Plant Evaluation of the Thermal Effects Due to a Planned Extended Power 
Uprate” (EA 2008).  Since there currently are no temperature limits in the PBNP WPDES permit or 
thermal water quality standards for Lake Michigan, this assessment represented a “good faith effort” by 
PBNP to demonstrate that the impacts of the EPU would not have a significant effect on the fish or 
shellfish communities in Lake Michigan (EA 2008). 

Evaluation of the potential effects on the Lake Michigan aquatic community in the vicinity of the PBNP 
post-EPU discharge was based on a review of historical and current monitoring data collected in the 
vicinity of the facility and other power plants that utilize Lake Michigan water for once-through cooling 
(EA 2008). Those study results were compared to expected responses of 16 Wisconsin Department of 
Natural Resource (WDNR) selected Representative Important Species (RIS) to the projected higher 
discharge temperatures and larger thermal plume that will result from the planned EPU. The evaluation 
placed emphasis on the RIS and whether or not the BIC in the vicinity of the PBNP discharge would 
continue to be protected. 

The assessment relied heavily on the findings of the Type I CWA Section 316(a) Demonstration 
conducted by the plant in the 1970s as well as the 1976 finding by WDNR that no appreciable harm had 
occurred to the local BIC due to plant operations (EA 2008). The studies involved investigations of 
primary and secondary trophic levels from phytoplankton through fish in both reference and thermally 
affected areas (EA Engineering 2008; Limnetics 1974, as cited in EA 2008).  

Recent entrainment and impingement monitoring studies at PBNP indicate that the same species that were 
common in the vicinity of the facility during the Type I Demonstration remain common near the plant 
despite lake-wide changes in the Lake Michigan fish community (Kitchell 2007, as cited in EA 2008). 
Recent fisheries data collected from both PBNP and the Kewaunee Nuclear Power Plant (KNPP), which 
is located only five miles north of PBNP, show that the same species seasonally occur in nearshore areas 
in the vicinity of the shoreline discharge structures. These findings indicate that the BIC is protected 
under similar operating conditions as have occurred historically at PBNP. 

Evaluation of the modeled discharge temperatures and plume configurations under the planned EPU 
indicates that the predicted area, volume, and behavior of the plume will not be substantially different 
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than under current PBNP operating conditions and similar to those evaluated during the Type 1 
Demonstration (EA 2008).  Based on the thermal model results using a 0.2 ft/sec along-shore current, the 
planned EPU would expand the surface area of the 6.0ºC contour from 27 to 39 acres; the 4.0ºC contour 
would increase from 79 to 105 acres; and the 2.0ºC contour would increase from 315 to 390 acres (EA 
2008). These projected increases in plume size are relatively small compared to the surface area available 
for mixing. Under critical summer conditions the buoyant plume provides an area of safety as well as a 
zone of passage when discharge temperatures approach or exceed upper avoidance temperatures of the 
RIS fish. 

The RIS evaluation showed that the predicted impact of the warmer and larger thermal plume as a result 
of the EPU at PBNP will be negligible (EA 2008). Thermal criteria for some of the 12 RIS fish species 
would be exceeded in the plume, but mainly at the point of discharge or in small areas for relatively brief 
periods of time. Fish readily move into and out of thermal discharge plumes, depending on their thermal 
requirements and the thermal regime of the plume at any given time. Cool and coldwater fish species 
would be somewhat restricted with regard to use of the plume area, especially during summer, but they 
generally spend the summer well offshore. In addition, the warmwater RIS could slightly benefit from the 
warmer temperatures. Combining these observations with the size of the PBNP plume relative to 
available lake habitat, it was concluded that the larger and warmer thermal plume resulting from the 
planned EPU would have a minimal and insignificant impact on the fish community in Lake Michigan 
(EA 2008). Similar conclusions were reached for the four invertebrate RIS (shellfish and opossum 
shrimp). 

Overall, the assessment concluded that the increased heat load to the discharge would not endanger the 
protection and propagation of a BIC of shellfish, fish, and wildlife in and on Lake Michigan. This 
conclusion was based on several lines of evidence including: 

 The PBNP Type I Demonstration established that the original thermal plume did not cause “prior 
appreciable harm;”  

 The PBNP thermal plumes resulting from the planned EPU will not be substantially larger than 
the original/existing plumes; 

 There have been no changes in the aquatic community attributable to operation of the facility that 
would preclude reliance on the results of the Type I Demonstration for PBNP; 

 The changes to the Lake Michigan fish community that have occurred during the past 50 years 
have occurred on a lake-wide basis; 

 The impacts on RIS will be negligible; and 
 The conclusion with respect to the effect of the planned EPU is consistent with assessments 

undertaken at other power plants on Lake Michigan. 

While the cooling water thermal plume of PBNP was expected to be larger as a result of the proposed 
EPU, it was not expected to disrupt the local BIC or have a signficant impact on RIS of Lake Michigan 
(EA 2008). Recently, as part of the plant’s operating license renewal, the Nuclear Regulatory 
Commission developed a draft Environmental Assessment (EA) for the power uprate. The draft EA was 
issued in December 2010 with a finding of no significant impact (NRC 2010). 
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C:  

Appendix C: Details of Regional I&E Mortality LossesC 

C.1 California 

Table C-1: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the California Region (million A1Es 
per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
All forage species 0.20 0.18 0.20 0.20 0.17 17.35 <0.01 14.79 15.47 <0.01 17.56 0.18 14.99 15.67 0.17
All harvested species 0.59 0.52 0.58 0.59 0.50 18.69 <0.01 15.93 16.66 <0.01 19.28 0.52 16.51 17.25 0.50

American shad <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Cabezon <0.01 <0.01 <0.01 <0.01 <0.01 0.06 <0.01 0.05 0.05 <0.01 0.06 <0.01 0.05 0.05 <0.01
California halibut <0.01 <0.01 <0.01 <0.01 <0.01 0.23 <0.01 0.20 0.21 <0.01 0.23 <0.01 0.20 0.21 <0.01
California scorpionfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Crabs (other) 0.02 0.02 0.02 0.02 0.02 7.80 <0.01 6.65 6.95 <0.01 7.82 0.02 6.67 6.98 0.02
Sea Basses <0.01 <0.01 <0.01 <0.01 <0.01 2.83 <0.01 2.41 2.52 <0.01 2.83 <0.01 2.41 2.53 <0.01
Shrimp (other) <0.01 <0.01 <0.01 <0.01 <0.01 0.63 <0.01 0.53 0.56 <0.01 0.63 <0.01 0.54 0.57 <0.01
Drums and croakers 0.05 0.04 0.05 0.05 0.04 0.23 <0.01 0.19 0.20 <0.01 0.27 0.04 0.24 0.25 0.04
Dungeness crab <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Flounders 0.01 <0.01 0.01 0.01 <0.01 0.10 <0.01 0.08 0.09 <0.01 0.11 <0.01 0.09 0.10 <0.01
Fish (other) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 0.01 <0.01
Northern anchovy 0.34 0.30 0.34 0.34 0.29 0.03 <0.01 0.03 0.03 <0.01 0.38 0.30 0.37 0.37 0.29
Rockfishes 0.02 0.01 0.02 0.02 0.01 6.33 <0.01 5.39 5.64 <0.01 6.34 0.01 5.41 5.66 0.01
Salmon <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Sculpins 0.01 0.01 0.01 0.01 0.01 0.43 <0.01 0.36 0.38 <0.01 0.44 0.01 0.38 0.39 0.01
Smelts <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Striped bass <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 0.01 <0.01 0.01 <0.01 0.01 0.01 <0.01
Sunfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Surfperches 0.11 0.10 0.11 0.11 0.10 <0.01 <0.01 <0.01 <0.01 <0.01 0.11 0.10 0.11 0.11 0.10

Total (all species) 0.79 0.69 0.78 0.79 0.68 36.04 <0.01 30.72 32.13 <0.01 36.83 0.69 31.50 32.92 0.68

Scenarios: B = Baseline I&E Mortality losses, 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = Option 4 (I for 
Facilities > 50 MGD)

I&EEntrainmentImpingement
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Table C-2: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the California Region (million 
individuals per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4

American shad <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Blennies <0.01 <0.01 <0.01 <0.01 <0.01 914.88            <0.01 389.87             407.84           <0.01 914.88             <0.01 389.87            407.84           <0.01

Bluegill <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Brown bullhead <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Cabezon <0.01 <0.01 <0.01 <0.01 <0.01 6.65                <0.01 2.83                 2.96               <0.01 6.65                 <0.01 2.83                2.96               <0.01

California halibut <0.01 <0.01 <0.01 <0.01 <0.01 7.71                <0.01 3.29                 3.44               <0.01 7.72                 <0.01 3.29                3.44               <0.01

California scorpionfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Chinook salmon <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Crabs (other) 0.05         0.02         0.03         0.03         0.02         7,238.91         <0.01 3,084.81          3,227.00        <0.01 7,238.96          0.02         3,084.83         3,227.03        0.02      

Delta smelt <0.01 <0.01 <0.01 <0.01 <0.01 0.01                <0.01 <0.01 <0.01 <0.01 0.01                 <0.01 <0.01 <0.01 <0.01

Drums and croakers 0.41         0.18         0.20         0.21         0.18         915.22            <0.01 390.01             407.99           <0.01 915.63             0.18         390.22            408.20           0.18      

Dungeness crab <0.01 <0.01 <0.01 <0.01 <0.01 0.09                <0.01 0.04                 0.04               <0.01 0.09                 <0.01 0.04                0.04               <0.01

Fish (other) 0.09         0.04         0.04         0.04         0.04         1,299.61         <0.01 553.82             579.35           <0.01 1,299.70          0.04         553.86            579.39           0.04      

Flounders 0.01         <0.01 <0.01 <0.01 <0.01 319.23            <0.01 136.04             142.31           <0.01 319.24             <0.01 136.04            142.31           <0.01

Gobies <0.01 <0.01 <0.01 <0.01 <0.01 1,579.24         <0.01 672.98             704.00           <0.01 1,579.24          <0.01 672.98            704.00           <0.01

Herrings 0.06         0.02         0.03         0.03         0.02         26.23              <0.01 11.18               11.69             <0.01 26.28               0.02         11.20              11.72             0.02      

Longfin smelt <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Northern anchovy 0.86         0.38         0.42         0.43         0.37         826.63            <0.01 352.26             368.50           <0.01 827.49             0.38         352.68            368.93           0.37      

Pacific herring <0.01 <0.01 <0.01 <0.01 <0.01 36.16              <0.01 15.41               16.12             <0.01 36.17               <0.01 15.41              16.12             <0.01

Rockfishes 0.03         0.01         0.01         0.01         0.01         63.96              <0.01 27.26               28.51             <0.01 63.99               0.01         27.27              28.53             0.01      

Sacramento splittail <0.01 <0.01 <0.01 <0.01 <0.01 0.01                <0.01 <0.01 <0.01 <0.01 0.01                 <0.01 <0.01 <0.01 <0.01

Salmon <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Sculpins 0.02         <0.01 <0.01 <0.01 <0.01 47.94              <0.01 20.43               21.37             <0.01 47.96               <0.01 20.44              21.38             <0.01

Sea Basses <0.01 <0.01 <0.01 <0.01 <0.01 13.24              <0.01 5.64                 5.90               <0.01 13.24               <0.01 5.64                5.90               <0.01

Shrimp (other) 0.03         0.01         0.02         0.02         0.01         429.24            <0.01 182.92             191.35           <0.01 429.27             0.01         182.93            191.36           0.01      

Silversides 0.11         0.05         0.05         0.06         0.05         121.84            <0.01 51.92               54.31             <0.01 121.95             0.05         51.97              54.37             0.05      

Smallmouth bass <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Smelts <0.01 <0.01 <0.01 <0.01 <0.01 3.63                <0.01 1.55                 1.62               <0.01 3.63                 <0.01 1.55                1.62               <0.01

Striped bass <0.01 <0.01 <0.01 <0.01 <0.01 11.31              <0.01 4.82                 5.04               <0.01 11.31               <0.01 4.82                5.04               <0.01

Sunfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Surfperches 0.13         0.06         0.06         0.06         0.06         <0.01 <0.01 <0.01 <0.01 <0.01 0.13                 0.06         0.06                0.06               0.06      

Total (all species) 1.82         0.80         0.90         0.90         0.77         13,861.76       <0.01 5,907.09          6,179.38        <0.01 13,863.58        0.80         5,907.98         6,180.28        0.77      

Scenarios: B = Baseline I&E Mortality losses. 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = Option 4 (I for Facilities > 50 MGD). 
Values for all options reflect reductions in losses.

Impingement Entrainment I&E

A 
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C.2 North Atlantic 

Table C-3: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the North Atlantic 
(million A1Es per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
All forage species 0.55 0.38 0.54 0.55 0.38 46.46 <0.01 37.88 39.74 <0.01 47.02 0.38 38.42 40.29 0.38
All harvested species 0.08 0.06 0.08 0.08 0.06 12.90 <0.01 10.52 11.03 <0.01 12.98 0.06 10.60 11.11 0.06

American plaice <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
American shad <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Atlantic cod <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 0.01 <0.01 0.01 <0.01 0.01 0.01 <0.01
Atlantic herring <0.01 <0.01 <0.01 <0.01 <0.01 0.12 <0.01 0.10 0.11 <0.01 0.13 <0.01 0.10 0.11 <0.01
Atlantic mackerel <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.02 0.02 <0.01 0.02 <0.01 0.02 0.02 <0.01
Atlantic menhaden <0.01 <0.01 <0.01 <0.01 <0.01 0.04 <0.01 0.03 0.03 <0.01 0.04 <0.01 0.03 0.03 <0.01
Bluefish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Butterfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Crabs (other) 0.03 0.02 0.03 0.03 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 0.02 0.03 0.03 0.02
Cunner <0.01 <0.01 <0.01 <0.01 <0.01 4.26 <0.01 3.47 3.64 <0.01 4.26 <0.01 3.47 3.64 <0.01
Fish (other) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Pollock <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Red hake <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Sculpins <0.01 <0.01 <0.01 <0.01 <0.01 1.94 <0.01 1.58 1.66 <0.01 1.94 <0.01 1.59 1.66 <0.01
Scup <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Searobin <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 0.01 <0.01
Silver hake <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Skates <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Striped bass <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Tautog <0.01 <0.01 <0.01 <0.01 <0.01 0.11 <0.01 0.09 0.10 <0.01 0.11 <0.01 0.09 0.10 <0.01
Weakfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
White perch <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Windowpane <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.02 0.02 <0.01 0.02 <0.01 0.02 0.02 <0.01
Winter flounder 0.03 0.02 0.02 0.02 0.02 6.35 <0.01 5.18 5.43 <0.01 6.38 0.02 5.20 5.46 0.02

Total (all species) 0.63 0.43 0.62 0.63 0.43 59.37 <0.01 48.40 50.77 <0.01 60.00 0.43 49.02 51.40 0.43

Impingement Entrainment I&E

Scenarios: B = Baseline I&E Mortality losses, 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 
4 = Option 4 (I for Facilities > 50 MGD)  
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Table C-4: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the North Atlantic (million 
individuals per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Alewife 0.05      0.02        0.03      0.03      0.02  5.76                <0.01 2.35                2.46               <0.01 5.81                0.02    2.37               2.49                0.02  

American plaice <0.01 <0.01 <0.01 <0.01 <0.01 199.21            <0.01 81.20              85.19             <0.01 199.21            <0.01 81.20             85.19              <0.01
American sand 
lance 0.16      0.06        0.08      0.08      0.06    1,469.03           <0.01 598.82              628.20             <0.01 1,469.20           0.06      598.90             628.28              0.06    

American shad <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Atlantic cod <0.01 <0.01 <0.01 <0.01 <0.01 117.38            <0.01 47.85              50.19             <0.01 117.38            <0.01 47.85             50.19              <0.01

Atlantic herring 0.03      0.01        0.01      0.01      0.01  87.31              <0.01 35.59              37.33             <0.01 87.34              0.01    35.60             37.35              0.01  
Atlantic 
mackerel <0.01 <0.01 <0.01 <0.01 <0.01 7,067.69           <0.01 2,880.99           3,022.33          <0.01 7,067.69           <0.01 2,880.99          3,022.33           <0.01
Atlantic 
menhaden 0.02      <0.01 <0.01 <0.01 <0.01 4,206.13           <0.01 1,714.54           1,798.65          <0.01 4,206.15           <0.01 1,714.55          1,798.66           <0.01
Atlantic 
silverside 0.14      0.05        0.07      0.07      0.05    96.58                <0.01 39.37                41.30               <0.01 96.71                0.05      39.43               41.37                0.05    

Atlantic tomcod <0.01 <0.01 <0.01 <0.01 <0.01 6.28                <0.01 2.56                2.68               <0.01 6.28                <0.01 2.56               2.69                <0.01
Bay anchovy 0.03      0.01        0.02      0.02      0.01  55,820.08       <0.01 22,753.85       23,870.13      <0.01 55,820.11       0.01    22,753.86      23,870.15       0.01  
Blueback 
herring <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Bluefish <0.01 <0.01 <0.01 <0.01 <0.01 0.06                <0.01 0.02                0.02               <0.01 0.06                <0.01 0.02               0.02                <0.01
Butterfish <0.01 <0.01 <0.01 <0.01 <0.01 12.15              <0.01 4.95                5.20               <0.01 12.16              <0.01 4.96               5.20                <0.01
Crabs (other) 0.04      0.01        0.02      0.02      0.01  <0.01 <0.01 <0.01 <0.01 <0.01 0.04                0.01    0.02               0.02                0.01  
Cunner <0.01 <0.01 <0.01 <0.01 <0.01 29,170.94       <0.01 11,890.91       12,474.26      <0.01 29,170.95       <0.01 11,890.91      12,474.27       <0.01
Fish (other) 0.06      0.02        0.03      0.03      0.02  521.45            <0.01 212.56            222.99           <0.01 521.51            0.02    212.59           223.02            0.02  
Fourbeard 
rockling <0.01 <0.01 <0.01 <0.01 <0.01 464.23              <0.01 189.23              198.52             <0.01 464.23              <0.01 189.23             198.52              <0.01
Grubby 0.02      <0.01 0.01      0.01      <0.01 431.08            <0.01 175.72            184.34           <0.01 431.10            <0.01 175.73           184.35            <0.01
Hogchoker 0.04      0.01        0.02      0.02      0.01  549.17            <0.01 223.86            234.84           <0.01 549.22            0.01    223.88           234.86            0.01  
Lumpfish <0.01 <0.01 <0.01 <0.01 <0.01 44.89              <0.01 18.30              19.20             <0.01 44.89              <0.01 18.30             19.20              <0.01
Northern 
pipefish <0.01 <0.01 <0.01 <0.01 <0.01 1.15                  <0.01 0.47                  0.49                 <0.01 1.16                  <0.01 0.47                 0.49                  <0.01
Pollock <0.01 <0.01 <0.01 <0.01 <0.01 3.46                <0.01 1.41                1.48               <0.01 3.47                <0.01 1.41               1.48                <0.01

Radiated shanny <0.01 <0.01 <0.01 <0.01 <0.01 110.36            <0.01 44.99              47.19             <0.01 110.36            <0.01 44.99             47.19              <0.01

Rainbow smelt 0.05      0.02        0.03      0.03      0.02  17.65              <0.01 7.19                7.55               <0.01 17.70              0.02    7.22               7.57                0.02  
Red hake <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Rock gunnel <0.01 <0.01 <0.01 <0.01 <0.01 395.87            <0.01 161.37            169.29           <0.01 395.88            <0.01 161.37           169.29            <0.01
Sculpins <0.01 <0.01 <0.01 <0.01 <0.01 218.67            <0.01 89.13              93.51             <0.01 218.67            <0.01 89.14             93.51              <0.01
Scup <0.01 <0.01 <0.01 <0.01 <0.01 16.64              <0.01 6.78                7.12               <0.01 16.65              <0.01 6.79               7.12                <0.01

Impingement Entrainment I&E
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Table C-4: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the North Atlantic (million A1Es per 
year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality, continued 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4

Seaboard goby <0.01 <0.01 <0.01 <0.01 <0.01 2,379.58         <0.01 969.99            1,017.57        <0.01 2,379.58         <0.01 969.99           1,017.57         <0.01
Searobin <0.01 <0.01 <0.01 <0.01 <0.01 11.48              <0.01 4.68                4.91               <0.01 11.48              <0.01 4.68               4.91                <0.01
Silver hake 0.03      0.01        0.02      0.02      0.01  568.71            <0.01 231.82            243.20           <0.01 568.75            0.01    231.84           243.21            0.01  
Skates <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Striped bass <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Striped killifish <0.01 <0.01 <0.01 <0.01 <0.01 0.06                <0.01 0.03                0.03               <0.01 0.07                <0.01 0.03               0.03                <0.01
Tautog <0.01 <0.01 <0.01 <0.01 <0.01 29,299.93       <0.01 11,943.48       12,529.42      <0.01 29,299.94       <0.01 11,943.49      12,529.42       <0.01
Threespine 
stickleback 0.03      <0.01 0.01      0.01      <0.01 0.09                  <0.01 0.04                  0.04                 <0.01 0.11                  <0.01 0.05                 0.05                  <0.01
Weakfish <0.01 <0.01 <0.01 <0.01 <0.01 342.21            <0.01 139.49            146.34           <0.01 342.21            <0.01 139.50           146.34            <0.01
White perch 0.01      <0.01 <0.01 <0.01 <0.01 0.28                <0.01 0.12                0.12               <0.01 0.30                <0.01 0.12               0.13                <0.01
Windowpane 0.01      <0.01 <0.01 <0.01 <0.01 2,066.54         <0.01 842.38            883.71           <0.01 2,066.55         <0.01 842.39           883.71            <0.01

Winter flounder 0.09      0.03        0.05      0.05      0.03  6,688.08         <0.01 2,726.25         2,860.00        <0.01 6,688.17         0.03    2,726.30        2,860.04         0.03  
Total (all 
species) 0.90      0.31        0.44      0.45      0.31    142,390.18       <0.01 58,042.28         60,889.79        <0.01 142,391.08       0.31      58,042.72        60,890.23         0.31    

Scenarios: B = Baseline I&E Mortality losses. 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = Option 4 (I for Facilities > 
50 MGD). Values for all options reflect reductions in losses.

Impingement Entrainment I&E
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C.3 Mid-Atlantic 

Table C-5: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the Mid-Atlantic (million A1Es 
per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
All forage species 18.71 14.27 18.25 18.31 14.26 732.37 <0.01 670.71 679.28 <0.01 751.07 14.27 688.96 697.59 14.26
All harvested species 32.00 24.42 31.22 31.33 24.39 206.98 <0.01 189.56 191.98 <0.01 238.98 24.42 220.78 223.31 24.39

Alewife 0.04 0.03 0.04 0.04 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 0.05 0.03 0.04 0.05 0.03
American shad <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Atlantic croaker 0.31 0.24 0.30 0.31 0.24 21.59 <0.01 19.77 20.03 <0.01 21.90 0.24 20.08 20.33 0.24
Atlantic herring <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Atlantic menhaden 21.72 16.57 21.19 21.26 16.55 3.16 <0.01 2.89 2.93 <0.01 24.88 16.57 24.08 24.19 16.55
Black crappie <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Black drum <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Blue crab 1.44 1.10 1.40 1.41 1.10 108.17 <0.01 99.07 100.33 <0.01 109.61 1.10 100.47 101.74 1.10
Bluefish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Bluegill <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Brown bullhead <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 0.01 <0.01 0.02 <0.01 0.02 0.02 <0.01
Bullheads <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Butterfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Channel catfish 0.02 0.01 0.02 0.02 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.01 0.02 0.02 0.01
Crabs (other) 0.03 0.02 0.03 0.03 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 0.02 0.03 0.03 0.02
Crappie <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Cunner <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Freshwater drum <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Menhadens <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Muskellunge <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Fish (other) 1.30 0.99 1.27 1.27 0.99 10.81 <0.01 9.90 10.02 <0.01 12.10 0.99 11.16 11.29 0.99
Red drum <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Red hake <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Scup <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Searobin <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Silver hake <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Silver perch <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Smallmouth bass <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Impingement Entrainment I&E

 



 

March 28, 2011  C-7 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

 

Table C-5: I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the Mid-Atlantic Region (million 
A1Es) Estimated Under Baseline and Option Scenarios for All Sources of Mortality, continued 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Spot 2.95 2.25 2.88 2.89 2.25 35.15 <0.01 32.19 32.60 <0.01 38.10 2.25 35.07 35.49 2.25
Spotted seatrout <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Striped bass <0.01 <0.01 <0.01 <0.01 <0.01 1.39 <0.01 1.27 1.29 <0.01 1.40 <0.01 1.28 1.30 <0.01
Striped mullet <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Summer flounder 0.02 0.02 0.02 0.02 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.02 0.02 0.02 0.02
Sunfish 0.02 0.01 0.02 0.02 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.01 0.02 0.02 0.01
Tautog <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Weakfish 1.43 1.09 1.40 1.40 1.09 2.71 <0.01 2.48 2.51 <0.01 4.14 1.09 3.88 3.91 1.09
White perch 2.66 2.03 2.59 2.60 2.03 23.88 <0.01 21.87 22.15 <0.01 26.53 2.03 24.46 24.75 2.03
Whitefish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Windowpane <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Winter flounder 0.02 0.01 0.02 0.02 0.01 0.11 <0.01 0.10 0.10 <0.01 0.12 0.01 0.11 0.11 0.01

Total (all species) 50.71 38.69 49.47 49.64 38.65 939.35 <0.01 860.27 871.26 <0.01 990.06 38.69 909.74 920.90 38.65
Scenarios: B = Baseline I&E Mortality losses, 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = Option 4 (I for 
Facilities > 50 MGD)

Impingement Entrainment I&E
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Table C-6: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the Mid-Atlantic (million individuals 
per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Alewife 0.33           0.13         0.16           0.16          0.13      6.10                   <0.01 2.80                 2.83                 <0.01 6.44                   0.13       2.96                 2.99                 0.13      

American shad 0.06           0.02         0.03           0.03          0.02        67.07                   <0.01 30.71                  31.11                 <0.01 67.13                   0.02         30.74                 31.13                 0.02        

Atlantic croaker 2.28           0.87         1.11           1.12          0.87        689.03                 <0.01 315.51                319.54               <0.01 691.31                 0.87         316.62               320.66               0.87        

Atlantic herring <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Atlantic 
menhaden 70.44         26.87       34.36         34.48        26.85      122.59                 <0.01 56.13                  56.85                 <0.01 193.03                 26.87       90.50                 91.33                 26.85      

Atlantic silverside 1.40           0.53         0.68           0.69          0.53        110.15                 <0.01 50.44                  51.08                 <0.01 111.55                 0.53         51.12                 51.77                 0.53        

Atlantic tomcod 0.13           0.05         0.06           0.07          0.05        <0.01 <0.01 <0.01 <0.01 <0.01 0.13                     0.05         0.06                   0.07                   0.05        
Bay anchovy 13.78         5.25         6.72           6.74          5.25      98,332.37          <0.01 45,026.92         45,602.31        <0.01 98,346.15          5.25       45,033.64        45,609.05        5.25      

Black crappie <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Black drum <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Blue crab 2.87           1.09         1.40           1.40          1.09      3,396.61            <0.01 1,555.33           1,575.20          <0.01 3,399.48            1.09       1,556.72          1,576.60          1.09      

Blueback herring 1.27           0.48         0.62           0.62          0.48        24.27                   <0.01 11.11                  11.26                 <0.01 25.54                   0.48         11.73                 11.88                 0.48        
Bluefish 0.03           0.01         0.01           0.01          0.01      <0.01 <0.01 <0.01 <0.01 <0.01 0.03                   0.01       0.01                 0.01                 0.01      
Bluegill <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Bluntnose 
minnow <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Brown bullhead <0.01 <0.01 <0.01 <0.01 <0.01 0.11                     <0.01 0.05                   0.05                   <0.01 0.12                     <0.01 0.05                   0.05                   <0.01
Bullheads <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Butterfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Carp <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Chain pipefish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Channel catfish 0.02           <0.01 0.01           0.01          <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02                     <0.01 0.01                   0.01                   <0.01
Crabs (other) 0.04           0.01         0.02           0.02          0.01      <0.01 <0.01 <0.01 <0.01 <0.01 0.04                   0.01       0.02                 0.02                 0.01      
Crappie <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Cunner <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Darters <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Fish (other) 5.34           2.04         2.60           2.61          2.03      3,804.94            <0.01 1,742.30           1,764.57          <0.01 3,810.28            2.04       1,744.91          1,767.18          2.03      

Freshwater drum <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Gizzard shad 0.34           0.13         0.17           0.17          0.13      <0.01 <0.01 <0.01 <0.01 <0.01 0.34                   0.13       0.17                 0.17                 0.13      
Gobies <0.01 <0.01 <0.01 <0.01 <0.01 143.88               <0.01 65.88                66.72               <0.01 143.88               <0.01 65.88               66.72               <0.01
Grubby <0.01 <0.01 <0.01 <0.01 <0.01 0.02                   <0.01 <0.01 <0.01 <0.01 0.02                   <0.01 <0.01 <0.01 <0.01
Herrings <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Hogchoker 0.53           0.20         0.26           0.26          0.20      25,970.61          <0.01 11,892.08         12,044.05        <0.01 25,971.14          0.20       11,892.34        12,044.31        0.20      

Impingement Entrainment I&E
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Table C-6: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the Mid-Atlantic (million individuals 
per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality, continued 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Menhadens <0.01 <0.01 <0.01 <0.01 <0.01 0.11                   <0.01 0.05                 0.05                 <0.01 0.11                   <0.01 0.05                 0.05                 <0.01
Muskellunge <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Northern pipefish 0.03           0.01         0.02           0.02          0.01        10.64                   <0.01 4.87                   4.93                   <0.01 10.67                   0.01         4.89                   4.95                   0.01        

Rainbow smelt <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Red drum 0.02           <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02                   <0.01 <0.01 <0.01 <0.01
Red hake 0.07           0.03         0.04           0.04          0.03      <0.01 <0.01 <0.01 <0.01 <0.01 0.07                   0.03       0.04                 0.04                 0.03      
Scup <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Seaboard goby 0.02           <0.01 <0.01 <0.01 <0.01 13,691.58            <0.01 6,269.45             6,349.56            <0.01 13,691.59            <0.01 6,269.46            6,349.57            <0.01
Searobin <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Shiners <0.01 <0.01 <0.01 <0.01 <0.01 1.00                   <0.01 0.46                 0.46                 <0.01 1.00                   <0.01 0.46                 0.46                 <0.01
Silver hake 0.02           <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02                   <0.01 <0.01 <0.01 <0.01
Silver perch <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Silversides <0.01 <0.01 <0.01 <0.01 <0.01 2.84                   <0.01 1.30                 1.32                 <0.01 2.85                   <0.01 1.30                 1.32                 <0.01

Smallmouth bass <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Spot 9.17           3.50         4.47           4.49          3.49      232.64               <0.01 106.53              107.89             <0.01 241.80               3.50       111.00             112.37             3.49      

Spotted seatrout <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Striped bass 0.04           0.01         0.02           0.02          0.01      1,060.00            <0.01 485.38              491.58             <0.01 1,060.04            0.01       485.40             491.60             0.01      

Striped killifish 0.32           0.12         0.16           0.16          0.12        <0.01 <0.01 <0.01 <0.01 <0.01 0.32                     0.12         0.16                   0.16                   0.12        

Striped mullet <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Suckers <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Summer flounder 0.08           0.03         0.04           0.04          0.03        <0.01 <0.01 <0.01 <0.01 <0.01 0.08                     0.03         0.04                   0.04                   0.03        
Sunfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Tautog <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Threespine 
stickleback 0.01           <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01                     <0.01 <0.01 <0.01 <0.01
Weakfish 3.31           1.26         1.61           1.62          1.26      486.50               <0.01 222.77              225.62             <0.01 489.81               1.26       224.39             227.24             1.26      
White perch 2.81           1.07         1.37           1.37          1.07      2,335.12            <0.01 1,069.26           1,082.93          <0.01 2,337.92            1.07       1,070.63          1,084.30          1.07      
Whitefish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Windowpane <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01                     <0.01 <0.01 <0.01 <0.01

Winter flounder 0.06           0.02         0.03           0.03          0.02        92.01                   <0.01 42.13                  42.67                 <0.01 92.07                   0.02         42.16                 42.70                 0.02        
Total (all 
species) 114.86       43.81       56.03         56.22        43.77      150,580.20          <0.01 68,951.48           69,832.59          <0.01 150,695.05          43.81       69,007.51          69,888.82          43.77      

Scenarios: B = Baseline I&E Mortality losses. 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = Option 4 (I for Facilities > 50 MGD). Values for all options 
reflect reductions in losses.

Impingement Entrainment I&E
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C.4 South Atlantic 

Table C-7: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the South Atlantic 
(million A1Es per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
All forage species 21.27 13.43 18.13 18.14 13.43 9.94 <0.01 8.29 8.31 <0.01 31.22 13.43 26.43 26.45 13.43
All harvested species 1.22 0.77 1.04 1.04 0.77 0.96 <0.01 0.80 0.81 <0.01 2.19 0.77 1.85 1.85 0.77

Atlantic menhaden 0.25 0.16 0.21 0.21 0.16 0.03 <0.01 0.02 0.03 <0.01 0.28 0.16 0.24 0.24 0.16
Blue crab 0.45 0.29 0.39 0.39 0.29 <0.01 <0.01 <0.01 <0.01 <0.01 0.45 0.29 0.39 0.39 0.29
Crabs (other) <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.02 0.02 <0.01 0.02 <0.01 0.02 0.02 <0.01
Drums and croakers 0.02 0.01 0.02 0.02 0.01 0.80 <0.01 0.67 0.67 <0.01 0.82 0.01 0.69 0.69 0.01
Flounders <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Fish (other) 0.01 <0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 0.01 <0.01
Pinfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Silver perch 0.28 0.18 0.24 0.24 0.18 <0.01 <0.01 <0.01 <0.01 <0.01 0.28 0.18 0.24 0.24 0.18
Spot 0.20 0.12 0.17 0.17 0.12 0.10 <0.01 0.08 0.08 <0.01 0.29 0.12 0.25 0.25 0.12
Spotted seatrout <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Stone crab <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Weakfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Total (all species) 22.50 14.20 19.18 19.19 14.20 10.91 <0.01 9.10 9.11 <0.01 33.40 14.20 28.28 28.30 14.20

Scenarios: B = Baseline I&E Mortality losses, 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = 
Option 4 (I for Facilities > 50 MGD)

Impingement Entrainment I&E

 



 

March 28, 2011  C-11 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

 

Table C-8: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the South Atlantic (million 
individuals per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Atlantic 
menhaden 0.82     0.26     0.35     0.35     0.26     157.54         <0.01 65.70         65.81         <0.01 158.36         0.26     66.05         66.15         0.26        
Atlantic 
silverside 0.13     0.04     0.05     0.05     0.04     <0.01 <0.01 <0.01 <0.01 <0.01 0.13             0.04     0.05           0.05           0.04        
Bay anchovy 25.54   8.06     10.89   10.89   8.06     2,402.75      <0.01 1,002.00    1,003.65    <0.01 2,428.30      8.06     1,012.88    1,014.54    8.06        
Blue crab 0.90     0.28     0.38     0.38     0.28     <0.01 <0.01 <0.01 <0.01 <0.01 0.90             0.28     0.38           0.38           0.28        
Crabs (other) <0.01 <0.01 <0.01 <0.01 <0.01 667.97         <0.01 278.56       279.02       <0.01 667.97         <0.01 278.56       279.02       <0.01
Drums and 
croakers 0.22     0.07     0.09     0.09     0.07     2,376.84      <0.01 991.19       992.83       <0.01 2,377.05      0.07     991.28       992.92       0.07        
Fish (other) 1.67     0.53     0.71     0.71     0.53     272.99         <0.01 113.84       114.03       <0.01 274.66         0.53     114.55       114.74       0.53        
Flounders <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Gobies <0.01 <0.01 <0.01 <0.01 <0.01 3,576.38      <0.01 1,491.43    1,493.89    <0.01 3,576.38      <0.01 1,491.43    1,493.89    <0.01
Herrings 0.01     <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01             <0.01 <0.01 <0.01 <0.01
Pinfish <0.01 <0.01 <0.01 <0.01 <0.01 71.34           <0.01 29.75         29.80         <0.01 71.34           <0.01 29.75         29.80         <0.01

Scaled sardine 0.03     <0.01 0.01     0.01     <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03             <0.01 0.01           0.01           <0.01

Shrimp (other) 8.90     2.81     3.79     3.79     2.81     1,040.49      <0.01 433.91       434.62       <0.01 1,049.39      2.81     437.70       438.42       2.81        
Silver perch 0.45     0.14     0.19     0.19     0.14     <0.01 <0.01 <0.01 <0.01 <0.01 0.45             0.14     0.19           0.19           0.14        
Spot 0.72     0.23     0.31     0.31     0.23     2,152.83      <0.01 897.77       899.25       <0.01 2,153.54      0.23     898.08       899.56       0.23        

Spotted seatrout <0.01 <0.01 <0.01 <0.01 <0.01 35.30           <0.01 14.72         14.75         <0.01 35.30           <0.01 14.72         14.75         <0.01
Stone crab <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Weakfish 0.04     0.01     0.02     0.02     0.01     100.99         <0.01 42.12         42.19         <0.01 101.04         0.01     42.14         42.20         0.01        
Total (all 
species) 39.42   12.44   16.80   16.81   12.44   12,855.43    <0.01 5,360.98    5,369.82    <0.01 12,894.86    12.44   5,377.79    5,386.64    12.44      

Scenarios: B = Baseline I&E Mortality losses. 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = Option 4 (I for Facilities > 50 MGD). Values for all 
options reflect reductions in losses.
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C.5 Gulf of Mexico 

Table C-9: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the Gulf of Mexico (million 
A1Es per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
All forage species 5.63 4.31 5.59 5.60 4.28 42.12 <0.01 28.49 28.56 <0.01 47.75 4.31 34.09 34.16 4.28
All harvested species 39.42 30.19 39.15 39.18 29.96 48.47 <0.01 32.79 32.87 <0.01 87.89 30.19 71.94 72.05 29.96

Atlantic croaker 1.65 1.27 1.64 1.64 1.26 <0.01 <0.01 <0.01 <0.01 <0.01 1.65 1.27 1.64 1.64 1.26
Black drum 0.01 <0.01 0.01 0.01 <0.01 5.93 <0.01 4.01 4.02 <0.01 5.94 <0.01 4.02 4.03 <0.01
Blue crab 5.66 4.33 5.62 5.62 4.30 19.03 <0.01 12.87 12.90 <0.01 24.68 4.33 18.49 18.53 4.30
Leatherjacket 0.69 0.53 0.68 0.69 0.52 0.03 <0.01 0.02 0.02 <0.01 0.72 0.53 0.71 0.71 0.52
Mackerels <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Menhadens 4.95 3.79 4.92 4.92 3.76 0.05 <0.01 0.03 0.03 <0.01 5.00 3.79 4.95 4.96 3.76
Fish (other) 1.48 1.14 1.47 1.47 1.13 0.16 <0.01 0.11 0.11 <0.01 1.64 1.14 1.58 1.58 1.13
Pinfish 0.03 0.02 0.03 0.03 0.02 1.07 <0.01 0.72 0.73 <0.01 1.10 0.02 0.75 0.76 0.02
Pink shrimp 21.44 16.42 21.29 21.31 16.30 13.40 <0.01 9.07 9.09 <0.01 34.84 16.42 30.36 30.40 16.30
Red drum 0.08 0.06 0.08 0.08 0.06 0.01 <0.01 <0.01 <0.01 <0.01 0.10 0.06 0.09 0.09 0.06
Sea basses <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Searobin 0.94 0.72 0.93 0.93 0.71 0.36 <0.01 0.25 0.25 <0.01 1.30 0.72 1.18 1.18 0.71
Sheepshead <0.01 <0.01 <0.01 <0.01 <0.01 0.03 <0.01 0.02 0.02 <0.01 0.04 <0.01 0.02 0.02 <0.01
Silver perch 0.28 0.22 0.28 0.28 0.21 5.11 <0.01 3.46 3.47 <0.01 5.40 0.22 3.74 3.75 0.21
Spot 0.38 0.29 0.38 0.38 0.29 0.09 <0.01 0.06 0.06 <0.01 0.47 0.29 0.44 0.44 0.29
Spotted seatrout 1.26 0.96 1.25 1.25 0.96 0.15 <0.01 0.10 0.10 <0.01 1.41 0.96 1.35 1.35 0.96
Stone crab 0.19 0.14 0.18 0.19 0.14 0.41 <0.01 0.28 0.28 <0.01 0.60 0.14 0.47 0.47 0.14
Striped mullet 0.37 0.28 0.37 0.37 0.28 2.62 <0.01 1.77 1.78 <0.01 2.99 0.28 2.14 2.14 0.28

Total (all species) 45.05 34.50 44.74 44.78 34.24 90.59 <0.01 61.28 61.43 <0.01 135.64 34.50 106.02 106.21 34.24

Scenarios: B = Baseline I&E Mortality losses, 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = 
Option 4 (I for Facilities > 50 MGD)

I&EEntrainmentImpingement
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Table C-10: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the Gulf of Mexico (million 
individuals per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4

Atlantic croaker 15.45     5.92     7.67     7.68     5.87     162.35           <0.01 54.91             55.05             <0.01 177.81           5.92     62.59             62.73             5.87     
Bay anchovy 4.33       1.66     2.15     2.15     1.65     301,092.72    <0.01 101,837.44    102,087.75    <0.01 301,097.05    1.66     101,839.59    102,089.90    1.65     
Black drum 0.02       <0.01 0.01     0.01     <0.01 96,328.24      <0.01 32,580.73      32,660.81      <0.01 96,328.26      <0.01 32,580.74      32,660.83      <0.01
Blue crab 11.26     4.31     5.59     5.60     4.28     280.96           <0.01 95.03             95.26             <0.01 292.22           4.31     100.62           100.86           4.28     

Chain pipefish 0.07       0.03     0.03     0.03     0.03     2.13               <0.01 0.72               0.72               <0.01 2.19               0.03     0.75               0.75               0.03     
Fish (other) 7.43       2.85     3.69     3.69     2.82     9,784.29        <0.01 3,309.30        3,317.44        <0.01 9,791.72        2.85     3,312.99        3,321.13        2.82     
Gobies 0.14       0.05     0.07     0.07     0.05     3,407.68        <0.01 1,152.57        1,155.40        <0.01 3,407.82        0.05     1,152.64        1,155.47        0.05     
Gulf killifish 0.04       0.01     0.02     0.02     0.01     <0.01 <0.01 <0.01 <0.01 <0.01 0.04               0.01     0.02               0.02               0.01     
Hogchoker 0.15       0.06     0.07     0.07     0.06     198.72           <0.01 67.21             67.38             <0.01 198.87           0.06     67.28             67.45             0.06     
Leatherjacket 0.95       0.36     0.47     0.47     0.36     794.02           <0.01 268.56           269.22           <0.01 794.97           0.36     269.03           269.69           0.36     
Mackerels <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Menhadens 16.06     6.15     7.98     7.98     6.10     269.13           <0.01 91.03             91.25             <0.01 285.19           6.15     99.00             99.23             6.10     
Pinfish 0.12       0.05     0.06     0.06     0.04     107.79           <0.01 36.46             36.55             <0.01 107.91           0.05     36.52             36.61             0.04     
Pink shrimp 43.73     16.74   21.71   21.73   16.62   126.32           <0.01 42.73             42.83             <0.01 170.05           16.74   64.44             64.56             16.62   
Red drum 0.16       0.06     0.08     0.08     0.06     1.10               <0.01 0.37               0.37               <0.01 1.26               0.06     0.45               0.45               0.06     

Scaled sardine 0.32       0.12     0.16     0.16     0.12     2,962.36        <0.01 1,001.95        1,004.41        <0.01 2,962.69        0.12     1,002.11        1,004.57        0.12     
Sea basses <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Searobin 1.18       0.45     0.58     0.58     0.45     68.82             <0.01 23.28             23.33             <0.01 70.00             0.45     23.86             23.92             0.45     
Sheepshead <0.01 <0.01 <0.01 <0.01 <0.01 382.88           <0.01 129.50           129.82           <0.01 382.88           <0.01 129.50           129.82           <0.01
Silver perch 0.45       0.17     0.23     0.23     0.17     88,985.72      <0.01 30,097.30      30,171.28      <0.01 88,986.17      0.17     30,097.53      30,171.50      0.17     
Spot 1.39       0.53     0.69     0.69     0.53     34.75             <0.01 11.75             11.78             <0.01 36.14             0.53     12.44             12.47             0.53     
Spotted 
seatrout 1.20       0.46     0.60     0.60     0.46     5,338.00        <0.01 1,805.45        1,809.89        <0.01 5,339.20        0.46     1,806.05        1,810.49        0.46     
Stone crab 0.27       0.10     0.14     0.14     0.10     28,711.01      <0.01 9,710.82        9,734.68        <0.01 28,711.29      0.10     9,710.95        9,734.82        0.10     

Striped mullet 0.45       0.17     0.22     0.23     0.17     15.17             <0.01 5.13               5.14               <0.01 15.62             0.17     5.36               5.37               0.17     
Tidewater 
silverside 0.30       0.11     0.15     0.15     0.11     34.36             <0.01 11.62             11.65             <0.01 34.66             0.11     11.77             11.80             0.11     
Total (all 
species) 105.48   40.39   52.38   52.42   40.09   539,088.54    <0.01 182,333.86    182,782.02    <0.01 539,194.01    40.39   182,386.23    182,834.44    40.09   
Scenarios: B = Baseline I&E Mortality losses. 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = Option 4 (I for Facilities > 50 MGD). Values for all options 
reflect reductions in losses.
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C.6 Great Lakes 

Table C-11: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the Great Lakes 
(million A1Es per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
All forage species 38.62 33.46 38.20 38.29 33.17 7.84 <0.01 6.26 6.36 <0.01 46.46 33.46 44.46 44.64 33.17
All harvested species 5.51 4.77 5.45 5.46 4.73 1.53 <0.01 1.22 1.24 <0.01 7.04 4.77 6.67 6.70 4.73

Black bullhead <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Black crappie <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Bluegill <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Brown bullhead <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Bullheads <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Channel catfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Crappie <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.01 0.01 <0.01 0.02 <0.01 0.02 0.02 <0.01
Freshwater drum 0.02 0.02 0.02 0.02 0.02 0.05 <0.01 0.04 0.04 <0.01 0.07 0.02 0.06 0.06 0.02
Muskellunge <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Fish (other) 0.06 0.05 0.06 0.06 0.05 <0.01 <0.01 <0.01 <0.01 <0.01 0.06 0.05 0.06 0.06 0.05
Rainbow smelt 0.37 0.32 0.36 0.36 0.32 0.07 <0.01 0.05 0.05 <0.01 0.44 0.32 0.42 0.42 0.32
Salmon <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Sculpins <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.02 0.02 <0.01 0.03 <0.01 0.02 0.02 <0.01
Smallmouth bass <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Smelts 4.49 3.89 4.45 4.46 3.86 0.02 <0.01 0.02 0.02 <0.01 4.52 3.89 4.46 4.47 3.86
Sunfish 0.02 0.02 0.02 0.02 0.02 1.18 <0.01 0.95 0.96 <0.01 1.20 0.02 0.96 0.98 0.02
Walleye <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
White bass 0.05 0.04 0.05 0.05 0.04 0.09 <0.01 0.08 0.08 <0.01 0.14 0.04 0.12 0.13 0.04
Whitefish 0.23 0.20 0.22 0.23 0.20 <0.01 <0.01 <0.01 <0.01 <0.01 0.23 0.20 0.22 0.23 0.20
Yellow perch 0.26 0.23 0.26 0.26 0.22 0.07 <0.01 0.05 0.05 <0.01 0.33 0.23 0.31 0.31 0.22

Total (all species) 44.13 38.23 43.65 43.75 37.91 9.37 <0.01 7.48 7.60 <0.01 53.50 38.23 51.13 51.35 37.91

Impingement Entrainment I&E

Scenarios: B = Baseline I&E Mortality losses, 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 
= Option 4 (I for Facilities > 50 MGD)  
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Table C-12: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the Great Lakes (million 
individuals per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Alewife 28.95      12.54        14.32        14.35       12.44     38,098.88      <0.01 15,213.50      15,443.27      <0.01 38,127.84       12.54      15,227.82      15,457.62      12.44     
Black bullhead <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Black crappie <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Blueback herring <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Bluegill <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Bluntnose minnow 0.01        <0.01 <0.01 <0.01 <0.01 13.01             <0.01 5.20               5.27                <0.01 13.02              <0.01 5.20               5.28               <0.01
Brown bullhead <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Bullheads <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Burbot <0.01 <0.01 <0.01 <0.01 <0.01 0.53               <0.01 0.21               0.21                <0.01 0.53                <0.01 0.21               0.22               <0.01
Carp 0.04        0.02          0.02          0.02         0.02       3,239.89        <0.01 1,293.74        1,313.28        <0.01 3,239.94         0.02        1,293.76        1,313.30        0.02       
Channel catfish <0.01 <0.01 <0.01 <0.01 <0.01 0.20               <0.01 0.08               0.08                <0.01 0.20                <0.01 0.08               0.08               <0.01

Chinook salmon <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Crappie <0.01 <0.01 <0.01 <0.01 <0.01 0.90               <0.01 0.36               0.36                <0.01 0.90                <0.01 0.36               0.37               <0.01
Darters 0.01        <0.01 <0.01 <0.01 <0.01 2.87               <0.01 1.15               1.16                <0.01 2.88                <0.01 1.15               1.17               <0.01
Emerald shiner 0.40        0.17          0.20          0.20         0.17       47.50             <0.01 18.97             19.25             <0.01 47.90              0.17        19.17             19.45             0.17       
Fish (other) 0.19        0.08          0.09          0.10         0.08       40,037.77      <0.01 15,987.73      16,229.19      <0.01 40,037.96       0.08        15,987.82      16,229.28      0.08       

Freshwater drum 0.07        0.03          0.03          0.03         0.03       221.20           <0.01 88.33             89.66             <0.01 221.27            0.03        88.36             89.70             0.03       
Gizzard shad 14.94      6.47          7.39          7.40         6.42       3,846.52        <0.01 1,535.98        1,559.17        <0.01 3,861.45         6.47        1,543.36        1,566.58        6.42       

Golden redhorse <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Herrings <0.01 <0.01 <0.01 <0.01 <0.01 11.15             <0.01 4.45               4.52                <0.01 11.15              <0.01 4.45               4.52               <0.01
Logperch 0.22        0.10          0.11          0.11         0.09       10.26             <0.01 4.10               4.16                <0.01 10.48              0.10        4.20               4.27               0.09       
Muskellunge <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Rainbow smelt 0.51        0.22          0.25          0.25         0.22       74.33             <0.01 29.68             30.13             <0.01 74.84              0.22        29.93             30.38             0.22       
Salmon <0.01 <0.01 <0.01 <0.01 <0.01 6.16               <0.01 2.46               2.50                <0.01 6.16                <0.01 2.46               2.50               <0.01
Sculpins <0.01 <0.01 <0.01 <0.01 <0.01 3.50               <0.01 1.40               1.42                <0.01 3.50                <0.01 1.40               1.42               <0.01
Shiners 0.57        0.25          0.28          0.28         0.24       132.24           <0.01 52.80             53.60             <0.01 132.81            0.25        53.09             53.88             0.24       

Smallmouth bass <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Smelts 4.07        1.76          2.01          2.02         1.75       150.69           <0.01 60.17             61.08             <0.01 154.75            1.76        62.18             63.10             1.75       
Spotted sucker <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Impingement Entrainment I&E
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Table C-12: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the Great Lakes (million 
individuals per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality, continued 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Suckers <0.01 <0.01 <0.01 <0.01 <0.01 2.31               <0.01 0.92               0.94                <0.01 2.32                <0.01 0.93               0.94               <0.01
Sunfish <0.01 <0.01 <0.01 <0.01 <0.01 7.03               <0.01 2.81               2.85                <0.01 7.03                <0.01 2.81               2.85               <0.01
Threespine 
stickleback 0.07        0.03          0.04          0.04          0.03         0.69                 <0.01 0.28                 0.28                 <0.01 0.76                  0.03          0.31                 0.32                 0.03         
Walleye <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
White bass 0.05        0.02          0.03          0.03         0.02       38.35             <0.01 15.31             15.54             <0.01 38.40              0.02        15.34             15.57             0.02       
White perch <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Whitefish 0.10        0.04          0.05          0.05         0.04       0.17               <0.01 0.07               0.07                <0.01 0.27                0.04        0.12               0.12               0.04       
Yellow perch 0.71        0.31          0.35          0.35         0.31       30.26             <0.01 12.08             12.27             <0.01 30.98              0.31        12.44             12.62             0.31       

Total (all species) 50.99      22.09        25.22        25.28        21.90       85,976.38        <0.01 34,331.75        34,850.27        <0.01 86,027.37         22.09        34,356.97        34,875.54        21.90       

Scenarios: B = Baseline I&E Mortality losses. 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = Option 4 (I for Facilities > 50 MGD). Values 
for all options reflect reductions in losses.

Impingement Entrainment I&E
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C.7 Inland 

Table C-13: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the Inland Region (million 
A1Es per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
All forage species 549.42 459.64 531.05 536.22 448.42 164.29 <0.01 134.24 140.41 <0.01 713.71 459.64 665.29 676.63 448.42
All harvested species 34.17 28.59 33.03 33.35 27.89 131.61 <0.01 107.54 112.48 <0.01 165.78 28.59 140.57 145.83 27.89

American shad 0.05 0.04 0.05 0.05 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 0.05 0.04 0.05 0.05 0.04
Black bullhead 0.18 0.15 0.18 0.18 0.15 <0.01 <0.01 <0.01 <0.01 <0.01 0.19 0.15 0.18 0.18 0.15
Black crappie 0.07 0.06 0.06 0.06 0.05 0.50 <0.01 0.41 0.43 <0.01 0.57 0.06 0.47 0.49 0.05
Bluegill 2.11 1.76 2.04 2.06 1.72 0.18 <0.01 0.15 0.15 <0.01 2.29 1.76 2.19 2.21 1.72
Brown bullhead 0.03 0.02 0.03 0.03 0.02 0.04 <0.01 0.04 0.04 <0.01 0.07 0.02 0.06 0.06 0.02
Bullheads 0.02 0.02 0.02 0.02 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 0.02 0.03 0.03 0.02
Channel catfish 1.63 1.36 1.58 1.59 1.33 1.01 <0.01 0.82 0.86 <0.01 2.64 1.36 2.40 2.45 1.33
Crappie 0.11 0.09 0.11 0.11 0.09 1.40 <0.01 1.14 1.20 <0.01 1.51 0.09 1.25 1.31 0.09
Freshwater drum 1.19 1.00 1.15 1.16 0.97 6.31 <0.01 5.16 5.40 <0.01 7.51 1.00 6.31 6.56 0.97
Menhadens <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Muskellunge <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Fish (other) <0.01 <0.01 <0.01 <0.01 <0.01 0.06 <0.01 0.05 0.05 <0.01 0.07 <0.01 0.06 0.06 <0.01
Rainbow smelt 0.14 0.12 0.13 0.14 0.11 0.21 <0.01 0.17 0.18 <0.01 0.35 0.12 0.30 0.31 0.11
Salmon <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Sauger 0.10 0.08 0.09 0.09 0.08 1.75 <0.01 1.43 1.49 <0.01 1.84 0.08 1.52 1.59 0.08
Smallmouth bass 0.24 0.20 0.23 0.23 0.19 3.70 <0.01 3.03 3.16 <0.01 3.94 0.20 3.25 3.39 0.19
Smelts <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Striped bass 0.16 0.13 0.15 0.15 0.13 <0.01 <0.01 <0.01 <0.01 <0.01 0.16 0.13 0.15 0.15 0.13
Sturgeons <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.02 0.02 <0.01 0.03 <0.01 0.02 0.02 <0.01
Sunfish 19.92 16.66 19.25 19.44 16.25 110.06 <0.01 89.93 94.07 <0.01 129.98 16.66 109.18 113.51 16.25
Walleye 0.06 0.05 0.05 0.05 0.05 0.68 <0.01 0.56 0.58 <0.01 0.74 0.05 0.61 0.64 0.05
White bass 2.35 1.97 2.27 2.29 1.92 2.66 <0.01 2.18 2.28 <0.01 5.01 1.97 4.45 4.57 1.92
White perch 2.58 2.16 2.49 2.52 2.10 0.55 <0.01 0.45 0.47 <0.01 3.13 2.16 2.94 2.99 2.10
Whitefish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Yellow perch 3.24 2.71 3.13 3.16 2.64 2.44 <0.01 1.99 2.08 <0.01 5.67 2.71 5.12 5.24 2.64

Total (all species) 583.59 488.22 564.08 569.57 476.31 295.89 <0.01 241.78 252.90 <0.01 879.49 488.22 805.86 822.46 476.31
Scenarios: B = Baseline I&E Mortality losses, 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = Option 4 (I for 
Facilities > 50 MGD)

I&EEntrainmentImpingement
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Table C-14: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the Inland Region (million 
individuals per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Alewife 42.79     17.90     20.68     20.88     17.46     1.29               <0.01 0.53             0.55             <0.01 44.07             17.90     21.20           21.43           17.46     
American shad 19.04     7.96       9.20       9.29       7.77       <0.01 <0.01 <0.01 <0.01 <0.01 19.04             7.96       9.20             9.29             7.77       
Bay anchovy 0.03       0.01       0.01       0.02       0.01       <0.01 <0.01 <0.01 <0.01 <0.01 0.03               0.01       0.01             0.02             0.01       

Bigmouth buffalo 0.04       0.02       0.02       0.02       0.02       5.38               <0.01 2.20             2.30             <0.01 5.42               0.02       2.22             2.32             0.02       
Black bullhead 0.34       0.14       0.16       0.16       0.14       0.04               <0.01 0.02             0.02             <0.01 0.38               0.14       0.18             0.18             0.14       
Black crappie 0.35       0.14       0.17       0.17       0.14       24.81             <0.01 10.14           10.60           <0.01 25.16             0.14       10.30           10.77           0.14       
Blue crab <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Blueback herring 185.69   77.67     89.74     90.62     75.78     1,750.15        <0.01 715.03         747.92         <0.01 1,935.85        77.67     804.77         838.53         75.78     
Bluegill 35.57     14.88     17.19     17.36     14.51     48.04             <0.01 19.63           20.53           <0.01 83.61             14.88     36.82           37.89           14.51     
Bluntnose 
minnow 0.15       0.06       0.07       0.07       0.06       4,918.57        <0.01 2,009.49      2,101.92      <0.01 4,918.72        0.06       2,009.57      2,101.99      0.06       

Brown bullhead 0.05       0.02       0.02       0.02       0.02       0.35               <0.01 0.14             0.15             <0.01 0.40               0.02       0.17             0.17             0.02       
Bullheads 0.04       0.02       0.02       0.02       0.02       3.68               <0.01 1.50             1.57             <0.01 3.72               0.02       1.52             1.59             0.02       
Burbot <0.01 <0.01 <0.01 <0.01 <0.01 16.04             <0.01 6.55             6.85             <0.01 16.04             <0.01 6.55             6.86             <0.01
Carp 0.37       0.15       0.18       0.18       0.15       4,209.21        <0.01 1,719.68      1,798.78      <0.01 4,209.58        0.15       1,719.86      1,798.96      0.15       

Channel catfish 2.03       0.85       0.98       0.99       0.83       209.76           <0.01 85.70           89.64           <0.01 211.80           0.85       86.68           90.63           0.83       
Crappie 0.59       0.25       0.29       0.29       0.24       67.69             <0.01 27.66           28.93           <0.01 68.28             0.25       27.94           29.22           0.24       
Darters 0.99       0.42       0.48       0.49       0.41       161.74           <0.01 66.08           69.12           <0.01 162.74           0.42       66.56           69.60           0.41       
Emerald shiner 3.99       1.67       1.93       1.95       1.63       724.99           <0.01 296.20         309.82         <0.01 728.98           1.67       298.12         311.77         1.63       
Fish (other) 83.22     34.81     40.22     40.61     33.96     68,076.66      <0.01 27,812.84    29,092.11    <0.01 68,159.89      34.81     27,853.06    29,132.72    33.96     

Freshwater drum 4.58       1.91       2.21       2.23       1.87       3,010.39        <0.01 1,229.90      1,286.47      <0.01 3,014.97        1.91       1,232.11      1,288.70      1.87       
Gizzard shad 311.11   130.14   150.36   151.82   126.96   19,070.18      <0.01 7,791.16      8,149.52      <0.01 19,381.30      130.14   7,941.52      8,301.34      126.96   
Gobies <0.01 <0.01 <0.01 <0.01 <0.01 81.15             <0.01 33.15           34.68           <0.01 81.15             <0.01 33.15           34.68           <0.01

Golden redhorse 0.07       0.03       0.03       0.03       0.03       2.86               <0.01 1.17             1.22             <0.01 2.92               0.03       1.20             1.25             0.03       
Hogchoker 0.03       0.01       0.01       0.01       0.01       <0.01 <0.01 <0.01 <0.01 <0.01 0.03               0.01       0.01             0.01             0.01       
Logperch 1.00       0.42       0.48       0.49       0.41       32.30             <0.01 13.20           13.80           <0.01 33.30             0.42       13.68           14.29           0.41       
Menhadens <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Muskellunge 0.02       <0.01 0.01       0.01       <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03               <0.01 0.01             0.01             <0.01
Rainbow smelt 0.19       0.08       0.09       0.09       0.08       59.23             <0.01 24.20           25.31           <0.01 59.43             0.08       24.29           25.41           0.08       

River carpsucker 0.03       0.01       0.02       0.02       0.01       5.15               <0.01 2.10             2.20             <0.01 5.18               0.01       2.12             2.22             0.01       
Salmon <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Sauger 0.23       0.09       0.11       0.11       0.09       314.24           <0.01 128.39         134.29         <0.01 314.47           0.09       128.49         134.40         0.09       

Impingement Entrainment I&E
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Table C-14: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) in the Inland Region (million 
individuals per year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality, continued 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Shiners 3.41       1.43       1.65       1.66       1.39       296.49           <0.01 121.13         126.70         <0.01 299.90           1.43       122.78         128.37         1.39       
Silversides 0.04       0.02       0.02       0.02       0.02       46.52             <0.01 19.00           19.88           <0.01 46.56             0.02       19.02           19.90           0.02       

Skipjack herring 1.52       0.64       0.74       0.74       0.62       0.54               <0.01 0.22             0.23             <0.01 2.06               0.64       0.96             0.97             0.62       

Smallmouth bass 0.14       0.06       0.07       0.07       0.06       54.51             <0.01 22.27           23.30           <0.01 54.65             0.06       22.34           23.36           0.06       
Smelts <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Spotted sucker <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Striped bass 1.64       0.69       0.79       0.80       0.67       <0.01 <0.01 <0.01 <0.01 <0.01 1.64               0.69       0.79             0.80             0.67       
Striped killifish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Sturgeons <0.01 <0.01 <0.01 <0.01 <0.01 1.46               <0.01 0.59             0.62             <0.01 1.46               <0.01 0.60             0.62             <0.01
Suckers 0.16       0.07       0.08       0.08       0.07       4,342.48        <0.01 1,774.13      1,855.73      <0.01 4,342.64        0.07       1,774.21      1,855.81      0.07       
Sunfish 6.38       2.67       3.08       3.11       2.60       648.07           <0.01 264.77         276.95         <0.01 654.45           2.67       267.85         280.06         2.60       
Threespine 
stickleback <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Walleye 0.15       0.06       0.07       0.07       0.06       169.80           <0.01 69.37           72.56           <0.01 169.95           0.06       69.45           72.64           0.06       
White bass 2.63       1.10       1.27       1.28       1.07       1,067.79        <0.01 436.25         456.31         <0.01 1,070.42        1.10       437.52         457.60         1.07       
White perch 3.87       1.62       1.87       1.89       1.58       660.65           <0.01 269.91         282.33         <0.01 664.53           1.62       271.78         284.22         1.58       
Whitefish <0.01 <0.01 <0.01 <0.01 <0.01 0.75               <0.01 0.31             0.32             <0.01 0.75               <0.01 0.31             0.32             <0.01
Yellow Perch 8.88       3.71       4.29       4.33       3.62       1,100.04        <0.01 449.42         470.10         <0.01 1,108.92        3.71       453.71         474.43         3.62       
Total (all 
species) 721.46   301.78   348.67   352.06   294.41   111,183.92    <0.01 45,424.39    47,513.71    <0.01 111,905.38    301.78   45,773.07    47,865.77    294.41   
Scenarios: B = Baseline I&E Mortality losses. 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = Option 4 (I for Facilities > 50 MGD). Values for all options reflect 
reductions in losses.

Impingement Entrainment I&E
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C.8 National Estimates 

Table C-15: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) Nationally (million A1Es per year), 
and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
All forage species 634.40 525.66 611.97 617.31 514.11 1020.37 <0.01 900.67 918.13 <0.01 1654.78 525.66 1512.64 1535.44 514.11
All harvested species 113.00 89.31 110.56 111.04 88.31 421.14 <0.01 358.35 367.07 <0.01 534.15 89.31 468.91 478.11 88.31

Alewife 0.04 0.03 0.04 0.04 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 0.05 0.03 0.04 0.05 0.03
American plaice <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
American shad 0.05 0.04 0.05 0.05 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 0.06 0.04 0.06 0.06 0.04
Atlantic cod <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 0.01 <0.01 0.01 <0.01 0.01 0.01 <0.01
Atlantic croaker 1.97 1.50 1.95 1.95 1.49 21.59 <0.01 19.77 20.03 <0.01 23.56 1.50 21.72 21.98 1.49
Atlantic herring <0.01 <0.01 <0.01 <0.01 <0.01 0.12 <0.01 0.10 0.11 <0.01 0.13 <0.01 0.11 0.11 <0.01
Atlantic mackerel <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.02 0.02 <0.01 0.02 <0.01 0.02 0.02 <0.01
Atlantic menhaden 21.97 16.73 21.40 21.48 16.71 3.23 <0.01 2.95 2.99 <0.01 25.20 16.73 24.35 24.47 16.71
Black bullhead 0.18 0.15 0.18 0.18 0.15 <0.01 <0.01 <0.01 <0.01 <0.01 0.19 0.15 0.18 0.18 0.15
Black crappie 0.07 0.06 0.06 0.06 0.05 0.50 <0.01 0.41 0.43 <0.01 0.57 0.06 0.47 0.49 0.05
Black drum 0.01 0.01 0.01 0.01 0.01 5.93 <0.01 4.01 4.02 <0.01 5.94 0.01 4.02 4.03 0.01
Blue crab 7.55 5.72 7.41 7.42 5.68 127.20 <0.01 111.94 113.23 <0.01 134.75 5.72 119.34 120.65 5.68
Bluefish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Bluegill 2.11 1.76 2.04 2.06 1.72 0.18 <0.01 0.15 0.15 <0.01 2.29 1.76 2.19 2.21 1.72
Brown bullhead 0.03 0.03 0.03 0.03 0.03 0.06 <0.01 0.05 0.05 <0.01 0.09 0.03 0.08 0.08 0.03
Bullheads 0.02 0.02 0.02 0.02 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 0.02 0.03 0.03 0.02
Butterfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Cabezon <0.01 <0.01 <0.01 <0.01 <0.01 0.06 <0.01 0.05 0.05 <0.01 0.06 <0.01 0.05 0.05 <0.01
California halibut <0.01 <0.01 <0.01 <0.01 <0.01 0.23 <0.01 0.20 0.21 <0.01 0.23 <0.01 0.20 0.21 <0.01
California scorpionfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Channel catfish 1.65 1.38 1.60 1.61 1.35 1.01 <0.01 0.82 0.86 <0.01 2.66 1.38 2.42 2.48 1.35
Crabs (other) 0.09 0.07 0.09 0.09 0.07 7.82 <0.01 6.66 6.97 <0.01 7.91 0.07 6.75 7.06 0.07
Sea Basses <0.01 <0.01 <0.01 <0.01 <0.01 2.83 <0.01 2.41 2.52 <0.01 2.83 <0.01 2.41 2.53 <0.01
Shrimp (other) <0.01 <0.01 <0.01 <0.01 <0.01 0.63 <0.01 0.53 0.56 <0.01 0.63 <0.01 0.54 0.57 <0.01
Crappie 0.11 0.09 0.11 0.11 0.09 1.42 <0.01 1.16 1.21 <0.01 1.53 0.09 1.27 1.32 0.09
Cunner <0.01 <0.01 <0.01 <0.01 <0.01 4.26 <0.01 3.47 3.64 <0.01 4.26 <0.01 3.47 3.64 <0.01

I&EEntrainmentImpingement
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Table C-15: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) Nationally (million A1Es per year), 
and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality, continued 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Drums and croakers 0.07 0.05 0.07 0.07 0.05 1.03 <0.01 0.86 0.87 <0.01 1.10 0.05 0.93 0.94 0.05
Dungeness crab <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Flounders 0.01 0.01 0.01 0.01 0.01 0.10 <0.01 0.08 0.09 <0.01 0.11 0.01 0.10 0.10 0.01
Freshwater drum 1.21 1.01 1.17 1.18 0.99 6.36 <0.01 5.20 5.44 <0.01 7.57 1.01 6.37 6.62 0.99
Leatherjacket 0.69 0.53 0.68 0.69 0.52 0.03 <0.01 0.02 0.02 <0.01 0.72 0.53 0.71 0.71 0.52
Mackerels <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Menhadens 4.95 3.79 4.92 4.92 3.76 0.05 <0.01 0.04 0.04 <0.01 5.01 3.79 4.96 4.96 3.76
Muskellunge <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Fish (other) 2.87 2.20 2.82 2.83 2.19 11.04 <0.01 10.06 10.19 <0.01 13.90 2.20 12.88 13.02 2.19
Northern anchovy 0.34 0.30 0.34 0.34 0.29 0.03 <0.01 0.03 0.03 <0.01 0.38 0.30 0.37 0.37 0.29
Pinfish 0.03 0.02 0.03 0.03 0.02 1.08 <0.01 0.73 0.73 <0.01 1.11 0.02 0.76 0.76 0.02
Pink shrimp 21.44 16.42 21.29 21.31 16.30 13.40 <0.01 9.07 9.09 <0.01 34.84 16.42 30.36 30.40 16.30
Pollock <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Rainbow smelt 0.51 0.44 0.50 0.50 0.43 0.28 <0.01 0.22 0.23 <0.01 0.78 0.44 0.72 0.73 0.43
Red drum 0.09 0.07 0.09 0.09 0.07 0.01 <0.01 <0.01 <0.01 <0.01 0.11 0.07 0.10 0.10 0.07
Red hake <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Rockfishes 0.02 0.01 0.02 0.02 0.01 6.33 <0.01 5.39 5.64 <0.01 6.34 0.01 5.41 5.66 0.01
Salmon <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Sauger 0.10 0.08 0.09 0.09 0.08 1.75 <0.01 1.43 1.49 <0.01 1.84 0.08 1.52 1.59 0.08
Sculpins 0.02 0.02 0.02 0.02 0.02 2.39 <0.01 1.96 2.06 <0.01 2.41 0.02 1.98 2.08 0.02
Scup <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Sea basses <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Searobin 0.94 0.72 0.93 0.93 0.71 0.38 <0.01 0.26 0.26 <0.01 1.31 0.72 1.19 1.19 0.71
Sheepshead <0.01 <0.01 <0.01 <0.01 <0.01 0.03 <0.01 0.02 0.02 <0.01 0.04 <0.01 0.02 0.02 <0.01
Silver hake <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Silver perch 0.56 0.39 0.52 0.52 0.39 5.11 <0.01 3.46 3.47 <0.01 5.68 0.39 3.98 3.99 0.39
Skates <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Impingement Entrainment I&E
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Table C-15: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) Nationally (million A1Es per year), 
and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality, continued 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Smallmouth bass 0.24 0.20 0.23 0.23 0.19 3.70 <0.01 3.03 3.16 <0.01 3.94 0.20 3.26 3.40 0.19
Smelts 4.50 3.90 4.45 4.46 3.87 0.02 <0.01 0.02 0.02 <0.01 4.52 3.90 4.47 4.48 3.87
Spot 3.52 2.66 3.42 3.43 2.66 35.34 <0.01 32.33 32.75 <0.01 38.86 2.66 35.75 36.18 2.66
Spotted seatrout 1.26 0.97 1.26 1.26 0.96 0.15 <0.01 0.10 0.10 <0.01 1.42 0.97 1.36 1.36 0.96
Stone crab 0.19 0.14 0.19 0.19 0.14 0.41 <0.01 0.28 0.28 <0.01 0.60 0.14 0.47 0.47 0.14
Striped bass 0.17 0.14 0.16 0.16 0.14 1.40 <0.01 1.28 1.30 <0.01 1.57 0.14 1.44 1.46 0.14
Striped mullet 0.37 0.28 0.37 0.37 0.28 2.62 <0.01 1.77 1.78 <0.01 2.99 0.28 2.14 2.14 0.28
Sturgeons <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.02 0.02 <0.01 0.03 <0.01 0.02 0.02 <0.01
Summer flounder 0.02 0.02 0.02 0.02 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.02 0.02 0.02 0.02
Sunfish 19.95 16.69 19.29 19.47 16.29 111.25 <0.01 90.88 95.03 <0.01 131.20 16.69 110.17 114.50 16.29
Surfperches 0.11 0.10 0.11 0.11 0.10 <0.01 <0.01 <0.01 <0.01 <0.01 0.11 0.10 0.11 0.11 0.10
Tautog <0.01 <0.01 <0.01 <0.01 <0.01 0.11 <0.01 0.09 0.10 <0.01 0.11 <0.01 0.09 0.10 <0.01
Walleye 0.06 0.05 0.05 0.05 0.05 0.68 <0.01 0.56 0.58 <0.01 0.74 0.05 0.61 0.64 0.05
Weakfish 1.44 1.10 1.40 1.41 1.10 2.71 <0.01 2.48 2.51 <0.01 4.14 1.10 3.88 3.92 1.10
White bass 2.40 2.01 2.32 2.34 1.96 2.76 <0.01 2.25 2.35 <0.01 5.16 2.01 4.57 4.70 1.96
White perch 5.24 4.18 5.08 5.12 4.13 24.43 <0.01 22.32 22.62 <0.01 29.67 4.18 27.40 27.74 4.13
Whitefish 0.23 0.20 0.23 0.23 0.20 <0.01 <0.01 <0.01 <0.01 <0.01 0.23 0.20 0.23 0.23 0.20
Windowpane <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.02 0.02 <0.01 0.03 <0.01 0.02 0.02 <0.01
Winter flounder 0.04 0.03 0.04 0.04 0.03 6.46 <0.01 5.28 5.53 <0.01 6.50 0.03 5.32 5.57 0.03
Yellow perch 3.50 2.93 3.39 3.42 2.86 2.50 <0.01 2.05 2.14 <0.01 6.00 2.93 5.43 5.55 2.86
Total (all species) 747.40 614.97 722.53 728.35 602.42 1441.52 <0.01 1259.02 1285.20 <0.01 2188.92 614.97 1981.55 2013.55 602.42

Impingement Entrainment I&E

Scenarios: B = Baseline I&E Mortality losses, 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = Option 4 (I for Facilities > 50 MGD)  
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Table C-16: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) Nationally (million individuals per 
year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Alewife 72.13         30.59     35.19     35.42     30.04     38,112.03          <0.01 15,219.17      15,449.11      <0.01 38,184.16          30.59     15,254.35      15,484.53      30.04     

American plaice <0.01 <0.01 <0.01 <0.01 <0.01 199.21               <0.01 81.20             85.19             <0.01 199.21               <0.01 81.20             85.19             <0.01
American sand 
lance 0.16           0.06       0.08       0.08       0.06       1,469.03            <0.01 598.82           628.20           <0.01 1,469.20            0.06       598.90           628.28           0.06       

American shad 19.09         7.98       9.23       9.32       7.79       67.08                 <0.01 30.72             31.11             <0.01 86.17                 7.98       39.94             40.43             7.79       
Atlantic cod <0.01 <0.01 <0.01 <0.01 <0.01 117.38               <0.01 47.85             50.19             <0.01 117.38               <0.01 47.85             50.19             <0.01

Atlantic croaker 17.73         6.79       8.79       8.80       6.74       851.39               <0.01 370.43           374.59           <0.01 869.12               6.79       379.21           383.39           6.74       

Atlantic herring 0.04           0.01       0.02       0.02       0.01       87.31                 <0.01 35.59             37.34             <0.01 87.34                 0.01       35.61             37.35             0.01       
Atlantic 
mackerel <0.01 <0.01 <0.01 <0.01 <0.01 7,067.69            <0.01 2,880.99        3,022.33        <0.01 7,067.69            <0.01 2,880.99        3,022.33        <0.01
Atlantic 
menhaden 71.28         27.14     34.72     34.84     27.11     4,486.26            <0.01 1,836.37        1,921.31        <0.01 4,557.54            27.14     1,871.09        1,956.15        27.11     
Atlantic 
silverside 1.66           0.62       0.80       0.81       0.62       206.73               <0.01 89.81             92.38             <0.01 208.39               0.62       90.61             93.19             0.62       

Atlantic tomcod 0.14           0.05       0.07       0.07       0.05       6.28                   <0.01 2.56               2.68               <0.01 6.42                   0.05       2.63               2.75               0.05       
Bay anchovy 43.71         15.00     19.79     19.82     14.98     457,647.92        <0.01 170,620.21    172,563.84    <0.01 457,691.63        15.00     170,640.00    172,583.66    14.98     
Bigmouth 
buffalo 0.04           0.02       0.02       0.02       0.02       5.38                   <0.01 2.20               2.30               <0.01 5.42                   0.02       2.22               2.32               0.02       
Black bullhead 0.34           0.14       0.16       0.17       0.14       0.04                   <0.01 0.02               0.02               <0.01 0.38                   0.14       0.18               0.18               0.14       
Black crappie 0.35           0.15       0.17       0.17       0.14       24.81                 <0.01 10.14             10.60             <0.01 25.16                 0.15       10.30             10.77             0.14       
Black drum 0.03           0.01       0.01       0.01       0.01       96,328.24          <0.01 32,580.73      32,660.81      <0.01 96,328.27          0.01       32,580.75      32,660.83      0.01       
Blennies <0.01 <0.01 <0.01 <0.01 <0.01 914.88               <0.01 389.87           407.84           <0.01 914.88               <0.01 389.87           407.84           <0.01
Blue crab 15.03         5.69       7.37       7.38       5.66       3,677.57            <0.01 1,650.35        1,670.46        <0.01 3,692.60            5.69       1,657.73        1,677.85        5.66       

Blueback herring 186.97       78.16     90.37     91.24     76.26     1,774.42            <0.01 726.14           759.17           <0.01 1,961.39            78.16     816.51           850.41           76.26     
Bluefish 0.03           0.01       0.01       0.01       0.01       0.06                   <0.01 0.02               0.02               <0.01 0.09                   0.01       0.04               0.04               0.01       
Bluegill 35.57         14.88     17.19     17.36     14.52     48.04                 <0.01 19.63             20.53             <0.01 83.61                 14.88     36.82             37.89             14.52     
Bluntnose 
minnow 0.16           0.07       0.08       0.08       0.07       4,931.58            <0.01 2,014.69        2,107.19        <0.01 4,931.75            0.07       2,014.77        2,107.27        0.07       

Brown bullhead 0.06           0.02       0.03       0.03       0.02       0.46                   <0.01 0.19               0.20               <0.01 0.52                   0.02       0.22               0.23               0.02       
Bullheads 0.04           0.02       0.02       0.02       0.02       3.68                   <0.01 1.50               1.57               <0.01 3.72                   0.02       1.52               1.59               0.02       
Burbot <0.01 <0.01 <0.01 <0.01 <0.01 16.57                 <0.01 6.76               7.07               <0.01 16.58                 <0.01 6.77               7.07               <0.01
Butterfish <0.01 <0.01 <0.01 <0.01 <0.01 12.15                 <0.01 4.95               5.20               <0.01 12.16                 <0.01 4.96               5.20               <0.01
Cabezon <0.01 <0.01 <0.01 <0.01 <0.01 6.65                   <0.01 2.83               2.96               <0.01 6.65                   <0.01 2.83               2.96               <0.01
California 
halibut <0.01 <0.01 <0.01 <0.01 <0.01 7.71                   <0.01 3.29               3.44               <0.01 7.72                   <0.01 3.29               3.44               <0.01

Impingement Entrainment I&E
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Table C-16: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) Nationally (million individuals per 
year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality, continued 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
California 
scorpionfish <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Carp 0.41           0.17       0.20       0.20       0.17       7,449.10            <0.01 3,013.42        3,112.06        <0.01 7,449.51            0.17       3,013.62        3,112.26        0.17       
Chain pipefish 0.07           0.03       0.04       0.04       0.03       2.13                   <0.01 0.72               0.72               <0.01 2.20                   0.03       0.75               0.76               0.03       

Channel catfish 2.06           0.86       1.00       1.01       0.84       209.96               <0.01 85.78             89.72             <0.01 212.02               0.86       86.77             90.73             0.84       

Chinook salmon <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Crabs (other) 0.12           0.05       0.06       0.06       0.05       7,906.88            <0.01 3,363.37        3,506.02        <0.01 7,907.01            0.05       3,363.43        3,506.08        0.05       
Crappie 0.60           0.25       0.29       0.29       0.24       68.59                 <0.01 28.01             29.29             <0.01 69.19                 0.25       28.30             29.58             0.24       
Cunner <0.01 <0.01 <0.01 <0.01 <0.01 29,170.94          <0.01 11,890.91      12,474.26      <0.01 29,170.95          <0.01 11,890.91      12,474.27      <0.01
Darters 1.01           0.42       0.49       0.49       0.41       164.61               <0.01 67.23             70.28             <0.01 165.62               0.42       67.71             70.77             0.41       
Delta smelt <0.01 <0.01 <0.01 <0.01 <0.01 0.01                   <0.01 <0.01 <0.01 <0.01 0.01                   <0.01 <0.01 <0.01 <0.01
Drums and 
croakers 0.63           0.25       0.30       0.30       0.24       3,292.06            <0.01 1,381.20        1,400.82        <0.01 3,292.68            0.25       1,381.50        1,401.11        0.24       

Dungeness crab <0.01 <0.01 <0.01 <0.01 <0.01 0.09                   <0.01 0.04               0.04               <0.01 0.09                   <0.01 0.04               0.04               <0.01
Emerald shiner 4.39           1.84       2.13       2.14       1.80       772.49               <0.01 315.16           329.07           <0.01 776.88               1.84       317.29           331.22           1.80       
Fish (other) 98.00         40.36     47.39     47.80     39.49     123,797.72        <0.01 49,732.40      51,319.67      <0.01 123,895.72        40.36     49,779.79      51,367.47      39.49     
Flounders 0.01           <0.01 <0.01 <0.01 <0.01 319.23               <0.01 136.04           142.31           <0.01 319.24               <0.01 136.04           142.31           <0.01
Fourbeard 
rockling <0.01 <0.01 <0.01 <0.01 <0.01 464.23               <0.01 189.23           198.52           <0.01 464.23               <0.01 189.23           198.52           <0.01

Freshwater drum 4.65           1.94       2.25       2.27       1.90       3,231.60            <0.01 1,318.23        1,376.14        <0.01 3,236.24            1.94       1,320.48        1,378.40        1.90       
Gizzard shad 326.39       136.74   157.91   159.39   133.51   22,916.70          <0.01 9,327.13        9,708.69        <0.01 23,243.09          136.74   9,485.04        9,868.08        133.51   
Gobies 0.14           0.05       0.07       0.07       0.05       8,788.33            <0.01 3,416.01        3,454.69        <0.01 8,788.47            0.05       3,416.08        3,454.76        0.05       

Golden redhorse 0.07           0.03       0.03       0.03       0.03       2.86                   <0.01 1.17               1.22               <0.01 2.92                   0.03       1.20               1.25               0.03       
Grubby 0.02           <0.01 0.01       0.01       <0.01 431.10               <0.01 175.73           184.35           <0.01 431.12               <0.01 175.74           184.36           <0.01
Gulf killifish 0.04           0.01       0.02       0.02       0.01       <0.01 <0.01 <0.01 <0.01 <0.01 0.04                   0.01       0.02               0.02               0.01       
Herrings 0.07           0.03       0.03       0.03       0.03       37.37                 <0.01 15.63             16.21             <0.01 37.44                 0.03       15.66             16.24             0.03       
Hogchoker 0.74           0.28       0.36       0.36       0.28       26,718.51          <0.01 12,183.16      12,346.27      <0.01 26,719.25          0.28       12,183.52      12,346.63      0.28       
Leatherjacket 0.95           0.36       0.47       0.47       0.36       794.02               <0.01 268.56           269.22           <0.01 794.97               0.36       269.03           269.69           0.36       
Logperch 1.22           0.51       0.59       0.60       0.50       42.56                 <0.01 17.29             17.96             <0.01 43.77                 0.51       17.88             18.56             0.50       
Longfin smelt <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Lumpfish <0.01 <0.01 <0.01 <0.01 <0.01 44.89                 <0.01 18.30             19.20             <0.01 44.89                 <0.01 18.30             19.20             <0.01
Mackerels <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Menhadens 16.06         6.15       7.98       7.98       6.10       269.24               <0.01 91.08             91.30             <0.01 285.30               6.15       99.05             99.28             6.10       
Muskellunge 0.02           <0.01 0.01       0.01       <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03                   <0.01 0.01               0.01               <0.01
Northern 
anchovy 0.86           0.38       0.42       0.43       0.37       826.63               <0.01 352.26           368.50           <0.01 827.49               0.38       352.68           368.93           0.37       

Impingement Entrainment I&E
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Table C-16: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) Nationally (million individuals per 
year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality, continued 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Northern 
pipefish 0.04           0.01       0.02       0.02       0.01       11.79                 <0.01 5.34               5.43               <0.01 11.83                 0.01       5.36               5.45               0.01       
Pacific herring <0.01 <0.01 <0.01 <0.01 <0.01 36.16                 <0.01 15.41             16.12             <0.01 36.17                 <0.01 15.41             16.12             <0.01
Pinfish 0.12           0.05       0.06       0.06       0.04       179.13               <0.01 66.21             66.35             <0.01 179.25               0.05       66.27             66.40             0.04       
Pink shrimp 43.73         16.74     21.71     21.73     16.62     126.32               <0.01 42.73             42.83             <0.01 170.05               16.74     64.44             64.56             16.62     
Pollock <0.01 <0.01 <0.01 <0.01 <0.01 3.46                   <0.01 1.41               1.48               <0.01 3.47                   <0.01 1.41               1.48               <0.01

Radiated shanny <0.01 <0.01 <0.01 <0.01 <0.01 110.36               <0.01 44.99             47.19             <0.01 110.36               <0.01 44.99             47.19             <0.01
Rainbow smelt 0.76           0.32       0.37       0.37       0.32       151.21               <0.01 61.07             62.99             <0.01 151.97               0.32       61.45             63.36             0.32       
Red drum 0.18           0.07       0.09       0.09       0.07       1.10                   <0.01 0.37               0.37               <0.01 1.27                   0.07       0.46               0.46               0.07       
Red hake 0.08           0.03       0.04       0.04       0.03       <0.01 <0.01 <0.01 <0.01 <0.01 0.08                   0.03       0.04               0.04               0.03       

River carpsucker 0.03           0.01       0.02       0.02       0.01       5.15                   <0.01 2.10               2.20               <0.01 5.18                   0.01       2.12               2.22               0.01       
Rock gunnel <0.01 <0.01 <0.01 <0.01 <0.01 395.87               <0.01 161.37           169.29           <0.01 395.88               <0.01 161.37           169.29           <0.01
Rockfishes 0.03           0.01       0.01       0.01       0.01       63.96                 <0.01 27.26             28.51             <0.01 63.99                 0.01       27.27             28.53             0.01       
Sacramento 
splittail <0.01 <0.01 <0.01 <0.01 <0.01 0.01                   <0.01 <0.01 <0.01 <0.01 0.01                   <0.01 <0.01 <0.01 <0.01
Salmon <0.01 <0.01 <0.01 <0.01 <0.01 6.16                   <0.01 2.46               2.50               <0.01 6.16                   <0.01 2.46               2.50               <0.01
Sauger 0.23           0.09       0.11       0.11       0.09       314.24               <0.01 128.39           134.29           <0.01 314.47               0.09       128.49           134.40           0.09       
Scaled sardine 0.35           0.13       0.17       0.17       0.13       2,962.36            <0.01 1,001.95        1,004.41        <0.01 2,962.72            0.13       1,002.12        1,004.59        0.13       
Sculpins 0.02           0.01       0.01       0.01       <0.01 270.10               <0.01 110.96           116.30           <0.01 270.13               0.01       110.97           116.31           <0.01
Scup <0.01 <0.01 <0.01 <0.01 <0.01 16.64                 <0.01 6.78               7.12               <0.01 16.65                 <0.01 6.79               7.12               <0.01
Sea Basses <0.01 <0.01 <0.01 <0.01 <0.01 13.24                 <0.01 5.64               5.90               <0.01 13.24                 <0.01 5.64               5.90               <0.01

Seaboard goby 0.02           <0.01 <0.01 <0.01 <0.01 16,071.16          <0.01 7,239.43        7,367.13        <0.01 16,071.18          <0.01 7,239.44        7,367.14        <0.01
Searobin 1.18           0.45       0.58       0.59       0.45       80.30                 <0.01 27.96             28.24             <0.01 81.48                 0.45       28.54             28.83             0.45       
Sheepshead <0.01 <0.01 <0.01 <0.01 <0.01 382.88               <0.01 129.50           129.82           <0.01 382.88               <0.01 129.50           129.82           <0.01
Shiners 3.98           1.67       1.93       1.95       1.64       429.73               <0.01 174.39           180.77           <0.01 433.71               1.67       176.32           182.71           1.64       
Shrimp (other) 8.93           2.82       3.81       3.81       2.82       1,469.73            <0.01 616.82           625.97           <0.01 1,478.66            2.82       620.63           629.78           2.82       
Silver hake 0.05           0.02       0.03       0.03       0.02       568.71               <0.01 231.82           243.20           <0.01 568.76               0.02       231.85           243.22           0.02       
Silver perch 0.91           0.32       0.42       0.42       0.32       88,985.72          <0.01 30,097.30      30,171.28      <0.01 88,986.63          0.32       30,097.72      30,171.70      0.32       
Silversides 0.16           0.07       0.08       0.08       0.07       171.19               <0.01 72.23             75.51             <0.01 171.35               0.07       72.30             75.59             0.07       
Skates <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Skipjack herring 1.52           0.64       0.74       0.74       0.62       0.54                   <0.01 0.22               0.23               <0.01 2.06                   0.64       0.96               0.97               0.62       

Smallmouth bass 0.14           0.06       0.07       0.07       0.06       54.51                 <0.01 22.27             23.30             <0.01 54.66                 0.06       22.34             23.37             0.06       

Impingement Entrainment I&E
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Table C-16: Baseline I&E Mortality Losses at All In-scope Facilities (Manufacturing and Generating) Nationally (million individuals per 
year), and I&E Mortality Reductions for Option Scenarios Estimated for All Sources of Mortality, continued 

Species B 1 2 3 4 B 1 2 3 4 B 1 2 3 4
Smelts 4.07           1.76       2.01       2.02       1.75       154.31               <0.01 61.72             62.70             <0.01 158.39               1.76       63.73             64.72             1.75       
Spot 11.27         4.25       5.47       5.48       4.25       2,420.22            <0.01 1,016.05        1,018.92        <0.01 2,431.49            4.25       1,021.52        1,024.41        4.25       

Spotted seatrout 1.21           0.46       0.60       0.60       0.46       5,373.31            <0.01 1,820.18        1,824.64        <0.01 5,374.51            0.46       1,820.77        1,825.24        0.46       

Spotted sucker <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Stone crab 0.27           0.11       0.14       0.14       0.10       28,711.01          <0.01 9,710.82        9,734.68        <0.01 28,711.29          0.11       9,710.95        9,734.82        0.10       
Striped bass 1.68           0.70       0.81       0.82       0.68       1,071.31            <0.01 490.20           496.62           <0.01 1,072.98            0.70       491.01           497.44           0.68       

Striped killifish 0.32           0.12       0.16       0.16       0.12       0.06                   <0.01 0.03               0.03               <0.01 0.38                   0.12       0.18               0.18               0.12       
Striped mullet 0.45           0.17       0.23       0.23       0.17       15.17                 <0.01 5.13               5.14               <0.01 15.62                 0.17       5.36               5.37               0.17       
Sturgeons <0.01 <0.01 <0.01 <0.01 <0.01 1.46                   <0.01 0.59               0.62               <0.01 1.46                   <0.01 0.60               0.62               <0.01
Suckers 0.17           0.07       0.08       0.08       0.07       4,344.79            <0.01 1,775.05        1,856.67        <0.01 4,344.96            0.07       1,775.13        1,856.75        0.07       
Summer 
flounder 0.08           0.03       0.04       0.04       0.03       <0.01 <0.01 <0.01 <0.01 <0.01 0.08                   0.03       0.04               0.04               0.03       
Sunfish 6.40           2.67       3.09       3.12       2.61       655.10               <0.01 267.58           279.80           <0.01 661.50               2.67       270.67           282.92           2.61       
Surfperches 0.13           0.06       0.06       0.06       0.06       <0.01 <0.01 <0.01 <0.01 <0.01 0.13                   0.06       0.06               0.06               0.06       
Tautog <0.01 <0.01 <0.01 <0.01 <0.01 29,299.93          <0.01 11,943.48      12,529.42      <0.01 29,299.94          <0.01 11,943.49      12,529.42      <0.01
Threespine 
stickleback 0.11           0.05       0.06       0.06       0.05       0.78                   <0.01 0.31               0.32               <0.01 0.89                   0.05       0.37               0.37               0.05       
Tidewater 
silverside 0.30           0.11       0.15       0.15       0.11       34.36                 <0.01 11.62             11.65             <0.01 34.66                 0.11       11.77             11.80             0.11       
Walleye 0.15           0.06       0.07       0.08       0.06       169.80               <0.01 69.37             72.56             <0.01 169.96               0.06       69.45             72.64             0.06       
Weakfish 3.35           1.28       1.63       1.64       1.28       929.71               <0.01 404.38           414.14           <0.01 933.06               1.28       406.02           415.78           1.28       
White bass 2.68           1.12       1.30       1.31       1.10       1,106.14            <0.01 451.56           471.86           <0.01 1,108.82            1.12       452.86           473.17           1.10       
White perch 6.70           2.70       3.25       3.27       2.66       2,996.05            <0.01 1,339.29        1,365.37        <0.01 3,002.75            2.70       1,342.54        1,368.65        2.66       
Whitefish 0.10           0.04       0.05       0.05       0.04       0.92                   <0.01 0.37               0.39               <0.01 1.02                   0.04       0.42               0.44               0.04       
Windowpane 0.02           <0.01 0.01       0.01       <0.01 2,066.54            <0.01 842.38           883.71           <0.01 2,066.57            <0.01 842.39           883.72           <0.01

Winter flounder 0.15           0.06       0.08       0.08       0.06       6,780.09            <0.01 2,768.38        2,902.67        <0.01 6,780.24            0.06       2,768.46        2,902.75        0.06       
Yellow perch 9.59           4.02       4.64       4.68       3.93       1,130.30            <0.01 461.51           482.36           <0.01 1,139.89            4.02       466.15           487.05           3.93       
Total (all 
species) 1,034.92    421.62   500.44   504.14   413.70   1,055,936.41     <0.01 400,351.83    407,417.58    <0.01 1,056,971.34     421.62   400,852.27    407,921.72    413.70   

Scenarios: B = Baseline I&E Mortality losses. 1 = Option 1 (I Everywhere), 2 = Option 2 (I Everywhere and E for Facilities > 125 MGD), 3 = Option 3 (I&E Mortality Everywhere), 4 = Option 4 (I for Facilities > 50 MGD). Values for all options reflect reductions in 
losses.

Impingement Entrainment I&E
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Appendix D: Discounting Benefits 

D.1 Introduction 

Discounting refers to the economic conversion of future benefits and costs to their present values, 
accounting for the fact that individuals tend to value future outcomes less than comparable near-term 
outcomes. Annualization refers to the conversion of a series of annual costs or benefits of differing 
amounts to an equivalent annual series of constant costs or benefits. Discounting and annualization are 
important because these techniques allow for the comparison of benefits and/or costs that occur in 
different time periods. 

For the benefits analysis of the regulatory options for the proposed Section 316(b) Rule, EPA’s 
discounting and annualization methodology included three steps. First, EPA developed a time profile of 
benefits to show when benefits occur. Second, the Agency calculated the total discounted value of the 
benefits as of the year 2012. Finally, EPA annualized the benefits of the regulatory options over a 50-year 
time span. The following sections explain these steps in detail. 

D.2 Timing of Benefits 

In order to calculate the annualized value of the welfare gain from the regulatory analysis options 
considered for the proposed Section 316(b) Rule, EPA developed a time profile of total benefits from all 
facilities that reflects when benefits from each facility will be realized. EPA first calculated the 
undiscounted welfare gain from the expected annual regional reductions in impingement and entrainment 
mortality (I&E mortality) under each option, based on the assumptions that all facilities in each region 
would achieved compliance and that benefits are realized immediately following compliance. Then, since 
there are regulatory and biological time lags between the potential promulgation of each respective 
regulatory option and the realization of benefits, EPA created a time profile of benefits that takes into 
account the fact that benefits do not begin immediately. 

Regulatory-related time lags occur because facilities will not always achieve compliance in the same year 
that costs are incurred. Facilities will face regulatory requirements once the rule takes effect, but it will 
take time to make the required changes. For this analysis, EPA assumed that facilities, in the aggregate, 
would achieve compliance on a uniform schedule over the 5-year periods 2013-2017, 2018-2022, or 
2023-2027 with all activities associated with the achievement of compliance estimated to occur uniformly 
over this period. Facilities required to comply with impingement mortality limits are assumed to achieve 
compliance on a uniform schedule over the 5-year period 2013-2017. Non-nuclear electric generating 
facilities required to reduce intake flow commensurate with closed cycle cooling are assumed to achieve 
compliance on a uniform schedule over the 5-year period 2018-2022. Nuclear electric generating facilities 
and manufacturing facilities required to reduce intake flow commensurate with closed cycle cooling are 
assumed to achieve compliance on a uniform schedule over the 5-year period 2023-2027. Following the 
achievement of compliance, all operational effects of compliance (i.e., reduction in I&E mortality losses) 
are also assumed to occur as though they originated from a compliance schedule that is uniformly spread 
over the 5-year window. Compliance is assumed to continue until the year 2056 for all facilities. See 
Chapter11 of the EA report for more detail. 

D 
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The biological time lags that affect the timing of commercial and recreational fishing benefits (including 
recreational use of threatened and endangered species) occur because most fish that would be spared from 
I&E mortality would be in larval or juvenile stages. Since these fish may require several years to grow 
and mature before commercial and recreational anglers can harvest them, there would be a lag between 
installation of technologies to reduce I&E mortality and realization of commercial and recreational 
angling benefits. For example, a larval fish spared from entrainment (in effect, at age zero) may be caught 
by a recreational angler at age three, meaning that a three-year time lag arises between the installation of 
technologies to reduce I&E mortality and the realization of the estimated recreational benefit. Likewise, if 
a one-year-old fish is spared from impingement and is then harvested by a commercial fisherman at age 
two, there is a one-year lag between the installation of technologies to reduce I&E mortality and the 
subsequent commercial fishery benefit. In general, fish that tend to be harvested at young ages will have 
relatively short time lags between implementation of technologies to reduce I&E mortality and the 
subsequent timing of changes in catch. In contrast, long-lived fish that tend to be caught at relatively older 
ages would tend to have longer time lags (and, hence, the effects of discounting would be larger, resulting 
in lower present values). 

In order to model the biological lags between installation of technologies to reduce I&E mortality and 
realization of commercial and recreational benefits, EPA collected species-specific information on ages of 
fish at harvest to estimate the average time required for a fish spared from I&E mortality to reach a 
harvestable age. The estimated time lags vary, depending on the life history of each fish species affected. 
EPA used this information, along with information about the estimated age and species composition of 
I&E mortality losses in each study region, to develop a benefits recognition schedule for facilities in each 
region.58 

Following achievement of compliance, commercial and recreational fishing benefits from facilities in 
most regions (the California, North Atlantic, Mid-Atlantic, and South Atlantic regions) are assumed to 
increase over a seven-year period to a long-term, steady-state average, equal to the approximated per-
facility benefit value discussed above, according to a numerical profile of <0.0, 0.1, 0.2, 0.8, 0.9, 0.95, 
1.0>. This profile indicates the fraction of the steady-state benefit value (i.e., the percentage of 
commercial and recreational fish spared from I&E mortality that reach a harvestable age) that is realized 
in each of the first seven years following the achievement of compliance at a facility.  

For regions with a relatively high contribution of impingement to total I&E mortality (the Inland, Great 
Lakes, and Gulf of Mexico regions), EPA used an adjusted profile of <0.1, 0.2, 0.8, 0.9, 0.95, 1.0> for 
commercial and recreational fishing benefits. This adjusted profile reflects the fact that impinged fish are 
usually larger and older than entrained fish and thus benefits will be realized sooner in these regions. 
These profile values are approximations based on a review of the age-specific fishing mortality rates that 
were used in the I&E mortality analysis and best professional judgment. 

In all regions, this fraction remains 1.0 until the final year of compliance, 2056. The commercial and 
recreational fishing benefits profile declines at the end of the compliance period in the same fashion that it 
increases at the beginning of compliance. . Specifically, at the end of the compliance period, benefit 
values follow a profile of <1.0, 0.9, 0.8, 0.2, 0.1, 0.05, 0.0> with the last benefits occurring in 2061. 
Therefore, the analysis of benefits encompasses a 50-year period from rule promulgation and first 

                                                      
58  The benefits profile aggregated across all facilities in a region or nationwide was calculated using facility-level sample 

weights. These facility-level sample weights were designed so that the weighted actual regional intake flow for the sample 
facilities is the same as the estimated actual regional intake flow for the entire universe of facilities. These sample weights 
and their derivation are described in more detail in Appendix A. 
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occurrence of compliance-related costs in 2012 until the final benefits in 2061. The number of years when 
benefits do not equal zero varies among the in-scope facilities depending on the year that it initially 
achieves compliance.  

For nonuse benefits and the HEA analysis, EPA assumes that there is no initial biological lag at the start 
of the compliance period because benefits are not based on the harvest of fish spared from I&E mortality. 
Benefits are assumed to begin accruing immediately when a facility comes into compliance and to 
continue in full (i.e., fraction of 1.0) until the year 2056.  

The nonuse and HEA analysis include a linear decline in benefits starting at the end of the compliance 
period following a profile of <1.0, 0.83, 0.67, 0.50, 0.33, 0.17, 0.0> with the last benefits occurring in 
2061. This profile reflects the fact that increases in fish abundance and biological production resulting 
from reductions in I&E mortality will return to baseline over time. The duration of the profile is 
consistent with analyses for commercial and recreational fishing benefits and its trajectory is based on 
best professional judgment. 

D.3 Discounting and Annualization 

Using the time profile of benefits discussed above, EPA discounted the total benefits generated in each 
year of the analysis to 2012 using the following formula: 

 
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r 2012)1(

Benefits
ValuePresent  Equation D-1 

where: 

Benefitst  =  benefits in year t 
r  =  discount rate (3 percent and 7 percent) 
t  =  year in which benefits are incurred 

After calculating the present value (PV) of these benefit streams, EPA calculated their constant annual 
equivalent value (annualized value) using the annualization formula presented below, again using two 
discount rates, 3 percent and 7 percent.59 Although the analysis period extends further, EPA annualized 
benefits over the assumed period of compliance for in-scope facilities. This same annualization concept 
and period of annualization were also followed in the analysis of costs, although for costs the time 
horizon of analysis for calculating the present value is shorter than for benefits. Using the same 
annualization period for both benefits and social costs allows comparison of constant annual equivalent 
values of benefits and costs that have been calculated on a mathematically consistent basis. The 
annualization formula is as follows: 














1)1(

)(1*
  *Benefit   of PV Benefit  Annualized

n

n

r

rr
 Equation D-2 

where: 

r   =  discount rate (3 percent and 7 percent) 
n   =  annualization period, 50 years for the benefits analysis 

                                                      
59  The three percent rate represents an estimate of the social rate of time preference.  
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Table D-1 presents a summary of the time profile of benefits discounted at the 3 percent and 7 percent 
rates for each of the regulatory options on the national scale. The table also presents the total value and 
annualized value that are equivalent to this stream of benefits. 

Table D-1: Time Profile of National Mean Total Benefits at In-scope Facilities by 
Regulatory Option (2009$, thousands) 

Year 

Option 1: I Everywhere 
Option 2: I Everywhere 
and E for Facilities with 

DIF > 125 MGD 

Option 3: I&E 
Mortality Everywhere 

Option 4: I for 
Facilities with DIF > 

50 MGD 
3% 

Discount 
Rate 

7% 
Discount 

Rate 

3% 
Discount 

Rate 

7% 
Discount 

Rate 

3% 
Discount 

Rate 

7% 
Discount 

Rate 

3% 
Discount 

Rate 

7% 
Discount 

Rate 
2010 0 0 0 0 0 0 $0 $0 
2011 0 0 0 0 0 0 $0 $0 
2012 $0 $0 $0 $0 $0 $0 $0 $0 
2013 $470 $448 $32 $30 $7 $7 $463 $441 
2014 $1,309 $1,205 $85 $78 $20 $19 $1,288 $1,186 
2015 $4,165 $3,705 $264 $235 $72 $64 $4,091 $3,638 
2016 $7,461 $6,393 $458 $392 $126 $109 $7,329 $6,280 
2017 $10,765 $8,882 $652 $538 $181 $150 $10,576 $8,726 
2018 $13,640 $10,838 $14,443 $11,102 $14,415 $11,064 $13,400 $10,647 
2019 $16,019 $12,255 $28,190 $20,863 $28,616 $21,160 $15,737 $12,040 
2020 $16,464 $12,126 $44,411 $31,724 $45,435 $32,437 $16,179 $11,915 
2021 $16,347 $11,590 $61,484 $42,366 $63,150 $43,496 $16,064 $11,389 
2022 $16,047 $10,952 $77,979 $51,791 $80,270 $53,294 $15,769 $10,762 
2023 $15,598 $10,248 $86,028 $55,095 $88,729 $56,808 $15,329 $10,070 
2024 $15,144 $9,577 $93,426 $57,672 $96,529 $59,571 $14,882 $9,412 
2025 $14,703 $8,951 $98,547 $58,596 $102,101 $60,695 $14,449 $8,796 
2026 $14,274 $8,365 $103,581 $59,322 $107,577 $61,599 $14,028 $8,220 
2027 $13,859 $7,818 $108,187 $59,674 $112,604 $62,100 $13,619 $7,683 
2028 $13,455 $7,306 $108,905 $57,873 $113,471 $60,292 $13,223 $7,180 
2029 $13,063 $6,828 $109,142 $55,871 $113,816 $58,257 $12,837 $6,710 
2030 $12,683 $6,382 $108,273 $53,379 $112,912 $55,661 $12,464 $6,271 
2031 $12,313 $5,964 $105,740 $50,188 $110,279 $52,337 $12,101 $5,861 
2032 $11,955 $5,574 $102,961 $47,045 $107,385 $49,062 $11,748 $5,478 
2033 $11,606 $5,209 $100,080 $44,021 $104,379 $45,906 $11,406 $5,119 
2034 $11,268 $4,869 $97,165 $41,141 $101,339 $42,903 $11,074 $4,784 
2035 $10,940 $4,550 $94,335 $38,449 $98,387 $40,096 $10,751 $4,471 
2036 $10,622 $4,252 $91,588 $35,934 $95,522 $37,473 $10,438 $4,179 
2037 $10,312 $3,974 $88,920 $33,583 $92,739 $35,022 $10,134 $3,905 
2038 $10,012 $3,714 $86,330 $31,386 $90,038 $32,731 $9,839 $3,650 
2039 $9,720 $3,471 $83,816 $29,333 $87,416 $30,589 $9,552 $3,411 
2040 $9,437 $3,244 $81,374 $27,414 $84,870 $28,588 $9,274 $3,188 
2041 $9,162 $3,032 $79,004 $25,620 $82,398 $26,718 $9,004 $2,979 
2042 $8,895 $2,834 $76,703 $23,944 $79,998 $24,970 $8,742 $2,785 
2043 $8,636 $2,648 $74,469 $22,378 $77,668 $23,337 $8,487 $2,602 
2044 $8,385 $2,475 $72,300 $20,914 $75,406 $21,810 $8,240 $2,432 
2045 $8,141 $2,313 $70,194 $19,546 $73,209 $20,383 $8,000 $2,273 
2046 $7,903 $2,162 $68,150 $18,267 $71,077 $19,050 $7,767 $2,124 
2047 $7,673 $2,020 $66,165 $17,072 $69,007 $17,803 $7,541 $1,985 
2048 $7,450 $1,888 $64,238 $15,955 $66,997 $16,639 $7,321 $1,855 
2049 $7,233 $1,765 $62,367 $14,911 $65,046 $15,550 $7,108 $1,734 
2050 $7,022 $1,649 $60,550 $13,936 $63,151 $14,533 $6,901 $1,621 
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Table D-1: Time Profile of National Mean Total Benefits at In-scope Facilities by 
Regulatory Option (2009$, thousands) 

Year 

Option 1: I Everywhere 
Option 2: I Everywhere 
and E for Facilities with 

DIF > 125 MGD 

Option 3: I&E 
Mortality Everywhere 

Option 4: I for 
Facilities with DIF > 

50 MGD 
3% 

Discount 
Rate 

7% 
Discount 

Rate 

3% 
Discount 

Rate 

7% 
Discount 

Rate 

3% 
Discount 

Rate 

7% 
Discount 

Rate 

3% 
Discount 

Rate 

7% 
Discount 

Rate 
2051 $6,818 $1,541 $58,787 $13,024 $61,312 $13,582 $6,700 $1,515 
2052 $6,619 $1,440 $57,074 $12,172 $59,526 $12,694 $6,505 $1,416 
2053 $6,426 $1,346 $55,412 $11,376 $57,792 $11,863 $6,315 $1,323 
2054 $6,239 $1,258 $53,798 $10,632 $56,109 $11,087 $6,131 $1,236 
2055 $6,057 $1,176 $52,231 $9,936 $54,475 $10,362 $5,953 $1,155 
2056 $5,881 $1,099 $50,710 $9,286 $52,888 $9,684 $5,779 $1,080 
2057 $5,128 $922 $42,374 $7,475 $44,184 $7,794 $5,039 $906 
2058 $4,415 $765 $34,749 $5,906 $36,224 $6,156 $4,339 $751 
2059 $1,120 $186 $17,101 $2,772 $17,875 $2,897 $1,101 $183 
2060 $555 $89 $10,326 $1,608 $10,799 $1,682 $546 $87 
2061 $270 $42 $5,135 $770 $5,371 $805 $266 $41 
2062 $0 $0 $0 $0 $0 $0 $0 $0 
2063 0 0 0 0 0 0 $0 $0 
2064 0 0 0 0 0 0 $0 $0 
2065 0 0 0 0 0 0 $0 $0 

Total 
Present 
Valuea 

$453,679 $221,341 $3,108,232 $1,272,593 $3,232,893 $1,320,887 $445,825 $217,499

Annualized 
Valueb 

$17,632 $16,038 $120,794 $92,200 $125,649 $95,711 $17,327 $15,760

a The total present value is equal to the sum of the values of the benefits realized in all years of the analysis, discounted to 2012. 
b The annualized value represents the total present value of the benefits of the regulation, distributed over a 50-year period. 
Source: U.S. EPA analysis for this report. 
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Appendix E: List of T&E Species Overlapping CWIS 

E 

Table E-1: List of T&E Species Overlapping One or More In-Scope 316(b) Cooling Water Intake 
Structure 
Latin Name Common Name 
Acipenser brevirostrum Shortnose Sturgeon 
Acipenser medirostris Green Sturgeon 
Acipenser oxyrinchus desotoi Gulf Sturgeon 
Acipenser oxyrinchus oxyrinchus Atlantic Sturgeon 
Acropora cervicornis Staghorn Coral 
Acropora palmata Elkhorn Coral 
Alasmidonta heterodon Dwarf Wedgemussel 
Amblyopsis rosae Ozark Cavefish 
Arkansia wheeleri Ouachita Rock Pocketbook 
Caretta caretta Loggerhead Sea Turtle 
Chelonia mydas Green Sea Turtle 
Conradilla caelata Birdwing Pearlymussel 
Cottus paulus (=pygmaeus) Pygmy Sculpin 
Cyprinella caerulea Blue Shiner 
Cyprogenia stegaria Fanshell 
Dermochelys coriacea Leatherback Sea Turtle 
Dromus dromas Dromedary Pearlymussel 
Elliptio steinstansana Tar River Spinymussel 
Epioblasma brevidens Cumberlandian Combshell 
Epioblasma florentina florentina Yellow (Pearlymussel) Blossom 
Epioblasma florentina walkeri (=E. walkeri) Tan Riffleshell 
Epioblasma obliquata obliquata Catspaw (Purple Cat's Paw Pearlymussel) 
Epioblasma obliquata perobliqua White (Pearlymussel) Catspaw 
Epioblasma penita Southern Combshell 
Epioblasma torulosa gubernaculum Green (Pearlymussel) Blossom 
Epioblasma torulosa rangiana Northern Riffleshell 
Epioblasma torulosa torulosa Tubercled (Pearlymussel) Blossom 
Epioblasma turgidula Turgid (Pearlymussel) Blossom 
Eretmochelys imbricata Hawksbill Sea Turtle 
Etheostoma etowahae Etowah Darter 
Etheostoma percnurum Duskytail Darter 
Etheostoma scotti Cherokee Darter 
Etheostoma wapiti Boulder Darter 
Fusconaia cor Shiny Pigtoe 
Fusconaia cuneolus Finerayed Pigtoe 
Gasterosteus aculeatus williamsoni Unarmored Threespine Stickleback 
Gila bicolor mohavensis Mohave Tui Chub 
Hemistena lata Cracking Pearlymussel 
Hypomesus transpacificus Delta Smelt 
Lampsilis abrupta Pink (Pearlymussel) Mucket 
Lampsilis higginsii Higgins Eye (Pearlymussel) 
Lampsilis powellii Arkansas Fatmucket 
Lampsilis virescens Alabama Lampmussel 
Lepidochelys kempii Kemp's Ridley Sea Turtle 
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Table E-1: List of T&E Species Overlapping One or More In-Scope 316(b) Cooling Water Intake 
Structure 
Latin Name Common Name 
Lepidochelys olivacea Olive Ridley Sea Turtle 
Leptodea leptodon Scaleshell Mussel 
Margaritifera hembeli Louisiana Pearlshell 
Microphis brachyurus lineatus Opossum Pipefish 
Notropis albizonatus Palezone Shiner 
Notropis Topeka Topeka Shiner 
Noturus placidus Neosho Madtom 
Noturus stanauli Pygmy Madtom 
Noturus trautmani Scioto Madtom 
Obovaria retusa Ring Pink (Mussel) 
Oncorhynchus clarkii stomias Greenback Cutthroat 
Oncorhynchus keta Chum Salmon 
Oncorhynchus kisutch Coho Salmon 
Oncorhynchus mykiss Steelhead Trout 
Oncorhynchus tshawytscha Chinook Salmon 
Oregonichthys crameri Oregon Chub 
Pegias fabula Littlewing Pearlymussel 
Percina rex Roanoke Logperch 
Percina tanasi Snail Darter 
Phoxinus cumberlandensis Blackside Dace 
Plethobasus cicatricosus White (Pearlymussel) Wartyback 
Plethobasus cooperianus Orangefoot (Pearlymussel) Pimpleback 
Pleurobema clava Clubshell 
Pleurobema collina James Spinymussel 
Pleurobema marshalli Flat Pigtoe 
Pleurobema plenum Rough Pigtoe 
Pleurobema taitianum Heavy Pigtoe 
Potamilus capax Fat Pocketbook 
Potamilus inflatus Alabama (=Inflated) Heelsplitter 
Pristis pectinata Smalltooth Sawfish 
Ptychocheilus lucius Colorado Pikeminnow (=Squawfish) 
Quadrula fragosa Winged Mapleleaf 
Quadrula intermedia Cumberland (Pearlymussel) Monkeyface 
Quadrula sparsa Appalachian (Pearlymussel) Monkeyface 
Quadrula stapes Stirrupshell 
Rivulus marmoratus Mangrove Rivulus 
Salmo salar Atlantic Salmon 
Salvelinus confluentus Bull Trout 
Scaphirhynchus albus Pallid Sturgeon 
Scaphirhynchus suttkusi Alabama Sturgeon 
Speoplatyrhinus poulsoni Alabama Cavefish 
Toxolasma cylindrellus Pale (Pearlymussel) Lilliput 
Villosa perpurpurea Purple Bean 
Villosa trabalis Cumberland (Pearlymussel) Bean 
Xyrauchen texanus Razorback Sucker 
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F 

Appendix F: Detailed Methodologies of CWIS, and Estimated Benefits 
of Regulation on, Threatened and Endangered Species 

F.1 I&E Mortality of Sea Turtles 

Six species of sea turtles are found in U.S. waters: Green, Hawksbill, Kemp's Ridley, Leatherback, 
Loggerhead, and Olive Ridley sea turtles. All have extensive ranges, migrate long distances during their 
lifetime, and are listed as either threatened or endangered (T&E) under the Endangered Species Act 
(ESA). Because of these large ranges, there is substantial overlap between sea turtle habitat and cooling 
water intake structures (CWIS) for in-phase power generating and manufacturing facilities. Moreover, 
because individuals of all ages and sizes are susceptible to impingement and entrainment (Norem 2005), 
there are more than 730 locations of potential species x CWIS interactions that may result in the injury or 
death of these T&E species.  
 
Power plants are known to entrain and impinge all species of sea turtles, with individual incidences of 
mortality reported from California, Texas, Florida, South Carolina, North Carolina and New Jersey 
(Plotkin 1995). Although the cumulative impact of this mortality is unclear, it is believed to be relatively 
small considered to fishing mortality. Although quantitative reports are available from a few power 
stations (Table F-1), high-quality data is available from only one source, the St. Lucie Nuclear Power 
Plant, at Hutchinson Island, FL, where annual capture rates range from 350-1000 turtles. Although 
estimated mortality rates due to entrainment are < 3%, approximately 85% of entrained organisms show 
evidence of injury as a result of entrainment (Norem 2005). As such, true mortality rates from CWIS may 
be higher than reported, particularly for individuals who are recaptured repeatedly (37% of Green and 
13% of Loggerhead sea turtles entrained between May and December 2000 were recaptured individuals) 
(Norem 2005). 
 
In addition to research sponsored by the National Science Foundation, federal and state governmental 
spending on sea turtles under the ESA totaled $33.8 million in FY2008 (USFWS 2009). Moreover, the 
number of volunteer organizations dedicated to sea turtle recovery (Table F-2) provides further evidence 
of the high non-use values placed upon the survival of these animals by the public.  
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Table F-1: Reported Values of Sea Turtle Entrainment 

Facility  Species 
Takes 

Dates 
Takes / yr 

Source Non‐lethal  Lethal  Non‐lethal  Lethal
Crystal River, FL  Kemp's Ridley, Loggerhead 40 5 1998 40 5 TEWG (2000)

Brunswick, NC 
Loggerhead, Kemp's Ridley, 
Green  50  11  2000  50  11  NMFS (2001) 

Oyster Creek, NJ,  
Salem, NJ,  
Hope NJ 

Loggerhead 40 8 1999 40 8
NMFS (2001) Kemp's Ridley 7 3 1999 7 3

Green  8 2 1999 8 2

Salem, NJ 
Loggerhead, Kemp's Ridley, 
Green  23  2  1991  23  2  Eggers (2001) 

Salem, NJ  Loggerhead 18 8 1980‐1988 2.25 1
Eggers (1989) 

Salem, NJ  Kemp's Ridley 6 6 1980‐1988 0.75 0.75
St. Lucie, FL  Loggerhead 6313 169 1976‐2005 225.5 6 NMFS (2009)

San Diego, Edison  Olive Ridley 
Qualitative Reports Only 

(NMFS and USFWS 
1998b) 

San Diego, Encina, Edison  Green 
(NMFS and USFWS 
1998a) 

St. Lucie, FL  Leatherback  20  1976‐1998  0.95 
Bresette et al 
(1998) 

St. Lucie, FL  Hawksbill  19  1976‐1998  0.90 
Bresette et al 
(1998) 

St. Lucie, FL  Green  2297 1976‐1998 109.38 Ernest et al (1988)

St. Lucie, FL  Kemp's Ridley  34  1976‐1998  1.62 
Bresette et al 
(1998) 

All US Waters  Loggerhead     5‐50 
Annual 
Estimate     5‐50  Plotkin (1995) 
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Table F-2: A subset of US-based nongovernmental organizations dedicated to sea turtle 
research and conservation 
Name Group Type Web Address 
Amelia Island Sea Turtle Watch, Inc. Volunteer www.ameliaislandseaturtlewatch.com/ 
Archie Carr Center for Sea Turtle 

Research 
Academic accstr.ufl.edu/ 

Bald Head Island Conservancy Volunteer www.bhic.org/STPP.shtml 
California Turtle & Tortoise Club Volunteer www.tortoise.org/ 
Caribbean Conservation Corporation Nonprofit www.helpingseaturtles.org/ 
Chelonian Research Foundation Academic www.chelonian.org/ 
Clearwater Marine Aquarium Nonprofit/Volunteer www.seewinter.com/what-we-do/nesting 
Coastal Research and Education 

Society of Long Island, Inc., New 
York State Sea Turtle Program 

Nonprofit/Volunteer www.cresli.org/cresli/turtles/turtpage.html 

Conservation International Sea Turtle 
Flagship Program 

Nonprofit www.conservation.org/discover/centers_pr
ograms/sea_turtles/Pages/seaturtles.aspx 

Earthwatch Nonprofit/Ecotourism www.earthwatch.org 
Gulf Coast Turtle and Tortoise Society Volunteer www.gctts.org/ 
Hawksbill Sea Turtle Recovery 

Project 
Government/Volunteer www.fpir.noaa.gov/PRD/prd_volunteer_op

ps.html 
Malama na Honu Nonprofit/Volunteer malamanahonu.org/ 
Marine Turtle Specialist Group Academic www.iucn-mtsg.org/ 
Maryland Marine Mammal and Sea 

Turtle Stranding Network 
Government/Volunteer www.dnr.state.md.us/fisheries/oxford/resea

rch/fwh/strandingprogram.html 
National Aquarium in Baltimore, 

Marine Animal Rescue Program 
Nonprofit/Volunteer www.aqua.org/oceanhealth_marp.html 

National Save the Sea Turtle 
Foundation 

Nonprofit savetheseaturtle.org/ 

Network for Endangered Seaturtles Volunteer www.nestonline.org/ 
Ocean Conservancy Nonprofit www.oceanconservancy.org/ 
Riverhead Foundation for Marine 

Research and Preservation 
Nonprofit/Volunteer www.riverheadfoundation.org/index.asp 

Sanibel-Captiva Conservation 
Foundation 

Nonprofit/Volunteer www.sccf.org/ 

Sea Turtle Restoration Project Nonprofit www.seaturtles.org 
Share the Beach, Sea Turtle 

Volunteering Program 
Volunteer www.alabamaseaturtles.com/ 

The Leatherback Trust Nonprofit leatherback.org/ 
The Turtle Foundation Nonprofit www.turtle-foundation.org 

 

F.2 Application of Whitehead (1993)’s Benefit Transfer Approach for Estimating 
WTP for T&E Sea Turtle Species 

EPA identified a study that used a stated preference valuation approach to estimate the total economic 
value (i.e. use and non-use values) of a management program designed to reduce the risk of extinction for 
loggerhead sea turtles (Whitehead 1993). The mail survey asked North Carolina households whether they 
were willing to pay a bid amount for a management program which reduces the probability that 
loggerhead sea turtles would be extinct in 25 years. Within the model framework, the baseline extinction 
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risk and change from the management program are expressed in terms of a supply probability. Supply 
probability reflects the probability that “the wildlife resource will continue to exist so it can be enjoyed by 
recreational users and non users (p.121)” (Whitehead 1993). The household value is expressed as option 
price, or willingness to pay under conditions of future supply and demand uncertainty. The option price is 
estimated by solving for the dollar amount which would make respondent indifferent to utility with and 
without the management program. The function used to estimate option price (Model B from Whitehead 
(1993)) is: 

OP (1991$) = 1.272 [p2(r2-q2)] / 0.029   Equation F-3 

Variable definitions for the parameters in the function are described in Table F-3.  

EPA used Whitehead (1993) to assess the range of benefits potentially resulting from 316(b) regulatory 
options. Available data sources and biological models were reviewed to assess the potential impact of 
baseline losses and reductions on sea turtle supply probability (r2-q2). While analyses of sea turtle 
extinction risk have been conducted (e.g., Conant et al. 2009), EPA was unable to identify an existing 
model or analysis which could be readily used in conjunction with available mortality data to estimate the 
marginal impacts of CWIS on sea turtle extinction risk. Estimates from the literature suggest that 
impingement and entrainment mortality is of relatively low importance compared to other human-induced 
mortality such as shrimp trawling and other fisheries (Plotkin 1995). However, Crouse et al. (1987) found 
that mortality at juvenile and subadult life stages can have a substantial effect on population growth, 
suggesting that small changes in survivorship at these age classes could have a measurable impact on 
extinction risk. As such, EPA believes that marginal change in supply probability of loggerhead sea 
turtles due to 316(b) regulatory options is unlikely to be lower than 0.01 (i.e., a 1% increase in 25 year 
survival probability).  

EPA specified a marginal improvement of 0.01 within Whitehead’s (1993) modeling framework to bound 
household values for changes in extinction risk for loggerhead sea turtles as a consequence of 316(b) 
regulation. Although this assessment is not based on formal quantitative analysis of extinction risk, it is 
intended to illustrate the range of potential benefits associated with reductions in sea turtle losses. Using 
the author’s mean values for demand probability (p2) and supply probability without the management 
program (q2) (Table F-3), EPA calculated an annual household value of $0.35 (2009$). Estimates were 
converted to 2009 dollars using the consumer price index (USBLS 2010). 
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Table F-3: Variable Descriptions and Values used for EPA’s Benefits Transfer Application 

Variable Name Description
Value Used in EPA's 

Applications
OP Option Price - The amount a household would be willing to pay under 

conditions of supply and demand uncertainty Estimated by the model
p2

Demand Probability - for wildlife users, demand uncertainty occurs 
when it is indeterminate whether recreational use of the wildlife 
resource will be pursued because of uncertain travel costs, income, 
and tastes. For nonusers, demand uncertainty depends on uncertain 
tastes. 0.51

q2
a Supply Probability without the Management Program - probability 

that the resource will continue to exist in 25 years without 
implementation of the management program. 0.43

r2 Supply Probability with the Management Program - probability that 
the resource will continue to exist in 25 years with implementation of 
the management program. 0.44

(r2-q2)
b Marginal increase in supply probability resulting from the 

management program 0.01
a The model results are linear for marginal improvements in supply probability.
b EPA notes that a marginal change in supply probability of 0.01 is substantially less than changes used by Whitehead (1993) for model 
estimation.  Whitehead (1993) estimated an annual household willingness to payvalue of $10.98 (1991$) for a mean increase in supply 
probability of 0.47 in 25 years.  

 

 

F.3 Application of Richardson & Loomis’ (2008) WTP Model 

To illustrate the potential magnitude of nonuse values for T&E species affected by I&E mortality in the 
California and Inland regions, EPA applied a WTP meta-analytical model (Richardson and Loomis 2009) 
to hypothetical scenarios. Because EPA does not currently have region-wide I&E mortality losses for all 
T&E species, nor population models to estimate the effect of I&E mortality on population size, estimates 
are presented only to assess the range of benefits potentially resulting from 316(b) regulatory options. The 
modeled scenarios estimate the WTP for 0.25% and 0.5% increases for all T&E fish populations in the 
California and Inland regions. 

The model used by EPA to estimate nonuse values using benefit transfer is a double log specification 
(Model 4 from Richardson and Loomis (2009)), where: 

ln WTP (2006$) = -153.231 + 0.870 ln CHANGESIZE + 1.256 VISITOR + 1.020 FISH + 0.772 
MARINE + 0.826 BIRD – 0.603 ln RESPONSERATE+ 2.767 CONJOINT + 1.024 CHARISMATIC – 

0.903 MAIL + 0.078 STUDYYEAR      Equation F-4 

Model variables are described in Table F-4. Excepting all policy-relevant variables, EPA used the mean 
values for all model parameters, and converted estimates to 2009$ using the consumer price index 
(USBLS 2010).  
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Table F-4: Variables in the Meta-Analysis Model and Values Used in EPA’s Application 
Variable Name Description Value Used in EPA’s Application 
ln WTP Natural log of willingness to pay Estimated by model 

ln CHANGESIZE 
Natural log of the percentage change in 
the population of the species of interest 

Log of percentage change in fish 
population: ln(.25) and ln(.5)  

VISITOR 
= 1 if survey respondents are visitors 
rather than full-time residents 

0.0 

FISH = 1 for fish species 1.0 
MARINE = 1 for marine mammals 0.0 
BIRD = 1 for bird species 0.0 
ln RESPONSERATE Natural log of the survey response rate 4.0 
CONJOINT = 1 for conjoint method surveys 0.0 
CHARISMATIC = 1 for charismatic species 0.0 
MAIL Indicates mail surveys 0.9 
STUDY YEAR Year of study 2007 
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G 

Appendix G: Estimation of Price Changes for Consumer Surplus 

G.1 Introduction 

EPA considered estimating consumer surplus values associated with reductions in impingement and 
entrainment mortality (I&E mortality), but found that dockside prices would not change enough to 
produce measurable shifts in consumer surplus. This appendix presents the details of this analysis and the 
estimated price changes by region and species. 

G.2 Methodology and Results 

To properly estimate price changes, it is necessary to consider the contribution of the species to the 
overall market. Because individual demand functions incorporating substitutes are not available for most 
species, EPA estimated price changes in the following way. First, the Agency estimated the total baseline 
harvest for relevant species (commercial species of similar types to those affected by I&E mortality), in 
three categories: finfish, shrimp, and crabs.60, The totals for finfish were summed for the East Coast and 
Gulf, and for the West Coast; while totals for shrimp and crabs were summed across all coastal regions.61 
Next, EPA calculated the percentage change in harvest if baseline I&E mortality losses were to be 
eliminated, by dividing the total increase in harvest from elimination of baseline I&E mortality by the 
total harvest. The percentage change in price for each region and species was then estimated by dividing 
the percentage change in harvest by the elasticity for the species group (finfish, shrimp, or crabs).  

This last step requires estimates of elasticities. The price elasticity of demand for fish measures the 
percentage change in demand in response to a percentage change in fish price. Thus, the inverse elasticity, 
or price flexibility, measures the percentage change in price for a given percentage change in quantity. 
EPA’s review of the economics literature identified several potentially relevant studies, including Asche, 
Bjorndal, and Gordon (2005); Capps and Lambrgets (1991); Cheng and Capps (1988); Tsoa, Schrank, and 
Roy (1982); Davis, Yen, and Hwan-Lin (2007); and Lin, Richards, and Terry (1988).  

Table G-1 presents the own-price elasticities identified in the literature review for those commercial 
species where I&E mortality losses were estimated. Since elasticities can vary by species, the Agency 
grouped the own-price elasticities found in the literature review into three categories: (1) saltwater fish, 
(2) shrimp, and (3) crabs. The median elasticities within each of these groups, presented in the fourth 
column of Table G-1, are the elasticities used in this analysis. Table G-1 shows that there is a substantial 
amount of variation in the elasticity estimates, so by selecting the median elasticity rather than taking an 
average, the influence of the more extreme estimates is reduced.62

g 

                                                      
60  For example, offshore species such as tuna and swordfish, baitfish species, and shellfish were not included. 

61  Harvests for Alaska and Hawaii were not included in the totals. 

62  Only two studies were available for crabs, so EPA used the mean elasticity for crabs. The Agency did not distinguish 
between finfish elasticities for the East and West Coast, because some sources provide elasticities based on models that 
include both regions. 
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Table G-1: Own-Price Elasticity Estimates from Literature Review 

Species 
Group 

Species 
Study 
Elasticity 

Median Species 
Group 
Elasticity 

Study Notes 

Saltwater Cod -0.54 -1.89 Cheng and Capps (1988)   

Saltwater Cod -3.15 -1.89 
Bell (1986) as cited in Asche, 
Bjorndal and Gordon (2005) 

  

Saltwater Cod(Blocks) -3.16 -1.89 
Mazany, Roy and Schrank (1996) as 
cited in Asche, Bjorndal and Gordon 
(2005) 

  

Saltwater Cod(Fillets) -0.46 -1.89 Tsoa, Schrank and Roy (1982) Long run estimate. 
Saltwater Cod(Fillets) -1.89 -1.89 Asche, Bjorndal and Gordon (2005)   

Saltwater Flounder  -1.63 -1.89 
Mazany, Roy and Schrank (1996) as 
cited in Asche, Bjorndal and Gordon 
(2005) 

  

Saltwater Flounder/Sole -0.45 -1.89 Cheng and Capps (1988)   
Saltwater Flounder/Sole -1.04 -1.89 Tsoa, Schrank and Roy (1982) Long run estimate. 

Saltwater Halibut  -5.56 -1.89 
Lin, Richards and Terry (1988) as 
cited in Asche, Bjorndal and Gordon 
(2005) 

  

Saltwater Perch -0.70 -1.89 Cheng and Capps (1988)   
Saltwater Perch -3.09 -1.89 Capps and Lambrgets (1991)   
Saltwater Perch -0.60 -1.89 Tsoa, Schrank and Roy (1982) Long run estimate. 

Saltwater Perch -215.00 -1.89 
Bell (1986) as cited in Asche, 
Bjorndal and Gordon (2005) 

  

Saltwater Rockfish -3.55 -1.89 Capps and Lambrgets (1991)   
Saltwater Whitefish -5.24 -1.89 Capps and Lambrgets (1991)   
Shrimp Shrimp -0.70 -0.63 Cheng and Capps (1988)   

Shrimp Shrimp -1.08 -0.63 Davis, Yen and Hwan-Lin (2007) 
Low income 
estimate. 

Shrimp Shrimp -0.30 -0.63 Davis, Yen and Hwan-Lin (2007) 
High income 
estimate. 

Shrimp Shrimp -2.84 -0.63 Capps and Lambrgets (1991)   

Shrimp Shrimp -0.63 -0.63 
Doll (1972) as cited in Cheng and 
Capps (1988) 

  

Shrimp Shrimp 0.28 -0.63 
Cleary (1969) as cited in Cheng and 
Capps (1988) 

  

Shrimp Shrimp -0.57 -0.63 
Sun (1995) as cited in Asche, 
Bjorndal and Gordon (2005)  

Crabs Crabs -0.77 -1.31 Cheng and Capps (1988)   
Crabs Crabs -1.84 -1.31 Capps and Lambrgets (1991)   
 

Table G-2 shows the results of the calculations of percentage changes in price. These percentage changes 
were applied to the baseline prices to develop estimates of prices for the increased harvests that would 
result from eliminating baseline I&E mortality losses. Table G-3 to Table G-7 show the projected prices 
after eliminating baseline I&E mortality losses.63 For a 0.27 percent change in total harvest in California, 
                                                      
63 Values of 0.0 for increased harvest from elimination of baseline I&E mortality losses may include increases less than 0.1 

thousand lbs. 
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finfish prices are predicted to change by 0.14 percent; for a 5.52 percent change in harvest for the East 
Coast and Gulf, finfish prices are predicted to change by 2.92 percent; for a 0.11 percent change in 
harvest of shrimp, prices are predicted to change by 0.17 percent; and for a 0.26 percent change in harvest 
for crabs, prices are predicted to change by 0.20 percent. This translates into very small changes 
(generally one to two cents) in ex-vessel prices per pound for the species affected by I&E mortality. 
Because of the negligible effects on prices, EPA did not include measures of changes in consumer surplus 
in the commercial fishing benefits estimates. 

 

Table G-2: Estimated Percentage Change in Ex-Vessel Price by Region and Species Group 

Region 
Species 
Group 

Baseline 
Increase in 
Harvesta 

(lbs) 

Total Average 
Annual Harvestb 

(lbs) 

Percentage 
Change in 
Harvest 

Elasticity 
Percentage 
Change in 

Price 

California Finfish 1,373,100 546,791,850 0.25% -1.89 -0.13% 

East Coast and Gulf Finfish 15,758,900 397,297,400 3.97% -1.89 -2.10% 

All Regions Crabs 678,900 315,657,146 0.22% -1.31 -0.16% 

All Regions Shrimp 327,700 289,878,937 0.11% -0.63 -0.18% 
a. Estimated increase in harvest due to elimination of baseline I&E mortality. 
b. Sum of total landings for all relevant species; source – NMFS landings data. 

 

 

Table G-3: Estimated Price Changes for the California Region 

Species 
Average Annual Harvest 
2005-2009 (thousand lbs) 

Price Per Pound 
(2009$)a 

Increase in Harvest from 
Elimination of Baseline 
I&E Losses (thousand 

lbs) 

New Price 
Per Pound 

(2009$)a 

American Shad 75.1 $0.98 0.0 $0.98  
Anchovies 22,607.2 $0.05 0.6 $0.05  
Cabezon 55.6 $5.83 54.4 $5.82  
California Halibut 629.9 $4.06 126.4 $4.05  
California Scorpionfish 7.9 $3.40 0.0 $3.40  
Commercial Crabs 1,290.8 $1.33 1.6 $1.33  
Commercial Shrimp 2,552.2 $1.93 0.0 $1.93  
Drums and Croakers 77.0 $0.63 4.9 $0.63  
Dungeness Crabs 14,370.0 $2.07 4.3 $2.07  
Flounders 474.8 $0.45 10.1 $0.45  
Other 57,125.4 $0.89 4.7 $0.89  
Rockfishes 2,668.4 $1.25 1,168.7 $1.25  
Sculpins 3.5 $3.43 2.6 $3.43  
Sea Basses 6.5 $2.39 0.0 $2.39  
Smelts 319.5 $0.38 0.2 $0.38  
Surfperches 30.9 $1.92 0.5 $1.92  
Total 102,294.7 . 1,379.0 . 
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Table G-4: Estimated Price Changes for the North Atlantic Region 

Species 
Average Annual Harvest 
2005-2009 (thousand lbs) 

Price Per Pound 
(2009$)a 

Increase in Harvest from 
Elimination of Baseline 

I&E Losses (thousand lbs) 

New Price 
Per Pound 

(2009$)a 
American Shad 38.1 $0.69 0.0 $0.68  
Atlantic Cod 15,427.3 $1.55 2.4 $1.52  
Atlantic Herring 106,047.1 $0.12 18.0 $0.12  
Atlantic Menhaden 5,548.6 $0.10 5.0 $0.10  
Bluefish 1,077.2 $0.47 0.0 $0.46  
Butterfish 550.9 $0.66 0.2 $0.65  
Commercial Crabs 15,107.8 $0.58 0.4 $0.58  
Flounders 17,675.4 $1.87 386.9 $1.83  
Mackerels 38,896.8 $0.14 2.3 $0.14  
Other 270,552.6 $0.44 3.9 $0.43  
Pollock 14,567.6 $0.55 0.0 $0.54  
Red Hake 576.9 $0.45 0.0 $0.44  
Sculpins <0.1 $0.25 4.0 $0.24  
Scup 4531 $0.86 0.1 $0.84  
Searobin 23.9 $0.12 0.1 $0.12  
Silver Hake 9,613.2 $0.53 0.6 $0.52  
Skate Species 31,638.4 $0.20 0.5 $0.20  
Tautog 147.1 $2.03 4.9 $1.99  
Weakfish 28.2 $1.48 0.2 $1.45  
White Perch 6.6 $1.45 0.0 $1.42  
Total 53,2054.6 . 429.6 . 
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Table G-5: Estimated Price Changes for the Mid-Atlantic Region 

Species 
Average Annual Harvest 
2005-2009 (thousand lbs) 

Price Per Pound 
(2009$)a 

Increase in Harvest from 
Elimination of Baseline 

I&E Losses (thousand lbs) 

New Price 
Per Pound 

(2009$)a 
Alewife 173.3 $0.21 0.4 $0.21  
American Shad 111.4 $0.92 1.5 $0.90  
Atlantic Herring 1,284.2 $0.11 0.1 $0.11  
Atlantic Menhaden 338,097.3 $0.07 4,915.4 $0.07  
Black Drum 93.8 $1.26 0.3 $1.23  
Blue Crab 62,874.0 $1.17 1,014.2 $1.15  
Bluefish 2,906.3 $0.43 0.1 $0.42  
Butterfish 501.3 $0.85 0.0 $0.83  
Commercial Crabs 2,240.2 $0.60 0.4 $0.60  
Drums and Croakers 11,430.1 $0.49 1,519.2 $0.48  
Flounders 6,468.0 $2.01 8.7 $1.97  
Other 462,429.6 $0.32 1,264.4 $0.31  
Red Hake 150.7 $0.52 0.8 $0.51  
Scup 3,225.6 $0.98 0.0 $0.96  
Searobin 12.0 $0.22 0.0 $0.22  
Silver Hake 3,867.0 $0.67 0.1 $0.66  
Spot 3,286.9 $0.74 1,111.4 $0.72  
Striped Bass 5,413.8 $2.02 88.6 $1.98  
Striped Mullet 20.3 $0.53 0.3 $0.52  
Tautog 135.9 $2.64 0.0 $2.58  
Weakfish 497.0 $1.10 741.9 $1.08  
White Perch 1,190.0 $0.76 4.0 $0.74  
Total 906,408.6 . 10,671.9 . 

 
 
Table G-6: Estimated Price Changes for the South Atlantic Region 

Species 
Average Annual 

Harvest 2005-2009 
(thousand lbs) 

Price Per Pound 
(2009$)a 

Increase in Harvest 
from Elimination of 
Baseline I&E Losses 

(thousand lbs) 

New Price 
Per Pound 

(2009$)a 

Atlantic Menhaden 3,726.8 $0.11 55.7 $0.11  
Blue Crab 36,414.4 $0.91 4.2 $0.91  
Commercial Crabs 518 $1.51 0.0 $1.51  
Drums and Croakers 8,333.3 $0.40 14.9 $0.39  
Other 93,761.3 $1.17 3.0 $1.15  
Spot 1,167.6 $0.65 20.4 $0.64  
Stone Crab 101.1 $4.56 0.5 $4.55  
Weakfish 266.5 $0.93 0.7 $0.91  
Total 144,289.1 . 99.4  
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Table G-7: Estimated Price Changes for the Gulf of Mexico Region 

Species 
Average Annual 

Harvest 2005-2009 
(thousand lbs) 

Price Per Pound 
(2009$)a 

Increase in Harvest from 
Elimination of Baseline 
I&E Losses (thousand 

lbs) 

New Price 
Per Pound 

(2009$)a 

Atlantic Menhaden 930,460.2 $0.06 988.4 $0.06  
Black Drum 4,397.3 $0.83 1,885.2 $0.81  
Blue Crab 56,804.0 $0.77 228.5 $0.77  
Drums and Croakers 81.0 $6.47 40.3 $6.33  
Leatherjacket 65.6 $1.40 90.7 $1.37  
Mackerels 3,967.4 $1.04 0.3 $1.02  
Other 1,250,334.1 $0.41 240.5 $0.40  
Pink Shrimp 8,696.5 $2.06 327.7 $2.06  
Sea Basses 66.6 $0.97 0 $0.95  
Sheepshead 1,366.3 $0.41 0 $0.40  
Spot 18.1 $0.43 40.0 $0.42  
Stone Crab 5,313.9 $4.23 439.0 $4.22  
Striped Mullet 10,347.7 $0.67 1,278.3 $0.66 
Total 2,271,918.70 . 5,558.9 . 
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Appendix H: Details of Regional Commercial Fishing Benefits 

Table H-1: Commercial Fishing Benefits from Eliminating or Reducing Baseline I&E Mortality Losses at In-Scope Facilities in the 
California Region, by Species and Regulatory Option (2009$) 

Baseline Option 1 Option 2 Option 3 Option 4 Baseline Option 1 Option 2 Option 3 Option 4

American Shad 75.1 $0.98 0.0 0.0 0.0 0.0 0.0 . . . . .
Anchovies 22,607.2 $0.05 0.6 0.5 0.6 0.6 0.5 0.0 0.0 0.0 0.0 0.0
Cabezon 55.6 $5.83 54.4 0.1 46.4 48.5 0.1 166.5 0.2 142.0 148.5 0.2
California Halibut 629.9 $4.06 126.4 0.2 107.8 112.8 0.2 298.8 0.6 254.8 266.5 0.5
California Scorpionfish 7.9 $3.40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Commercial Crabs 1,290.8 $1.33 1.6 0.0 1.3 1.4 0.0 1.5 0.0 1.3 1.4 0.0
Commercial Shrimp 2,552.2 $1.93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Drums and Croakers 77.0 $0.63 4.9 0.7 4.3 4.5 0.7 1.3 0.2 1.1 1.2 0.2
Dungeness Crabs 14,370.0 $2.07 4.3 0.4 3.8 3.9 0.4 6.6 0.6 5.7 6.0 0.6
Flounders 474.8 $0.45 10.1 0.9 8.8 9.1 0.9 2.9 0.3 2.5 2.6 0.2
Other 57,125.4 $0.89 4.7 0.6 4.1 4.2 0.6 2.2 0.3 1.9 2.0 0.3
Rockfishes 2,668.4 $1.25 1,168.7 2.6 996.4 1,042.2 2.5 907.7 2.0 774.0 809.6 2.0
Sculpins 3.5 $3.43 2.6 0.1 2.2 2.3 0.1 5.7 0.2 4.9 5.1 0.2
Sea Basses 6.5 $2.39 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Smelts 319.5 $0.38 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0
Surfperches 30.9 $1.92 0.5 0.5 0.5 0.5 0.4 0.4 0.3 0.4 0.4 0.3
Total (undiscounted) 102,294.7 . 1,379.0 6.7 1,176.4 1,230.3 6.5 1,393.9 4.7 1,188.7 1,243.3 4.6
Total (3% Discount Rate) . . . . . . . 1,236.0 3.7 750.8 776.0 3.6
Total (7% Discount Rate) . . . . . . . 1,195.0 3.3 573.3 589.0 3.2

Annual Benefits from Increase in Commercial Harvest
(2009$, thousands)

Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for Facilities >125 MGD; Option 3 = I&E Mortality 
Everywhere; Option 4 = I for Facilities > 50 MGD

Species Name

Average 
Annual 

Harvest 2006-
2009

(thousand lbs)

Price per 
Pound

Annual Increase in Commercial Harvest
(thousand lbs)
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Table H-2: Commercial Fishing Benefits from Eliminating or Reducing Baseline I&E Mortality Losses at In-Scope Facilities in the North 
Atlantic Region, by Species and Regulatory Option (2009$) 

Baseline Option 1 Option 2 Option 3 Option 4 Baseline Option 1 Option 2 Option 3 Option 4

American Shad 38.1 $0.69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Atlantic Cod 15,427.3 $1.55 2.4 0.1 2.0 2.1 0.1 2.5 0.1 2.0 2.1 0.1
Atlantic Herring 106,047.1 $0.12 18.0 0.4 14.8 15.5 0.4 1.7 0.0 1.4 1.4 0.0
Atlantic Menhaden 5,548.6 $0.10 5.0 0.0 4.1 4.3 0.0 0.4 0.0 0.3 0.3 0.0
Bluefish 1,077.2 $0.47 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Butterfish 550.9 $0.66 0.2 0.1 0.2 0.2 0.1 0.1 0.0 0.1 0.1 0.0
Commercial Crabs 15,107.8 $0.58 0.4 0.2 0.4 0.4 0.2 0.1 0.1 0.1 0.1 0.1
Flounders 17,675.4 $1.87 386.9 1.3 315.8 331.2 1.3 460.2 1.5 375.5 393.9 1.5
Mackerels 38,896.8 $0.14 2.3 0.0 1.8 1.9 0.0 0.3 0.0 0.2 0.2 0.0
Other 270,552.6 $0.44 3.9 0.2 3.2 3.4 0.2 1.0 0.0 0.8 0.8 0.0
Pollock 14,567.6 $0.55 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Red Hake 576.9 $0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sculpins 0.0 $0.25 4.0 0.0 4.0 4.0 0.0 . . . . .
Scup 4,531.0 $0.86 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0
Searobin 23.9 $0.12 0.1 0.0 0.1 0.1 0.0 . . . . .
Silver Hake 9,613.2 $0.53 0.6 0.1 0.5 0.6 0.1 0.2 0.0 0.2 0.2 0.0
Skate Species 31,638.4 $0.20 0.5 0.4 0.5 0.5 0.4 0.1 0.0 0.1 0.1 0.0
Tautog 147.1 $2.03 4.9 0.0 4.0 4.2 0.0 4.5 0.0 3.7 3.8 0.0
Weakfish 28.2 $1.48 0.2 0.0 0.2 0.2 0.0 0.3 0.0 0.2 0.2 0.0
White Perch 6.6 $1.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total (undiscounted) 532,054.6 . 429.6 2.9 351.7 368.6 2.9 471.2 1.9 384.6 403.4 1.9
Total (3% Discount Rate) . . . . . . . 417.9 1.5 230.6 241.5 1.5
Total (7% Discount Rate) . . . . . . . 404.0 1.3 171.3 179.3 1.3
Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for Facilities >125 MGD; Option 3 = I&E Mortality 
Everywhere; Option 4 = I for Facilities > 50 MGD

Annual Benefits from Increase in Commercial Harvest
(2009$, thousands)

Species Name

Average 
Annual 

Harvest 2006-
2009

(thousand lbs)

Price per 
Pound

Annual Increase in Commercial Harvest
(thousand lbs)
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Table H-3: Commercial Fishing Benefits from Eliminating or Reducing Baseline I&E Mortality Losses at In-Scope Facilities in the Mid-
Atlantic Region, by Species and Regulatory Option (2009$) 

Baseline Option 1 Option 2 Option 3 Option 4 Baseline Option 1 Option 2 Option 3 Option 4

Alewife 173.3 $0.21 0.4 0.3 0.4 0.4 0.3 0.1 0.1 0.1 0.1 0.1
American Shad 111.4 $0.92 1.5 0.0 1.3 1.4 0.0 1.1 0.0 1.0 1.0 0.0
Atlantic Herring 1,284.2 $0.11 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0
Atlantic Menhaden 338,097.3 $0.07 4,915.4 3,273.9 4,758.3 4,780.2 3,270.8 223.3 148.7 216.1 217.1 148.6
Black Drum 93.8 $1.26 0.3 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2
Blue Crab 62,874.0 $1.17 1,014.2 10.2 929.6 941.4 10.2 678.0 6.8 621.5 629.3 6.8
Bluefish 2,906.3 $0.43 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0
Butterfish 501.3 $0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Commercial Crabs 2,240.2 $0.60 0.4 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1
Drums and Croakers 11,430.1 $0.49 1,519.2 16.5 1,392.6 1,410.2 16.5 549.3 6.0 503.5 509.9 6.0
Flounders 6,468.0 $2.01 8.7 3.4 8.3 8.3 3.4 11.9 4.5 11.2 11.3 4.5
Other 462,429.6 $0.32 1,264.4 126.9 1,167.9 1,181.3 126.8 293.0 29.4 270.6 273.7 29.4
Red Hake 150.7 $0.52 0.8 0.6 0.8 0.8 0.6 0.3 0.2 0.3 0.3 0.2
Scup 3,225.6 $0.98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Searobin 12.0 $0.22 0.0 0.0 0.0 0.0 0.0 . . . . .
Silver Hake 3,867.0 $0.67 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0
Spot 3,286.9 $0.74 1,111.4 120.0 1,111.4 1,111.4 119.9 693.6 74.9 693.6 693.6 74.8
Striped Bass 5,413.8 $2.02 88.6 0.4 81.2 82.2 0.4 119.2 0.6 109.2 110.6 0.6
Striped Mullet 20.3 $0.53 0.3 0.2 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1
Tautog 135.9 $2.64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Weakfish 497.0 $1.10 741.9 196.1 694.9 701.4 196.0 619.3 163.7 580.0 585.5 163.6
White Perch 1,190.0 $0.76 4.0 0.3 3.7 3.7 0.3 2.5 0.2 2.3 2.3 0.2
Total (undiscounted) 906,408.6 . 10,671.9 3,749.8 10,151.6 10,224.0 3,746.3 3,192.2 435.5 3,010.1 3,035.4 435.1
Total (3% Discount Rate) . . . . . . . 2,831.2 342.0 1,614.8 1,629.0 341.6
Total (7% Discount Rate) . . . . . . . 2,736.8 302.7 1,124.0 1,133.9 302.4
Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for Facilities >125 MGD; Option 3 = I&E Mortality 
Everywhere; Option 4 = I for Facilities > 50 MGD

Annual Benefits from Increase in Commercial Harvest
(2009$, thousands)

Species Name

Average 
Annual 

Harvest 2006-
2009

(thousand lbs)

Price per 
Pound

Annual Increase in Commercial Harvest
(thousand lbs)
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Table H-4: Commercial Fishing Benefits from Eliminating or Reducing Baseline I&E Mortality Losses at In-Scope Facilities in the South 
Atlantic Region, by Species and Regulatory Option (2009$) 

Baseline Option 1 Option 2 Option 3 Option 4 Baseline Option 1 Option 2 Option 3 Option 4

Atlantic Menhaden 3,726.8 $0.11 55.7 31.4 47.4 47.4 31.4 4.7 2.7 4.0 4.0 2.7
Blue Crab 36,414.4 $0.91 4.2 2.6 3.6 3.6 2.6 2.2 1.4 1.9 1.9 1.4
Commercial Crabs 518.0 $1.51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Drums and Croakers 8,333.3 $0.40 14.9 0.3 12.4 12.4 0.3 3.2 0.1 2.7 2.7 0.1
Other 93,761.3 $1.17 3.0 1.5 2.5 2.5 1.5 2.1 1.1 1.8 1.8 1.1
Spot 1,167.6 $0.65 20.4 8.6 17.3 17.3 8.6 9.3 3.9 7.9 7.9 3.9
Stone Crab 101.1 $4.56 0.5 0.3 0.5 0.5 0.3 1.4 0.9 1.2 1.2 0.9
Weakfish 266.5 $0.93 0.7 0.4 0.6 0.6 0.4 0.4 0.2 0.4 0.4 0.2
Total (undiscounted) 144,289.1 . 99.4 45.1 84.2 84.3 45.1 23.3 10.2 19.8 19.8 10.2
Total (3% Discount Rate) . . . . . . . 20.7 8.0 11.5 11.5 8.0
Total (7% Discount Rate) . . . . . . . 20.0 7.1 8.4 8.4 7.1
Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for Facilities >125 MGD; Option 3 = I&E Mortality 
Everywhere; Option 4 = I for Facilities > 50 MGD

Annual Benefits from Increase in Commercial Harvest
(2009$, thousands)

Species Name

Average 
Annual 

Harvest 2006-
2009

(thousand lbs)

Price per 
Pound

Annual Increase in Commercial Harvest
(thousand lbs)
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Table H-5: Commercial Fishing Benefits from Eliminating or Reducing Baseline I&E Mortality Losses at In-Scope Facilities in the Gulf of 
Mexico Region, by Species and Regulatory Option (2009$) 

Baseline Option 1 Option 2 Option 3 Option 4 Baseline Option 1 Option 2 Option 3 Option 4

Atlantic Menhaden 930,460.2 $0.06 988.4 749.3 978.5 979.2 743.6 44.1 33.5 43.7 43.7 33.2
Black Drum 4,397.3 $0.83 1,885.2 3.1 1,276.5 1,279.7 3.1 1,087.6 1.8 736.5 738.3 1.8
Blue Crab 56,804.0 $0.77 228.5 40.2 171.2 171.5 39.9 126.3 22.2 94.6 94.8 22.0
Drums and Croakers 81.0 $6.47 40.3 30.8 40.0 40.0 30.6 140.7 107.7 139.7 139.8 106.8
Leatherjacket 65.6 $1.40 90.7 66.2 88.7 88.8 65.7 . . . . .
Mackerels 3,967.4 $1.04 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2
Other 1,250,334.1 $0.41 240.5 164.8 230.8 231.0 163.6 45.7 31.3 43.8 43.9 31.1
Pink Shrimp 8,696.5 $2.06 327.7 154.4 285.5 285.9 153.3 293.4 138.3 255.7 256.0 137.2
Sea Basses 66.6 $0.97 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sheepshead 1,366.3 $0.41 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Spot 18.1 $0.43 40.0 24.8 37.3 37.3 24.6 9.3 5.8 8.7 8.7 5.7
Stone Crab 5,313.9 $4.23 439.0 104.1 340.1 340.7 103.3 1,323.1 313.8 1,024.7 1,026.6 311.4
Striped Mullet 10,347.7 $0.67 1,278.3 121.5 914.9 916.9 120.5 676.0 64.2 483.9 484.9 63.7
Total (undiscounted) 2,271,918.7 . 5,558.9 1,459.4 4,363.8 4,371.3 1,448.4 3,746.5 718.7 2,831.5 2,836.9 713.3
Total (3% Discount Rate) . . . . . . . 3,462.9 588.4 1,805.7 1,804.3 584.0
Total (7% Discount Rate) . . . . . . . 3,449.9 536.8 1,394.2 1,390.4 532.7
Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for Facilities >125 MGD; Option 3 = I&E Mortality 
Everywhere; Option 4 = I for Facilities > 50 MGD

Species Name

Average 
Annual 

Harvest 2006-
2009

(thousand lbs)

Price per 
Pound

Annual Benefits from Increase in Commercial Harvest
(2009$, thousands)

Annual Increase in Commercial Harvest
(thousand lbs)
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Table H-6: Commercial Fishing Benefits from Eliminating or Reducing Baseline I&E Mortality Losses at In-Scope Facilities in the Great 
Lakes Region, by Species and Regulatory Option (2009$) 

Baseline Option 1 Option 2 Option 3 Option 4 Baseline Option 1 Option 2 Option 3 Option 4

Bullhead 569.7 $0.41 0.8 0.7 0.8 0.8 0.7 0.1 0.1 0.1 0.1 0.1
Freshwater Drum 497.5 $0.16 16.1 3.8 13.7 13.8 3.8 0.8 0.2 0.6 0.6 0.2
Other 13,819.0 $0.94 97.2 35.0 85.3 86.1 34.7 26.6 9.6 23.3 23.6 9.5
Smelts 522.2 $0.91 105.9 91.2 104.6 104.9 90.5 27.8 24.0 27.5 27.6 23.8
White Bass 432.2 $0.68 22.0 6.4 19.0 19.2 6.4 4.3 1.3 3.7 3.8 1.3
Whitefish 9,406.5 $0.87 101.9 88.3 100.8 101.1 87.6 25.9 22.4 25.6 25.6 22.2
Yellow Perch 1,609.7 $2.08 2.3 1.6 2.2 2.2 1.6 1.4 0.9 1.3 1.3 0.9
Total (undiscounted) 40,675.8 . 346.2 227.0 326.4 328.0 225.1 86.8 58.4 82.2 82.6 57.9
Total (3% Discount Rate) . . . . . . . 80.3 47.8 52.9 53.0 47.4
Total (7% Discount Rate) . . . . . . . 80.0 43.6 41.1 41.0 43.3
Scenarios: Baseline = Eliminating Baseline I&E Mortality Losses; Option 1 = I Everywhere; Option 2 = I Everywhere and E for Facilities >125 MGD; Option 3 = I&E Mortality 
Everywhere; Option 4 = I for Facilities > 50 MGD

Species Name

Average 
Annual 

Harvest 2006-
2009

(thousand lbs)

Price per 
Pound

Annual Benefits from Increase in Commercial Harvest
(2009$, thousands)

Annual Increase in Commercial Harvest
(thousand lbs)
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I 

Appendix I: Details of Regional Recreational Fishing Benefits 

I.1 California 

Table I-1: Recreational Fishing Benefits from Eliminating Baseline I&E Mortality Losses at In-
scope Facilities in the California Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

California halibut 38,418.0 $5.11 $9.76 $18.62 196.7 374.6 715.4
Flounders 246.0 $5.11 $9.76 $18.62 1.3 2.4 4.6
Total (Flatfish) 38,664.0 $5.11 $9.76 $18.62 198.0 377.0 720.0
Striped bass 1,209.0 $4.21 $7.26 $12.43 5.0 9.0 15.0
Total (Small Game) 1,209.0 $4.21 $7.26 $12.43 5.0 9.0 15.0
Cabezon 7,158.0 $1.79 $2.96 $4.89 12.8 21.2 35.0
California scorpionfish 58.0 $1.79 $2.96 $4.89 0.1 0.2 0.3
Croakers 32,132.0 $1.79 $2.96 $4.89 57.5 95.0 157.1
Rockfish 285,002.0 $1.79 $2.96 $4.89 509.8 842.9 1,393.2
Sculpin 111,780.0 $1.79 $2.96 $4.89 200.0 330.6 546.4
Sea bass 512,501.0 $1.79 $2.96 $4.89 916.8 1,515.8 2,505.3
Smelts 21.0 $1.79 $2.96 $4.89 0.0 0.1 0.1
Sunfish 13.0 $1.79 $2.96 $4.89 0.0 0.0 0.1
Surfperch 30,172.0 $1.79 $2.96 $4.89 54.0 89.2 147.5
Total (Other Saltwater) 978,837.0 $1.79 $2.96 $4.89 1,751.0 2,895.0 4,785.0
Total (Unidentified) 3,629.0 $1.86 $3.10 $5.18 7.0 11.0 19.0
Total (Undiscounted) 1,022,339.0 . . . 1,960.0 3,292.0 5,539.0
Total (3% discount rate) . . . . 1,740.0 2,923.0 4,917.0
Total (7% discount rate) . . . . 1,681.0 2,823.0 4,750.0

Annual Benefits from Increase in 
Recreational Harvest

(2009$, thousands)
Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
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Table I-2: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 1 (I Everywhere) in the California Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

California halibut 71.0 $5.11 $9.76 $18.62 0.0 0.8 1.5
Flounders 22.0 $5.11 $9.76 $18.62 0.0 0.2 0.5
Total (Flatfish) 92.0 $5.11 $9.76 $18.62 0.0 1.0 2.0
Striped bass 0.0 $4.21 $7.26 $12.43 0.0 0.0 0.0
Total (Small Game) 0.0 $4.21 $7.26 $12.43 0.0 0.0 0.0
Cabezon 10.0 $1.79 $2.96 $4.89 0.0 0.0 0.0
California scorpionfish 50.0 $1.79 $2.96 $4.89 0.1 0.1 0.2
Croakers 4,696.0 $1.79 $2.96 $4.89 8.4 13.9 23.0
Rockfish 636.0 $1.79 $2.96 $4.89 1.1 1.9 3.1
Sculpin 3,284.0 $1.79 $2.96 $4.89 5.8 9.7 16.1
Sea bass 284.0 $1.79 $2.96 $4.89 0.5 0.8 1.4
Smelts 17.0 $1.79 $2.96 $4.89 0.0 0.1 0.1
Sunfish 1.0 $1.79 $2.96 $4.89 0.0 0.0 0.0
Surfperch 26,391.0 $1.79 $2.96 $4.89 47.0 78.3 129.1
Total (Other Saltwater) 35,369.0 $1.79 $2.96 $4.89 63.0 105.0 173.0
Total (Unidentified) 976.0 $1.86 $3.10 $5.18 2.0 3.0 5.0
Total (Undiscounted) 36,438.0 . . . 66.0 109.0 180.0
Total (3% discount rate) . . . . 51.0 85.0 141.0
Total (7% discount rate) . . . . 46.0 75.0 125.0

Annual Benefits from Increase in 
Recreational Harvest

(2009$, thousands)Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
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Table I-3: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 2 (I Everywhere and E for Facilities > 125 MGD) in the California 
Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

California halibut 32,753.0 $5.11 $9.76 $18.62 167.9 319.9 610.0
Flounders 213.0 $5.11 $9.76 $18.62 1.1 2.1 4.0
Total (Flatfish) 32,967.0 $5.11 $9.76 $18.62 169.0 322.0 614.0
Striped bass 1,031.0 $4.21 $7.26 $12.43 4.0 7.0 13.0
Total (Small Game) 1,031.0 $4.21 $7.26 $12.43 4.0 7.0 13.0
Cabezon 6,103.0 $1.79 $2.96 $4.89 10.9 18.0 29.8
California scorpionfish 57.0 $1.79 $2.96 $4.89 0.1 0.2 0.3
Croakers 28,097.0 $1.79 $2.96 $4.89 50.3 83.1 137.3
Rockfish 242,999.0 $1.79 $2.96 $4.89 434.7 718.6 1,187.8
Sculpin 95,765.0 $1.79 $2.96 $4.89 171.3 283.2 468.1
Sea bass 436,840.0 $1.79 $2.96 $4.89 781.5 1,291.9 2,135.3
Smelts 20.0 $1.79 $2.96 $4.89 0.0 0.1 0.1
Sunfish 12.0 $1.79 $2.96 $4.89 0.0 0.0 0.1
Surfperch 29,711.0 $1.79 $2.96 $4.89 53.2 87.9 145.2
Total (Other Saltwater) 839,604.0 $1.79 $2.96 $4.89 1,502.0 2,483.0 4,104.0
Total (Unidentified) 3,240.0 $1.86 $3.10 $5.18 6.0 10.0 17.0
Total (Undiscounted) 876,841.0 . . . 1,681.0 2,822.0 4,748.0
Total (3% discount rate) . . . . 1,037.0 1,741.0 2,929.0
Total (7% discount rate) . . . . 792.0 1,330.0 2,237.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-4: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 3 (I&E Mortality Everywhere) in the California Region, by Species 
(2009$) 

5th Mean 95th 5th Mean 95th

California halibut 34,260.0 $5.11 $9.76 $18.62 174.9 333.8 637.9
Flounders 222.0 $5.11 $9.76 $18.62 1.1 2.2 4.1
Total (Flatfish) 34,482.0 $5.11 $9.76 $18.62 176.0 336.0 642.0
Striped bass 1,078.0 $4.21 $7.26 $12.43 5.0 8.0 13.0
Total (Small Game) 1,078.0 $4.21 $7.26 $12.43 5.0 8.0 13.0
Cabezon 6,383.0 $1.79 $2.96 $4.89 11.4 18.9 31.2
California scorpionfish 57.0 $1.79 $2.96 $4.89 0.1 0.2 0.3
Croakers 29,198.0 $1.79 $2.96 $4.89 52.2 86.3 142.7
Rockfish 254,174.0 $1.79 $2.96 $4.89 454.5 751.6 1,242.4
Sculpin 100,044.0 $1.79 $2.96 $4.89 178.9 295.9 489.0
Sea bass 456,964.0 $1.79 $2.96 $4.89 817.2 1,351.3 2,233.6
Smelts 21.0 $1.79 $2.96 $4.89 0.0 0.1 0.1
Sunfish 12.0 $1.79 $2.96 $4.89 0.0 0.0 0.1
Surfperch 29,987.0 $1.79 $2.96 $4.89 53.6 88.7 146.6
Total (Other Saltwater) 876,840.0 $1.79 $2.96 $4.89 1,568.0 2,593.0 4,286.0
Total (Unidentified) 3,349.0 $1.86 $3.10 $5.18 6.0 10.0 17.0
Total (Undiscounted) 915,750.0 . . . 1,755.0 2,948.0 4,959.0
Total (3% discount rate) . . . . 1,096.0 1,840.0 3,095.0
Total (7% discount rate) . . . . 832.0 1,396.0 2,349.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-5: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 4 (I for Facilities > 50 MGD) in the California Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

California halibut 69.0 $5.11 $9.76 $18.62 0.0 0.8 1.5
Flounders 21.0 $5.11 $9.76 $18.62 0.0 0.2 0.5
Total (Flatfish) 90.0 $5.11 $9.76 $18.62 0.0 1.0 2.0
Striped bass 0.0 $4.21 $7.26 $12.43 0.0 0.0 0.0
Total (Small Game) 0.0 $4.21 $7.26 $12.43 0.0 0.0 0.0
Cabezon 10.0 $1.79 $2.96 $4.89 0.0 0.0 0.0
California scorpionfish 49.0 $1.79 $2.96 $4.89 0.1 0.1 0.2
Croakers 4,565.0 $1.79 $2.96 $4.89 8.1 13.5 22.3
Rockfish 618.0 $1.79 $2.96 $4.89 1.1 1.8 3.0
Sculpin 3,192.0 $1.79 $2.96 $4.89 5.7 9.5 15.6
Sea bass 276.0 $1.79 $2.96 $4.89 0.5 0.8 1.3
Smelts 16.0 $1.79 $2.96 $4.89 0.0 0.0 0.1
Sunfish 1.0 $1.79 $2.96 $4.89 0.0 0.0 0.0
Surfperch 25,654.0 $1.79 $2.96 $4.89 45.5 76.1 125.4
Total (Other Saltwater) 34,382.0 $1.79 $2.96 $4.89 61.0 102.0 168.0
Total (Unidentified) 949.0 $1.86 $3.10 $5.18 2.0 3.0 5.0
Total (Undiscounted) 35,421.0 . . . 64.0 106.0 175.0
Total (3% discount rate) . . . . 50.0 83.0 137.0
Total (7% discount rate) . . . . 44.0 73.0 121.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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I.2 North Atlantic 

Table I-6: Recreational Fishing Benefits from Eliminating Baseline I&E Mortality Losses at In-
scope Facilities in the North Atlantic Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Winter flounder 310,442.0 $3.81 $5.96 $9.42 1,182.0 1,850.0 2,925.0
Total (flatfish) 310,442.0 $3.81 $5.96 $9.42 1,182.0 1,850.0 2,925.0
Atlantic mackerel 903.0 $2.13 $5.94 $16.76 1.9 5.8 15.4
Bluefish 1.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Striped bass 0.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Weakfish 33.0 $2.13 $5.94 $16.76 0.1 0.2 0.6
Total (small game) 937.0 $2.13 $5.94 $16.76 2.0 6.0 16.0
Atlantic Cod 1,281.0 $1.79 $2.98 $4.97 2.3 3.8 6.4
Cunner 107,374.0 $1.79 $2.98 $4.97 191.9 320.2 533.7
Pollock 4.0 $1.79 $2.98 $4.97 0.0 0.0 0.0
Sculpin 323,088.0 $1.79 $2.98 $4.97 577.5 963.4 1,606.0
Scup 128.0 $1.79 $2.98 $4.97 0.2 0.4 0.6
Searobin 823.0 $1.79 $2.98 $4.97 1.5 2.5 4.1
Tautog 14,323.0 $1.79 $2.98 $4.97 25.6 42.7 71.2
White Perch 0.0 $1.79 $2.98 $4.97 0.0 0.0 0.0
Total (other saltwater) 447,021.0 $1.79 $2.98 $4.97 799.0 1,333.0 2,222.0
Total (unidentified) 2,783.0 $1.80 $3.01 $5.03 5.0 8.0 14.0
Total (Undiscounted) 761,183.0 . . . 1,988.0 3,197.0 5,177.0
Total (3% discount rate) . . . . 1,765.0 2,838.0 4,596.0
Total (7% discount rate) . . . . 1,705.0 2,742.0 4,440.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-7: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 1 (I Everywhere) in the North Atlantic Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Winter flounder 836.0 $3.81 $5.96 $9.42 3.0 5.0 8.0
Total (flatfish) 836.0 $3.81 $5.96 $9.42 3.0 5.0 8.0
Atlantic mackerel 0.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Bluefish 1.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Striped bass 0.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Weakfish 0.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Total (small game) 1.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Atlantic Cod 40.0 $1.79 $2.98 $4.97 0.1 0.1 0.2
Cunner 19.0 $1.79 $2.98 $4.97 0.0 0.0 0.1
Pollock 1.0 $1.79 $2.98 $4.97 0.0 0.0 0.0
Sculpin 345.0 $1.79 $2.98 $4.97 0.7 0.7 1.4
Scup 8.0 $1.79 $2.98 $4.97 0.0 0.0 0.0
Searobin 45.0 $1.79 $2.98 $4.97 0.1 0.1 0.2
Tautog 17.0 $1.79 $2.98 $4.97 0.0 0.0 0.1
White Perch 0.0 $1.79 $2.98 $4.97 0.0 0.0 0.0
Total (other saltwater) 476.0 $1.79 $2.98 $4.97 1.0 1.0 2.0
Total (unidentified) 181.0 $1.80 $3.01 $5.03 0.0 1.0 1.0
Total (Undiscounted) 1,495.0 . . . 4.0 7.0 11.0
Total (3% discount rate) . . . . 3.0 5.0 9.0
Total (7% discount rate) . . . . 3.0 5.0 8.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-8: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 2 (I Everywhere and E for Facilities > 125 MGD) in the North Atlantic 
Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Winter flounder 253,297.0 $3.81 $5.96 $9.42 964.0 1,510.0 2,387.0
Total (flatfish) 253,297.0 $3.81 $5.96 $9.42 964.0 1,510.0 2,387.0
Atlantic mackerel 736.0 $2.13 $5.94 $16.76 1.9 4.8 12.5
Bluefish 1.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Striped bass 0.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Weakfish 27.0 $2.13 $5.94 $16.76 0.1 0.2 0.5
Total (small game) 764.0 $2.13 $5.94 $16.76 2.0 5.0 13.0
Atlantic Cod 1,054.0 $1.79 $2.98 $4.97 1.9 3.1 5.2
Cunner 87,542.0 $1.79 $2.98 $4.97 156.6 261.0 435.1
Pollock 3.0 $1.79 $2.98 $4.97 0.0 0.0 0.0
Sculpin 263,485.0 $1.79 $2.98 $4.97 471.2 785.6 1,309.6
Scup 106.0 $1.79 $2.98 $4.97 0.2 0.3 0.5
Searobin 682.0 $1.79 $2.98 $4.97 1.2 2.0 3.4
Tautog 11,681.0 $1.79 $2.98 $4.97 20.9 34.8 58.1
White Perch 0.0 $1.79 $2.98 $4.97 0.0 0.0 0.0
Total (other saltwater) 364,555.0 $1.79 $2.98 $4.97 652.0 1,087.0 1,812.0
Total (unidentified) 2,313.0 $1.80 $3.01 $5.03 4.0 7.0 12.0
Total (Undiscounted) 620,929.0 . . . 1,622.0 2,608.0 4,223.0
Total (3% discount rate) . . . . 939.0 1,510.0 2,446.0
Total (7% discount rate) . . . . 698.0 1,122.0 1,817.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-9: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 3 (I&E Mortality Everywhere) in the North Atlantic Region, by Species 
(2009$) 

5th Mean 95th 5th Mean 95th

Winter flounder 265,676.0 $3.81 $5.96 $9.42 1,012.0 1,583.0 2,503.0
Total (flatfish) 265,676.0 $3.81 $5.96 $9.42 1,012.0 1,583.0 2,503.0
Atlantic mackerel 772.0 $2.13 $5.94 $16.76 1.9 4.8 12.5
Bluefish 1.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Striped bass 0.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Weakfish 29.0 $2.13 $5.94 $16.76 0.1 0.2 0.5
Total (small game) 801.0 $2.13 $5.94 $16.76 2.0 5.0 13.0
Atlantic Cod 1,104.0 $1.79 $2.98 $4.97 2.0 3.3 5.5
Cunner 91,836.0 $1.79 $2.98 $4.97 164.3 273.8 456.5
Pollock 3.0 $1.79 $2.98 $4.97 0.0 0.0 0.0
Sculpin 276,392.0 $1.79 $2.98 $4.97 494.4 823.9 1,374.0
Scup 111.0 $1.79 $2.98 $4.97 0.2 0.3 0.6
Searobin 713.0 $1.79 $2.98 $4.97 1.3 2.1 3.5
Tautog 12,253.0 $1.79 $2.98 $4.97 21.9 36.5 60.9
White Perch 0.0 $1.79 $2.98 $4.97 0.0 0.0 0.0
Total (other saltwater) 382,413.0 $1.79 $2.98 $4.97 684.0 1,140.0 1,901.0
Total (unidentified) 2,417.0 $1.80 $3.01 $5.03 4.0 7.0 12.0
Total (Undiscounted) 651,307.0 . . . 1,701.0 2,736.0 4,430.0
Total (3% discount rate) . . . . 1,018.0 1,638.0 2,652.0
Total (7% discount rate) . . . . 756.0 1,216.0 1,969.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-10: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 4 (I for Facilities > 50 MGD) in the North Atlantic Region, by Species 
(2009$) 

5th Mean 95th 5th Mean 95th

Winter flounder 836.0 $3.81 $5.96 $9.42 3.0 5.0 8.0
Total (flatfish) 836.0 $3.81 $5.96 $9.42 3.0 5.0 8.0
Atlantic mackerel 0.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Bluefish 1.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Striped bass 0.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Weakfish 0.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Total (small game) 1.0 $2.13 $5.94 $16.76 0.0 0.0 0.0
Atlantic Cod 40.0 $1.79 $2.98 $4.97 0.1 0.1 0.2
Cunner 19.0 $1.79 $2.98 $4.97 0.0 0.0 0.1
Pollock 1.0 $1.79 $2.98 $4.97 0.0 0.0 0.0
Sculpin 345.0 $1.79 $2.98 $4.97 0.7 0.7 1.4
Scup 8.0 $1.79 $2.98 $4.97 0.0 0.0 0.0
Searobin 45.0 $1.79 $2.98 $4.97 0.1 0.1 0.2
Tautog 17.0 $1.79 $2.98 $4.97 0.0 0.0 0.1
White Perch 0.0 $1.79 $2.98 $4.97 0.0 0.0 0.0
Total (other saltwater) 476.0 $1.79 $2.98 $4.97 1.0 1.0 2.0
Total (unidentified) 181.0 $1.80 $3.01 $5.03 0.0 1.0 1.0
Total (Undiscounted) 1,495.0 . . . 4.0 7.0 11.0
Total (3% discount rate) . . . . 3.0 5.0 9.0
Total (7% discount rate) . . . . 3.0 5.0 8.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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I.3 Mid-Atlantic 

Table I-11: Recreational Fishing Benefits from Eliminating Baseline I&E Mortality Losses at In-
scope Facilities in the Mid-Atlantic Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Summer Flounder 5,310.0 $3.74 $5.62 $8.52 19.7 30.0 45.0
Winter Flounder 4,946.0 $3.74 $5.62 $8.52 18.3 28.0 42.0
Total (Flatfish) 10,256.0 $3.74 $5.62 $8.52 38.0 58.0 87.0
Black Crappie 3.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Bluegill 16.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Brown bullhead 3,847.0 $0.53 $1.06 $2.10 1.9 3.9 8.2
Bullhead 11.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Channel catfish 2,891.0 $0.53 $1.06 $2.10 1.5 2.9 6.2
Crappie 1.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Menhaden 966.0 $0.53 $1.06 $2.10 0.5 1.0 2.1
Sunfish 221.0 $0.53 $1.06 $2.10 0.1 0.2 0.5
Total (Panfish) 7,956.0 $0.53 $1.06 $2.10 4.0 8.0 17.0
Bluefish 126.0 $2.26 $5.90 $15.52 0.3 0.7 2.0
Red drum 2,667.0 $2.26 $5.90 $15.52 6.0 15.7 41.4
Spotted seatrout 1,768.0 $2.26 $5.90 $15.52 4.0 10.4 27.4
Striped bass 166,917.0 $2.26 $5.90 $15.52 377.4 985.1 2,589.8
Weakfish 459,710.0 $2.26 $5.90 $15.52 1,039.3 2,713.0 7,132.5
Total (Small Game) 631,187.0 $2.26 $5.90 $15.52 1,427.0 3,725.0 9,793.0
Northern pike 0.0 $0.00 $0.00 $0.00 0.0 0.0 0.0
Total (Walleye/Pike) 0.0 $0.00 $0.00 $0.00 0.0 0.0 0.0
Atlantic croaker 1,782,932.0 $1.85 $2.92 $4.60 3,304.3 5,205.0 8,205.4
Atlantic herring 57.0 $1.85 $2.92 $4.60 0.1 0.2 0.3
Black drum 255.0 $1.85 $2.92 $4.60 0.5 0.7 1.2
Cunner 0.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Scup 1.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Searobin 8.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Silver perch 1.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Smallmouth bass 57.0 $1.85 $2.92 $4.60 0.1 0.2 0.3
Spot 5,388,053.0 $1.85 $2.92 $4.60 9,985.6 15,729.6 24,796.9
Striped mullet 12.0 $1.85 $2.92 $4.60 0.0 0.0 0.1
Tautog 0.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
White perch 33,237.0 $1.85 $2.92 $4.60 61.6 97.0 153.0
Whitefish 426.0 $1.85 $2.92 $4.60 0.8 1.2 2.0
Total (Other Saltwater) 7,205,039.0 $1.85 $2.92 $4.60 13,353.0 21,034.0 33,159.0
Total (Unidentified) 1,226,622.0 $1.91 $3.24 $5.74 2,344.0 3,978.0 7,036.0
Total (Undiscounted) 9,081,061.0 . . . 17,166.0 28,803.0 50,092.0
Total (3% discount rate) . . . . 15,239.0 25,569.0 44,467.0
Total (7% discount rate) . . . . 14,721.0 24,701.0 42,958.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-12: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 1 (I Everywhere) in the Mid-Atlantic Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Summer Flounder 4,051.0 $3.74 $5.62 $8.52 15.1 23.1 34.7
Winter Flounder 499.0 $3.74 $5.62 $8.52 1.9 2.9 4.3
Total (Flatfish) 4,550.0 $3.74 $5.62 $8.52 17.0 26.0 39.0
Black Crappie 3.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Bluegill 12.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Brown bullhead 787.0 $0.53 $1.06 $2.10 0.5 0.7 1.7
Bullhead 8.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Channel catfish 2,205.0 $0.53 $1.06 $2.10 1.4 2.1 4.8
Crappie 1.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Menhaden 0.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Sunfish 169.0 $0.53 $1.06 $2.10 0.1 0.2 0.4
Total (Panfish) 3,185.0 $0.53 $1.06 $2.10 2.0 3.0 7.0
Bluefish 96.0 $2.26 $5.90 $15.52 0.2 0.6 1.5
Red drum 2,035.0 $2.26 $5.90 $15.52 4.6 12.0 31.6
Spotted seatrout 1,349.0 $2.26 $5.90 $15.52 3.0 8.0 20.9
Striped bass 796.0 $2.26 $5.90 $15.52 1.8 4.7 12.4
Weakfish 121,529.0 $2.26 $5.90 $15.52 274.3 716.8 1,885.7
Total (Small Game) 125,805.0 $2.26 $5.90 $15.52 284.0 742.0 1,952.0
Northern pike 0.0 $0.00 $0.00 $0.00 0.0 0.0 0.0
Total (Walleye/Pike) 0.0 $0.00 $0.00 $0.00 0.0 0.0 0.0
Atlantic croaker 19,396.0 $1.85 $2.92 $4.60 35.9 56.6 89.3
Atlantic herring 43.0 $1.85 $2.92 $4.60 0.1 0.1 0.2
Black drum 195.0 $1.85 $2.92 $4.60 0.4 0.6 0.9
Cunner 0.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Scup 1.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Searobin 5.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Silver perch 1.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Smallmouth bass 44.0 $1.85 $2.92 $4.60 0.1 0.1 0.2
Spot 318,070.0 $1.85 $2.92 $4.60 589.2 928.2 1,464.2
Striped mullet 9.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Tautog 0.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
White perch 2,541.0 $1.85 $2.92 $4.60 4.7 7.4 11.7
Whitefish 325.0 $1.85 $2.92 $4.60 0.6 0.9 1.5
Total (Other Saltwater) 340,629.0 $1.85 $2.92 $4.60 631.0 994.0 1,568.0
Total (Unidentified) 74,846.0 $1.91 $3.24 $5.74 143.0 243.0 429.0
Total (Undiscounted) 549,015.0 . . . 1,077.0 2,009.0 3,994.0
Total (3% discount rate) . . . . 846.0 1,577.0 3,136.0
Total (7% discount rate) . . . . 749.0 1,396.0 2,776.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-13: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 2 (I Everywhere and E for Facilities > 125 MGD) in the Mid-Atlantic 
Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Summer Flounder 5,180.0 $3.74 $5.62 $8.52 19.1 29.2 44.1
Winter Flounder 4,569.0 $3.74 $5.62 $8.52 16.9 25.8 38.9
Total (Flatfish) 9,749.0 $3.74 $5.62 $8.52 36.0 55.0 83.0
Black Crappie 3.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Bluegill 16.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Brown bullhead 3,585.0 $0.53 $1.06 $2.10 1.9 3.8 7.6
Bullhead 10.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Channel catfish 2,820.0 $0.53 $1.06 $2.10 1.5 3.0 6.0
Crappie 1.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Menhaden 885.0 $0.53 $1.06 $2.10 0.5 0.9 1.9
Sunfish 216.0 $0.53 $1.06 $2.10 0.1 0.2 0.5
Total (Panfish) 7,536.0 $0.53 $1.06 $2.10 4.0 8.0 16.0
Bluefish 123.0 $2.26 $5.90 $15.52 0.3 0.7 1.9
Red drum 2,602.0 $2.26 $5.90 $15.52 5.9 15.4 40.4
Spotted seatrout 1,724.0 $2.26 $5.90 $15.52 3.9 10.2 26.7
Striped bass 152,927.0 $2.26 $5.90 $15.52 345.7 902.6 2,372.8
Weakfish 430,538.0 $2.26 $5.90 $15.52 973.2 2,541.1 6,680.2
Total (Small Game) 587,915.0 $2.26 $5.90 $15.52 1,329.0 3,470.0 9,122.0
Northern pike 0.0 $0.00 $0.00 $0.00 0.0 0.0 0.0
Total (Walleye/Pike) 0.0 $0.00 $0.00 $0.00 0.0 0.0 0.0
Atlantic croaker 1,634,350.0 $1.85 $2.92 $4.60 3,028.8 4,771.2 7,521.5
Atlantic herring 55.0 $1.85 $2.92 $4.60 0.1 0.2 0.3
Black drum 249.0 $1.85 $2.92 $4.60 0.5 0.7 1.1
Cunner 0.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Scup 1.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Searobin 8.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Silver perch 1.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Smallmouth bass 56.0 $1.85 $2.92 $4.60 0.1 0.2 0.3
Spot 4,959,382.0 $1.85 $2.92 $4.60 9,190.9 14,478.0 22,823.8
Striped mullet 12.0 $1.85 $2.92 $4.60 0.0 0.0 0.1
Tautog 0.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
White perch 30,638.0 $1.85 $2.92 $4.60 56.8 89.4 141.0
Whitefish 415.0 $1.85 $2.92 $4.60 0.8 1.2 1.9
Total (Other Saltwater) 6,625,167.0 $1.85 $2.92 $4.60 12,278.0 19,341.0 30,490.0
Total (Unidentified) 1,129,224.0 $1.91 $3.24 $5.74 2,158.0 3,662.0 6,477.0
Total (Undiscounted) 8,359,591.0 . . . 15,805.0 26,536.0 46,188.0
Total (3% discount rate) . . . . 8,381.0 14,073.0 24,501.0
Total (7% discount rate) . . . . 5,831.0 9,792.0 17,049.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-14: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 3 (I&E Mortality Everywhere) in the Mid-Atlantic Region, by Species 
(2009$) 

5th Mean 95th 5th Mean 95th

Summer Flounder 5,198.0 $3.74 $5.62 $8.52 19.6 29.1 44.5
Winter Flounder 4,622.0 $3.74 $5.62 $8.52 17.4 25.9 39.5
Total (Flatfish) 9,820.0 $3.74 $5.62 $8.52 37.0 55.0 84.0
Black Crappie 3.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Bluegill 16.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Brown bullhead 3,622.0 $0.53 $1.06 $2.10 1.9 3.8 7.6
Bullhead 10.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Channel catfish 2,830.0 $0.53 $1.06 $2.10 1.5 3.0 6.0
Crappie 1.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Menhaden 896.0 $0.53 $1.06 $2.10 0.5 0.9 1.9
Sunfish 216.0 $0.53 $1.06 $2.10 0.1 0.2 0.5
Total (Panfish) 7,595.0 $0.53 $1.06 $2.10 4.0 8.0 16.0
Bluefish 123.0 $2.26 $5.90 $15.52 0.3 0.7 1.9
Red drum 2,611.0 $2.26 $5.90 $15.52 5.9 15.4 40.5
Spotted seatrout 1,730.0 $2.26 $5.90 $15.52 3.9 10.2 26.8
Striped bass 154,871.0 $2.26 $5.90 $15.52 350.2 914.0 2,402.9
Weakfish 434,593.0 $2.26 $5.90 $15.52 982.7 2,564.7 6,742.8
Total (Small Game) 593,930.0 $2.26 $5.90 $15.52 1,343.0 3,505.0 9,215.0
Northern pike 0.0 $0.00 $0.00 $0.00 0.0 0.0 0.0
Total (Walleye/Pike) 0.0 $0.00 $0.00 $0.00 0.0 0.0 0.0
Atlantic croaker 1,655,004.0 $1.85 $2.92 $4.60 3,067.0 4,831.4 7,616.6
Atlantic herring 55.0 $1.85 $2.92 $4.60 0.1 0.2 0.3
Black drum 250.0 $1.85 $2.92 $4.60 0.5 0.7 1.2
Cunner 0.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Scup 1.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Searobin 8.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Silver perch 1.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Smallmouth bass 56.0 $1.85 $2.92 $4.60 0.1 0.2 0.3
Spot 5,018,970.0 $1.85 $2.92 $4.60 9,301.1 14,651.8 23,098.1
Striped mullet 12.0 $1.85 $2.92 $4.60 0.0 0.0 0.1
Tautog 0.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
White perch 30,999.0 $1.85 $2.92 $4.60 57.4 90.5 142.7
Whitefish 417.0 $1.85 $2.92 $4.60 0.8 1.2 1.9
Total (Other Saltwater) 6,705,773.0 $1.85 $2.92 $4.60 12,427.0 19,576.0 30,861.0
Total (Unidentified) 1,142,763.0 $1.91 $3.24 $5.74 2,183.0 3,706.0 6,555.0
Total (Undiscounted) 8,459,880.0 . . . 15,995.0 26,851.0 46,731.0
Total (3% discount rate) . . . . 8,584.0 14,410.0 25,078.0
Total (7% discount rate) . . . . 5,975.0 10,030.0 17,456.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-15: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 4 (I for Facilities > 50 MGD) in the Mid-Atlantic Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Summer Flounder 4,047.0 $3.74 $5.62 $8.52 15.1 23.1 34.7
Winter Flounder 499.0 $3.74 $5.62 $8.52 1.9 2.9 4.3
Total (Flatfish) 4,546.0 $3.74 $5.62 $8.52 17.0 26.0 39.0
Black Crappie 3.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Bluegill 12.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Brown bullhead 786.0 $0.53 $1.06 $2.10 0.5 0.7 1.7
Bullhead 8.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Channel catfish 2,203.0 $0.53 $1.06 $2.10 1.4 2.1 4.8
Crappie 1.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Menhaden 0.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Sunfish 169.0 $0.53 $1.06 $2.10 0.1 0.2 0.4
Total (Panfish) 3,182.0 $0.53 $1.06 $2.10 2.0 3.0 7.0
Bluefish 96.0 $2.26 $5.90 $15.52 0.2 0.6 1.5
Red drum 2,033.0 $2.26 $5.90 $15.52 4.6 12.0 31.5
Spotted seatrout 1,347.0 $2.26 $5.90 $15.52 3.0 8.0 20.9
Striped bass 796.0 $2.26 $5.90 $15.52 1.8 4.7 12.3
Weakfish 121,415.0 $2.26 $5.90 $15.52 274.3 716.8 1,883.7
Total (Small Game) 125,687.0 $2.26 $5.90 $15.52 284.0 742.0 1,950.0
Northern pike 0.0 $0.00 $0.00 $0.00 0.0 0.0 0.0
Total (Walleye/Pike) 0.0 $0.00 $0.00 $0.00 0.0 0.0 0.0
Atlantic croaker 19,377.0 $1.85 $2.92 $4.60 35.9 56.5 89.2
Atlantic herring 43.0 $1.85 $2.92 $4.60 0.1 0.1 0.2
Black drum 195.0 $1.85 $2.92 $4.60 0.4 0.6 0.9
Cunner 0.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Scup 1.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Searobin 5.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Silver perch 1.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Smallmouth bass 44.0 $1.85 $2.92 $4.60 0.1 0.1 0.2
Spot 317,770.0 $1.85 $2.92 $4.60 589.2 927.2 1,462.3
Striped mullet 9.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
Tautog 0.0 $1.85 $2.92 $4.60 0.0 0.0 0.0
White perch 2,538.0 $1.85 $2.92 $4.60 4.7 7.4 11.7
Whitefish 324.0 $1.85 $2.92 $4.60 0.6 0.9 1.5
Total (Other Saltwater) 340,307.0 $1.85 $2.92 $4.60 631.0 993.0 1,566.0
Total (Unidentified) 74,775.0 $1.91 $3.24 $5.74 143.0 243.0 429.0
Total (Undiscounted) 548,496.0 . . . 1,076.0 2,007.0 3,991.0
Total (3% discount rate) . . . . 845.0 1,576.0 3,133.0
Total (7% discount rate) . . . . 748.0 1,395.0 2,773.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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I.4 South Atlantic 

Table I-16: Recreational Fishing Benefits from Eliminating Baseline I&E Mortality Losses at In-
scope Facilities in the South Atlantic Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Flounders 778.0 $3.87 $5.61 $8.28 3.0 4.0 6.0
Total (Flatfish) 778.0 $3.87 $5.61 $8.28 3.0 4.0 6.0
Spotted seatrout 1,898.0 $2.72 $5.72 $12.04 4.8 10.5 22.6
Weakfish 455.0 $2.72 $5.72 $12.04 1.2 2.5 5.4
Total (Small Game) 2,353.0 $2.72 $5.72 $12.04 6.0 13.0 28.0
Croakers 96,913.0 $2.14 $2.85 $3.78 207.6 276.1 365.6
Pinfish 1,518.0 $2.14 $2.85 $3.78 3.3 4.3 5.7
Silver perch 76.0 $2.14 $2.85 $3.78 0.2 0.2 0.3
Spot 30,313.0 $2.14 $2.85 $3.78 64.9 86.4 114.4
Total (Other Saltwater) 128,820.0 $2.14 $2.85 $3.78 276.0 367.0 486.0
Total (Unidentified) 1,945.0 $2.15 $2.86 $3.82 4.0 6.0 7.0
Total (Undiscounted) 133,897.0 . . . 290.0 390.0 529.0
Total (3% discount rate) . . . . 257.0 346.0 469.0
Total (7% discount rate) . . . . 249.0 335.0 453.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)

 

 
Table I-17: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 1 (I Everywhere) in the South Atlantic Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Flounders 491.0 $3.87 $5.61 $8.28 2.0 3.0 4.0
Total (Flatfish) 491.0 $3.87 $5.61 $8.28 2.0 3.0 4.0
Spotted seatrout 0.0 $2.72 $5.72 $12.04 0.0 0.0 0.0
Weakfish 224.0 $2.72 $5.72 $12.04 1.0 1.0 3.0
Total (Small Game) 224.0 $2.72 $5.72 $12.04 1.0 1.0 3.0
Croakers 1,762.0 $2.14 $2.85 $3.78 3.8 5.0 6.7
Pinfish 0.0 $2.14 $2.85 $3.78 0.0 0.0 0.0
Silver perch 48.0 $2.14 $2.85 $3.78 0.1 0.1 0.2
Spot 12,733.0 $2.14 $2.85 $3.78 27.1 35.9 48.2
Total (Other Saltwater) 14,543.0 $2.14 $2.85 $3.78 31.0 41.0 55.0
Total (Unidentified) 624.0 $2.15 $2.86 $3.82 1.0 2.0 2.0
Total (Undiscounted) 15,882.0 . . . 35.0 47.0 64.0
Total (3% discount rate) . . . . 28.0 37.0 50.0
Total (7% discount rate) . . . . 24.0 33.0 45.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-18: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 2 (I Everywhere and E for Facilities > 125 MGD) in the South Atlantic 
Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Flounders 663.0 $3.87 $5.61 $8.28 3.0 4.0 5.0
Total (Flatfish) 663.0 $3.87 $5.61 $8.28 3.0 4.0 5.0
Spotted seatrout 1,583.0 $2.72 $5.72 $12.04 4.0 8.8 19.3
Weakfish 386.0 $2.72 $5.72 $12.04 1.0 2.2 4.7
Total (Small Game) 1,969.0 $2.72 $5.72 $12.04 5.0 11.0 24.0
Croakers 80,881.0 $2.14 $2.85 $3.78 173.2 230.2 305.2
Pinfish 1,266.0 $2.14 $2.85 $3.78 2.7 3.6 4.8
Silver perch 65.0 $2.14 $2.85 $3.78 0.1 0.2 0.2
Spot 25,654.0 $2.14 $2.85 $3.78 54.9 73.0 96.8
Total (Other Saltwater) 107,866.0 $2.14 $2.85 $3.78 231.0 307.0 407.0
Total (Unidentified) 1,641.0 $2.15 $2.86 $3.82 4.0 5.0 6.0
Total (Undiscounted) 112,139.0 . . . 243.0 327.0 443.0
Total (3% discount rate) . . . . 141.0 190.0 257.0
Total (7% discount rate) . . . . 103.0 139.0 188.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)

 

 
Table I-19: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 3 (I&E Mortality Everywhere) in the South Atlantic Region, by Species 
(2009$) 

5th Mean 95th 5th Mean 95th

Flounders 663.0 $3.87 $5.61 $8.28 3.0 4.0 5.0
Total (Flatfish) 663.0 $3.87 $5.61 $8.28 3.0 4.0 5.0
Spotted seatrout 1,586.0 $2.72 $5.72 $12.04 4.0 8.8 19.3
Weakfish 387.0 $2.72 $5.72 $12.04 1.0 2.2 4.7
Total (Small Game) 1,972.0 $2.72 $5.72 $12.04 5.0 11.0 24.0
Croakers 81,012.0 $2.14 $2.85 $3.78 174.0 231.0 306.0
Pinfish 1,268.0 $2.14 $2.85 $3.78 2.7 3.6 4.8
Silver perch 65.0 $2.14 $2.85 $3.78 0.1 0.2 0.2
Spot 25,677.0 $2.14 $2.85 $3.78 55.1 73.2 97.0
Total (Other Saltwater) 108,023.0 $2.14 $2.85 $3.78 232.0 308.0 408.0
Total (Unidentified) 1,642.0 $2.15 $2.86 $3.82 4.0 5.0 6.0
Total (Undiscounted) 112,301.0 . . . 243.0 327.0 443.0
Total (3% discount rate) . . . . 141.0 190.0 257.0
Total (7% discount rate) . . . . 103.0 139.0 188.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-20: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 4 (I for Facilities > 50 MGD) in the South Atlantic Region, by Species 
(2009$) 

5th Mean 95th 5th Mean 95th

Flounders 491.0 $3.87 $5.61 $8.28 2.0 3.0 4.0
Total (Flatfish) 491.0 $3.87 $5.61 $8.28 2.0 3.0 4.0
Spotted seatrout 0.0 $2.72 $5.72 $12.04 0.0 0.0 0.0
Weakfish 224.0 $2.72 $5.72 $12.04 1.0 1.0 3.0
Total (Small Game) 224.0 $2.72 $5.72 $12.04 1.0 1.0 3.0
Croakers 1,762.0 $2.14 $2.85 $3.78 3.8 5.0 6.7
Pinfish 0.0 $2.14 $2.85 $3.78 0.0 0.0 0.0
Silver perch 48.0 $2.14 $2.85 $3.78 0.1 0.1 0.2
Spot 12,733.0 $2.14 $2.85 $3.78 27.1 35.9 48.2
Total (Other Saltwater) 14,543.0 $2.14 $2.85 $3.78 31.0 41.0 55.0
Total (Unidentified) 624.0 $2.15 $2.86 $3.82 1.0 2.0 2.0
Total (Undiscounted) 15,882.0 . . . 35.0 47.0 64.0
Total (3% discount rate) . . . . 28.0 37.0 50.0
Total (7% discount rate) . . . . 24.0 33.0 45.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)

 

 

Gulf of Mexico 

Table I-21: Recreational Fishing Benefits from Eliminating Baseline I&E Mortality Losses at In-
scope Facilities in the Gulf of Mexico Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Mackerels 1,156.0 $2.87 $5.63 $11.04 3.3 6.5 12.8
Red drum 26,719.0 $2.87 $5.63 $11.04 76.6 150.4 294.9
Spotted seatrout 512,503.0 $2.87 $5.63 $11.04 1,470.0 2,885.1 5,656.4
Total (Small Game) 540,378.0 $2.87 $5.63 $11.04 1,550.0 3,042.0 5,964.0
Atlantic croaker 179,036.0 $2.14 $2.78 $3.61 382.3 497.3 646.6
Black drum 1,542,661.0 $2.14 $2.78 $3.61 3,294.3 4,284.6 5,571.5
Pinfish 257,750.0 $2.14 $2.78 $3.61 550.4 715.9 930.9
Sea bass 119.0 $2.14 $2.78 $3.61 0.3 0.3 0.4
Searobin 118,160.0 $2.14 $2.78 $3.61 252.3 328.2 426.7
Sheepshead 46.0 $2.14 $2.78 $3.61 0.1 0.1 0.2
Silver perch 1,474.0 $2.14 $2.78 $3.61 3.1 4.1 5.3
Spot 30,308.0 $2.14 $2.78 $3.61 64.7 84.2 109.5
Striped mullet 49,804.0 $2.14 $2.78 $3.61 106.4 138.3 179.9
Total (Other Saltwater) 2,179,358.0 $2.14 $2.78 $3.61 4,654.0 6,053.0 7,871.0
Total (Unidentified) 131,612.0 $2.36 $3.66 $5.91 311.0 482.0 778.0
Total (Undiscounted) 2,851,347.0 . . . 6,515.0 9,576.0 14,612.0
Total (3% discount rate) . . . . 6,022.0 8,852.0 13,506.0
Total (7% discount rate) . . . . 5,999.0 8,818.0 13,456.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-22: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 1 (I Everywhere) in the Gulf of Mexico Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Mackerels 885.0 $2.87 $5.63 $11.04 2.5 5.0 9.8
Red drum 17,368.0 $2.87 $5.63 $11.04 49.8 97.8 191.7
Spotted seatrout 351,547.0 $2.87 $5.63 $11.04 1,008.6 1,979.2 3,879.6
Total (Small Game) 369,800.0 $2.87 $5.63 $11.04 1,061.0 2,082.0 4,081.0
Atlantic croaker 136,979.0 $2.14 $2.78 $3.61 292.8 380.2 494.6
Black drum 2,576.0 $2.14 $2.78 $3.61 5.5 7.1 9.3
Pinfish 5,161.0 $2.14 $2.78 $3.61 11.0 14.3 18.6
Sea bass 91.0 $2.14 $2.78 $3.61 0.2 0.3 0.3
Searobin 65,096.0 $2.14 $2.78 $3.61 139.1 180.7 235.0
Sheepshead 0.0 $2.14 $2.78 $3.61 0.0 0.0 0.0
Silver perch 59.0 $2.14 $2.78 $3.61 0.1 0.2 0.2
Spot 18,785.0 $2.14 $2.78 $3.61 40.1 52.1 67.8
Striped mullet 4,732.0 $2.14 $2.78 $3.61 10.1 13.1 17.1
Total (Other Saltwater) 233,480.0 $2.14 $2.78 $3.61 499.0 648.0 843.0
Total (Unidentified) 62,417.0 $2.36 $3.66 $5.91 147.0 228.0 369.0
Total (Undiscounted) 665,697.0 . . . 1,707.0 2,959.0 5,293.0
Total (3% discount rate) . . . . 1,398.0 2,422.0 4,334.0
Total (7% discount rate) . . . . 1,275.0 2,210.0 3,953.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-23: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 2 (I Everywhere and E for Facilities > 125 MGD) in the Gulf of Mexico 
Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Mackerels 1,148.0 $2.87 $5.63 $11.04 3.3 6.5 12.7
Red drum 25,256.0 $2.87 $5.63 $11.04 72.5 142.2 278.7
Spotted seatrout 492,047.0 $2.87 $5.63 $11.04 1,412.2 2,770.3 5,430.6
Total (Small Game) 518,450.0 $2.87 $5.63 $11.04 1,488.0 2,919.0 5,722.0
Atlantic croaker 177,750.0 $2.14 $2.78 $3.61 379.5 493.6 642.0
Black drum 1,044,602.0 $2.14 $2.78 $3.61 2,230.5 2,900.8 3,772.7
Pinfish 176,490.0 $2.14 $2.78 $3.61 376.9 490.1 637.4
Sea bass 119.0 $2.14 $2.78 $3.61 0.3 0.3 0.4
Searobin 106,846.0 $2.14 $2.78 $3.61 228.1 296.7 385.9
Sheepshead 31.0 $2.14 $2.78 $3.61 0.1 0.1 0.1
Silver perch 1,021.0 $2.14 $2.78 $3.61 2.2 2.8 3.7
Spot 28,270.0 $2.14 $2.78 $3.61 60.4 78.5 102.1
Striped mullet 35,647.0 $2.14 $2.78 $3.61 76.1 99.0 128.7
Total (Other Saltwater) 1,570,775.0 $2.14 $2.78 $3.61 3,354.0 4,362.0 5,673.0
Total (Unidentified) 114,838.0 $2.36 $3.66 $5.91 271.0 420.0 679.0
Total (Undiscounted) 2,204,063.0 . . . 5,113.0 7,701.0 12,073.0
Total (3% discount rate) . . . . 3,225.0 4,866.0 7,642.0
Total (7% discount rate) . . . . 2,491.0 3,760.0 5,908.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-24: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 3 (I&E Mortality Everywhere) in the Gulf of Mexico Region, by Species 
(2009$) 

5th Mean 95th 5th Mean 95th

Mackerels 1,149.0 $2.87 $5.63 $11.04 3.3 6.5 12.7
Red drum 25,279.0 $2.87 $5.63 $11.04 72.5 142.3 279.0
Spotted seatrout 492,479.0 $2.87 $5.63 $11.04 1,413.2 2,772.2 5,435.3
Total (Small Game) 518,907.0 $2.87 $5.63 $11.04 1,489.0 2,921.0 5,727.0
Atlantic croaker 177,884.0 $2.14 $2.78 $3.61 379.8 494.1 642.4
Black drum 1,047,164.0 $2.14 $2.78 $3.61 2,235.9 2,908.4 3,781.9
Pinfish 176,912.0 $2.14 $2.78 $3.61 377.7 491.4 638.9
Sea bass 119.0 $2.14 $2.78 $3.61 0.3 0.3 0.4
Searobin 106,965.0 $2.14 $2.78 $3.61 228.4 297.1 386.3
Sheepshead 31.0 $2.14 $2.78 $3.61 0.1 0.1 0.1
Silver perch 1,024.0 $2.14 $2.78 $3.61 2.2 2.8 3.7
Spot 28,298.0 $2.14 $2.78 $3.61 60.4 78.6 102.2
Striped mullet 35,724.0 $2.14 $2.78 $3.61 76.3 99.2 129.0
Total (Other Saltwater) 1,574,119.0 $2.14 $2.78 $3.61 3,361.0 4,372.0 5,685.0
Total (Unidentified) 114,982.0 $2.36 $3.66 $5.91 272.0 421.0 680.0
Total (Undiscounted) 2,208,009.0 . . . 5,122.0 7,714.0 12,091.0
Total (3% discount rate) . . . . 3,258.0 4,906.0 7,690.0
Total (7% discount rate) . . . . 2,510.0 3,781.0 5,926.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-25: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 4 (I for Facilities > 50 MGD) in the Gulf of Mexico Region, by Species 
(2009$) 

5th Mean 95th 5th Mean 95th

Mackerels 878.0 $2.87 $5.63 $11.04 2.5 4.9 9.7
Red drum 17,237.0 $2.87 $5.63 $11.04 49.5 97.0 190.2
Spotted seatrout 348,894.0 $2.87 $5.63 $11.04 1,001.0 1,964.0 3,850.1
Total (Small Game) 367,009.0 $2.87 $5.63 $11.04 1,053.0 2,066.0 4,050.0
Atlantic croaker 135,945.0 $2.14 $2.78 $3.61 290.4 377.8 491.1
Black drum 2,556.0 $2.14 $2.78 $3.61 5.5 7.1 9.2
Pinfish 5,122.0 $2.14 $2.78 $3.61 10.9 14.2 18.5
Sea bass 91.0 $2.14 $2.78 $3.61 0.2 0.3 0.3
Searobin 64,604.0 $2.14 $2.78 $3.61 138.0 179.6 233.4
Sheepshead 0.0 $2.14 $2.78 $3.61 0.0 0.0 0.0
Silver perch 58.0 $2.14 $2.78 $3.61 0.1 0.2 0.2
Spot 18,644.0 $2.14 $2.78 $3.61 39.8 51.8 67.3
Striped mullet 4,696.0 $2.14 $2.78 $3.61 10.0 13.1 17.0
Total (Other Saltwater) 231,717.0 $2.14 $2.78 $3.61 495.0 644.0 837.0
Total (Unidentified) 61,946.0 $2.36 $3.66 $5.91 146.0 227.0 366.0
Total (Undiscounted) 660,672.0 . . . 1,694.0 2,936.0 5,253.0
Total (3% discount rate) . . . . 1,387.0 2,404.0 4,301.0
Total (7% discount rate) . . . . 1,265.0 2,193.0 3,923.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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I.5 Great Lakes 

Table I-26: Recreational Fishing Benefits from Eliminating Baseline I&E Mortality Losses at In-
scope Facilities in the Great Lakes Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Smallmouth bass 23.0 $4.42 $8.56 $16.61 0.1 203.0 394.0
White bass 23,688.0 $4.42 $8.56 $16.61 104.9 203.0 394.0
Total (Bass) 23,710.0 $4.42 $8.56 $16.61 105.0 203.0 394.0
Whitefish 69,428.0 $6.10 $9.43 $14.66 424.0 655.0 1,018.0
Total (Other Trout) 69,428.0 $6.10 $9.43 $14.66 424.0 655.0 1,018.0
Black crappie 11.0 $0.70 $1.33 $2.50 0.0 0.0 0.0
Bluegill 27.0 $0.70 $1.33 $2.50 0.0 0.0 0.1
Channel catfish 571.0 $0.70 $1.33 $2.50 0.4 0.8 1.4
Crappie 4,785.0 $0.70 $1.33 $2.50 3.3 6.3 12.0
Rainbow smelt 5,802.0 $0.70 $1.33 $2.50 4.1 7.7 14.5
Sculpin 6,516.0 $0.70 $1.33 $2.50 4.6 8.6 16.3
Smelts 14,657.0 $0.70 $1.33 $2.50 10.2 19.3 36.6
Sunfish 13,996.0 $0.70 $1.33 $2.50 9.8 18.5 35.0
Yellow perch 18,055.0 $0.70 $1.33 $2.50 12.6 23.8 45.1
Total (Panfish) 64,420.0 $0.70 $1.33 $2.50 45.0 85.0 161.0
Salmon 1,253.0 $8.16 $13.27 $21.61 10.0 17.0 27.0
Total (Salmon) 1,253.0 $8.16 $13.27 $21.61 10.0 17.0 27.0
Northern Pike 0.0 $2.18 $4.11 $7.80 0.0 0.0 0.0
Walleye 250.0 $2.18 $4.11 $7.80 1.0 1.0 2.0
Total (Walleye/Pike) 250.0 $2.18 $4.11 $7.80 1.0 1.0 2.0
Total (Unidentified) 190,587.0 $3.33 $6.22 $11.71 635.0 1,185.0 2,232.0
Total (Undiscounted) 349,648.0 . . . 1,219.0 2,146.0 3,834.0
Total (3% discount rate) . . . . 1,127.0 1,984.0 3,544.0
Total (7% discount rate) . . . . 1,123.0 1,977.0 3,530.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-27: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 1 (I Everywhere) in the Great Lakes Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Smallmouth bass 19.0 $4.42 $8.56 $16.61 0.1 60.0 116.0
White bass 6,939.0 $4.42 $8.56 $16.61 30.9 60.0 116.0
Total (Bass) 6,958.0 $4.42 $8.56 $16.61 31.0 60.0 116.0
Whitefish 60,141.0 $6.10 $9.43 $14.66 367.0 567.0 882.0
Total (Other Trout) 60,141.0 $6.10 $9.43 $14.66 367.0 567.0 882.0
Black crappie 9.0 $0.70 $1.33 $2.50 0.0 0.0 0.0
Bluegill 23.0 $0.70 $1.33 $2.50 0.0 0.0 0.1
Channel catfish 460.0 $0.70 $1.33 $2.50 0.3 0.6 1.1
Crappie 112.0 $0.70 $1.33 $2.50 0.1 0.1 0.3
Rainbow smelt 4,248.0 $0.70 $1.33 $2.50 2.9 5.6 10.6
Sculpin 290.0 $0.70 $1.33 $2.50 0.2 0.4 0.7
Smelts 12,641.0 $0.70 $1.33 $2.50 8.7 16.6 31.6
Sunfish 192.0 $0.70 $1.33 $2.50 0.1 0.3 0.5
Yellow perch 12,437.0 $0.70 $1.33 $2.50 8.6 16.4 31.1
Total (Panfish) 30,413.0 $0.70 $1.33 $2.50 21.0 40.0 76.0
Salmon 845.0 $8.16 $13.27 $21.61 7.0 11.0 18.0
Total (Salmon) 845.0 $8.16 $13.27 $21.61 7.0 11.0 18.0
Northern Pike 0.0 $2.18 $4.11 $7.80 0.0 0.0 0.0
Walleye 217.0 $2.18 $4.11 $7.80 0.0 1.0 2.0
Total (Walleye/Pike) 217.0 $2.18 $4.11 $7.80 0.0 1.0 2.0
Total (Unidentified) 77,515.0 $3.33 $6.22 $11.71 258.0 482.0 908.0
Total (Undiscounted) 176,089.0 . . . 685.0 1,162.0 2,001.0
Total (3% discount rate) . . . . 561.0 951.0 1,638.0
Total (7% discount rate) . . . . 511.0 867.0 1,495.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-28: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 2 (I Everywhere and E for Facilities > 125 MGD) in the Great Lakes 
Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Smallmouth bass 22.0 $4.42 $8.56 $16.61 0.1 175.0 340.0
White bass 20,444.0 $4.42 $8.56 $16.61 90.9 175.0 340.0
Total (Bass) 20,466.0 $4.42 $8.56 $16.61 91.0 175.0 340.0
Whitefish 68,676.0 $6.10 $9.43 $14.66 419.0 648.0 1,007.0
Total (Other Trout) 68,676.0 $6.10 $9.43 $14.66 419.0 648.0 1,007.0
Black crappie 10.0 $0.70 $1.33 $2.50 0.0 0.0 0.0
Bluegill 27.0 $0.70 $1.33 $2.50 0.0 0.0 0.1
Channel catfish 557.0 $0.70 $1.33 $2.50 0.4 0.7 1.4
Crappie 3,846.0 $0.70 $1.33 $2.50 2.7 5.1 9.6
Rainbow smelt 5,568.0 $0.70 $1.33 $2.50 3.9 7.4 13.9
Sculpin 5,267.0 $0.70 $1.33 $2.50 3.7 7.0 13.1
Smelts 14,487.0 $0.70 $1.33 $2.50 10.2 19.2 36.1
Sunfish 11,220.0 $0.70 $1.33 $2.50 7.9 14.9 28.0
Yellow perch 17,155.0 $0.70 $1.33 $2.50 12.1 22.7 42.8
Total (Panfish) 58,137.0 $0.70 $1.33 $2.50 41.0 77.0 145.0
Salmon 1,187.0 $8.16 $13.27 $21.61 10.0 16.0 26.0
Total (Salmon) 1,187.0 $8.16 $13.27 $21.61 10.0 16.0 26.0
Northern Pike 0.0 $2.18 $4.11 $7.80 0.0 0.0 0.0
Walleye 247.0 $2.18 $4.11 $7.80 1.0 1.0 2.0
Total (Walleye/Pike) 248.0 $2.18 $4.11 $7.80 1.0 1.0 2.0
Total (Unidentified) 169,259.0 $3.33 $6.22 $11.71 564.0 1,053.0 1,982.0
Total (Undiscounted) 317,974.0 . . . 1,124.0 1,970.0 3,502.0
Total (3% discount rate) . . . . 720.0 1,261.0 2,241.0
Total (7% discount rate) . . . . 559.0 979.0 1,739.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-29: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 3 (I&E Mortality Everywhere) in the Great Lakes Region, by Species 
(2009$) 

5th Mean 95th 5th Mean 95th

Smallmouth bass 23.0 $4.42 $8.56 $16.61 0.1 177.0 343.0
White bass 20,651.0 $4.42 $8.56 $16.61 90.9 177.0 343.0
Total (Bass) 20,674.0 $4.42 $8.56 $16.61 91.0 177.0 343.0
Whitefish 68,832.0 $6.10 $9.43 $14.66 420.0 649.0 1,009.0
Total (Other Trout) 68,832.0 $6.10 $9.43 $14.66 420.0 649.0 1,009.0
Black crappie 10.0 $0.70 $1.33 $2.50 0.0 0.0 0.0
Bluegill 27.0 $0.70 $1.33 $2.50 0.0 0.0 0.1
Channel catfish 559.0 $0.70 $1.33 $2.50 0.4 0.7 1.4
Crappie 3,902.0 $0.70 $1.33 $2.50 2.7 5.2 9.7
Rainbow smelt 5,590.0 $0.70 $1.33 $2.50 3.9 7.4 13.9
Sculpin 5,343.0 $0.70 $1.33 $2.50 3.7 7.1 13.3
Smelts 14,520.0 $0.70 $1.33 $2.50 10.2 19.3 36.2
Sunfish 11,386.0 $0.70 $1.33 $2.50 8.0 15.2 28.4
Yellow perch 17,232.0 $0.70 $1.33 $2.50 12.1 22.9 43.0
Total (Panfish) 58,570.0 $0.70 $1.33 $2.50 41.0 78.0 146.0
Salmon 1,192.0 $8.16 $13.27 $21.61 10.0 16.0 26.0
Total (Salmon) 1,192.0 $8.16 $13.27 $21.61 10.0 16.0 26.0
Northern Pike 0.0 $2.18 $4.11 $7.80 0.0 0.0 0.0
Walleye 248.0 $2.18 $4.11 $7.80 1.0 1.0 2.0
Total (Walleye/Pike) 248.0 $2.18 $4.11 $7.80 1.0 1.0 2.0
Total (Unidentified) 170,680.0 $3.33 $6.22 $11.71 569.0 1,062.0 1,999.0
Total (Undiscounted) 320,196.0 . . . 1,131.0 1,982.0 3,526.0
Total (3% discount rate) . . . . 725.0 1,271.0 2,261.0
Total (7% discount rate) . . . . 561.0 984.0 1,750.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-30: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 4 (I for Facilities > 50 <MGD) in the Great Lakes Region, by Species 
(2009$) 

5th Mean 95th 5th Mean 95th

Smallmouth bass 19.0 $4.42 $8.56 $16.61 0.1 59.0 115.0
White bass 6,880.0 $4.42 $8.56 $16.61 30.9 59.0 115.0
Total (Bass) 6,900.0 $4.42 $8.56 $16.61 31.0 59.0 115.0
Whitefish 59,632.0 $6.10 $9.43 $14.66 364.0 563.0 874.0
Total (Other Trout) 59,632.0 $6.10 $9.43 $14.66 364.0 563.0 874.0
Black crappie 9.0 $0.70 $1.33 $2.50 0.0 0.0 0.0
Bluegill 23.0 $0.70 $1.33 $2.50 0.0 0.0 0.1
Channel catfish 456.0 $0.70 $1.33 $2.50 0.3 0.6 1.1
Crappie 111.0 $0.70 $1.33 $2.50 0.1 0.1 0.3
Rainbow smelt 4,212.0 $0.70 $1.33 $2.50 2.9 5.6 10.5
Sculpin 287.0 $0.70 $1.33 $2.50 0.2 0.4 0.7
Smelts 12,534.0 $0.70 $1.33 $2.50 8.7 16.6 31.2
Sunfish 190.0 $0.70 $1.33 $2.50 0.1 0.3 0.5
Yellow perch 12,332.0 $0.70 $1.33 $2.50 8.6 16.4 30.7
Total (Panfish) 30,156.0 $0.70 $1.33 $2.50 21.0 40.0 75.0
Salmon 838.0 $8.16 $13.27 $21.61 7.0 11.0 18.0
Total (Salmon) 838.0 $8.16 $13.27 $21.61 7.0 11.0 18.0
Northern Pike 0.0 $2.18 $4.11 $7.80 0.0 0.0 0.0
Walleye 215.0 $2.18 $4.11 $7.80 0.0 1.0 2.0
Total (Walleye/Pike) 215.0 $2.18 $4.11 $7.80 0.0 1.0 2.0
Total (Unidentified) 76,860.0 $3.33 $6.22 $11.71 256.0 478.0 900.0
Total (Undiscounted) 174,601.0 . . . 679.0 1,152.0 1,984.0
Total (3% discount rate) . . . . 556.0 943.0 1,624.0
Total (7% discount rate) . . . . 507.0 860.0 1,482.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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I.6 Inland 

Table I-31: Recreational Fishing Benefits from Eliminating Baseline I&E Mortality Losses at In-
scope Facilities in the Inland Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Smallmouth bass 190,994.0 $4.28 $9.01 $19.08 818.3 1,721.3 3,643.5
White bass 1,656,537.0 $4.28 $9.01 $19.08 7,097.7 14,929.7 31,600.6
Total (Bass) 1,847,530.0 $4.28 $9.01 $19.08 7,916.0 16,651.0 35,244.0
Whitefish 2,061.0 $1.52 $2.83 $5.29 3.0 6.0 11.0
Total (Other Trout) 2,061.0 $1.52 $2.83 $5.29 3.0 6.0 11.0
Black bullhead 31,025.0 $0.53 $1.06 $2.10 16.4 32.8 65.3
Black crappie 145,478.0 $0.53 $1.06 $2.10 76.9 153.7 306.0
Bluegill 433,471.0 $0.53 $1.06 $2.10 229.0 458.0 911.7
Brown bullhead 14,807.0 $0.53 $1.06 $2.10 7.8 15.6 31.1
Bullhead 5,390.0 $0.53 $1.06 $2.10 2.8 5.7 11.3
Channel catfish 441,689.0 $0.53 $1.06 $2.10 233.4 466.7 929.0
Crappie 386,810.0 $0.53 $1.06 $2.10 204.4 408.7 813.6
Menhaden 308.0 $0.53 $1.06 $2.10 0.2 0.3 0.6
Rainbow smelt 9,240.0 $0.53 $1.06 $2.10 4.9 9.8 19.4
Smelts 1.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Sunfish 1,511,686.0 $0.53 $1.06 $2.10 798.7 1,597.3 3,179.6
White Perch 5,479.0 $0.53 $1.06 $2.10 2.9 5.8 11.5
Yellow perch 625,983.0 $0.53 $1.06 $2.10 330.7 661.5 1,316.7
Total (Panfish) 3,611,368.0 $0.53 $1.06 $2.10 1,908.0 3,816.0 7,596.0
Salmon 5.0 $8.16 $13.27 $21.61 0.0 0.0 0.0
Total (Salmon) 5.0 $8.16 $13.27 $21.61 0.0 0.0 0.0
American shad 3,070.0 $1.61 $5.36 $18.07 5.0 16.5 55.4
Striped bass 19,797.0 $1.61 $5.36 $18.07 32.2 106.2 357.3
Sturgeon 1,735.0 $1.61 $5.36 $18.07 2.8 9.3 31.3
Total (Small Game) 24,603.0 $1.61 $5.36 $18.07 40.0 132.0 444.0
Northern pike 36.0 $1.98 $4.10 $8.53 0.1 0.1 0.3
Sauger 180,270.0 $1.98 $4.10 $8.53 357.2 739.7 1,537.2
Walleye 209,854.0 $1.98 $4.10 $8.53 415.8 861.1 1,789.5
Total (Walleye/Pike) 390,160.0 $1.98 $4.10 $8.53 773.0 1,601.0 3,327.0
Total (Unidentified) 6,716,737.0 $1.08 $2.23 $4.60 7,283.0 14,985.0 30,898.0
Total (Undiscounted) 12,592,464.0 . . . 17,923.0 37,191.0 77,520.0
Total (3% discount rate) . . . . 16,566.0 34,376.0 71,653.0
Total (7% discount rate) . . . . 16,504.0 34,247.0 71,384.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-32: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 1 (I Everywhere) in the Inland Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Smallmouth bass 9,573.0 $4.28 $9.01 $19.08 41.0 86.3 182.6
White bass 649,610.0 $4.28 $9.01 $19.08 2,783.0 5,854.7 12,392.4
Total (Bass) 659,182.0 $4.28 $9.01 $19.08 2,824.0 5,941.0 12,575.0
Whitefish 1,642.0 $1.52 $2.83 $5.29 2.0 5.0 9.0
Total (Other Trout) 1,642.0 $1.52 $2.83 $5.29 2.0 5.0 9.0
Black bullhead 25,176.0 $0.53 $1.06 $2.10 13.3 26.6 53.0
Black crappie 14,071.0 $0.53 $1.06 $2.10 7.4 14.9 29.6
Bluegill 334,160.0 $0.53 $1.06 $2.10 176.6 353.1 703.0
Brown bullhead 4,771.0 $0.53 $1.06 $2.10 2.5 5.0 10.0
Bullhead 3,245.0 $0.53 $1.06 $2.10 1.7 3.4 6.8
Channel catfish 228,275.0 $0.53 $1.06 $2.10 120.6 241.2 480.2
Crappie 24,144.0 $0.53 $1.06 $2.10 12.8 25.5 50.8
Menhaden 258.0 $0.53 $1.06 $2.10 0.1 0.3 0.5
Rainbow smelt 3,097.0 $0.53 $1.06 $2.10 1.6 3.3 6.5
Smelts 1.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Sunfish 193,777.0 $0.53 $1.06 $2.10 102.4 204.8 407.6
White Perch 4,067.0 $0.53 $1.06 $2.10 2.1 4.3 8.6
Yellow perch 298,679.0 $0.53 $1.06 $2.10 157.8 315.6 628.3
Total (Panfish) 1,133,719.0 $0.53 $1.06 $2.10 599.0 1,198.0 2,385.0
Salmon 4.0 $8.16 $13.27 $21.61 0.0 0.0 0.0
Total (Salmon) 4.0 $8.16 $13.27 $21.61 0.0 0.0 0.0
American shad 2,569.0 $1.61 $5.36 $18.07 4.1 13.7 46.4
Striped bass 16,562.0 $1.61 $5.36 $18.07 26.6 88.3 299.3
Sturgeon 184.0 $1.61 $5.36 $18.07 0.3 1.0 3.3
Total (Small Game) 19,315.0 $1.61 $5.36 $18.07 31.0 103.0 349.0
Northern pike 30.0 $1.98 $4.10 $8.53 0.1 0.1 0.3
Sauger 7,809.0 $1.98 $4.10 $8.53 15.6 32.0 66.6
Walleye 13,152.0 $1.98 $4.10 $8.53 26.3 53.9 112.2
Total (Walleye/Pike) 20,991.0 $1.98 $4.10 $8.53 42.0 86.0 179.0
Total (Unidentified) 2,486,184.0 $1.08 $2.23 $4.60 2,696.0 5,547.0 11,437.0
Total (Undiscounted) 4,321,037.0 . . . 6,194.0 12,880.0 26,933.0
Total (3% discount rate) . . . . 5,071.0 10,545.0 22,049.0
Total (7% discount rate) . . . . 4,626.0 9,619.0 20,115.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-33: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 2 (I Everywhere and E for Facilities > 125 MGD) in the Inland Region, by 
Species (2009$) 

5th Mean 95th 5th Mean 95th

Smallmouth bass 157,772.0 $4.28 $9.01 $19.08 676.0 1,421.9 3,009.7
White bass 1,469,625.0 $4.28 $9.01 $19.08 6,297.0 13,245.1 28,035.3
Total (Bass) 1,627,397.0 $4.28 $9.01 $19.08 6,973.0 14,667.0 31,045.0
Whitefish 1,977.0 $1.52 $2.83 $5.29 3.0 6.0 10.0
Total (Other Trout) 1,977.0 $1.52 $2.83 $5.29 3.0 6.0 10.0
Black bullhead 29,849.0 $0.53 $1.06 $2.10 15.8 31.5 62.8
Black crappie 121,385.0 $0.53 $1.06 $2.10 64.1 128.3 255.3
Bluegill 413,894.0 $0.53 $1.06 $2.10 218.7 437.3 870.6
Brown bullhead 12,951.0 $0.53 $1.06 $2.10 6.8 13.7 27.2
Bullhead 4,984.0 $0.53 $1.06 $2.10 2.6 5.3 10.5
Channel catfish 401,691.0 $0.53 $1.06 $2.10 212.2 424.4 844.9
Crappie 320,377.0 $0.53 $1.06 $2.10 169.3 338.5 673.9
Menhaden 298.0 $0.53 $1.06 $2.10 0.2 0.3 0.6
Rainbow smelt 8,104.0 $0.53 $1.06 $2.10 4.3 8.6 17.0
Smelts 1.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Sunfish 1,269,826.0 $0.53 $1.06 $2.10 670.9 1,341.7 2,671.0
White Perch 5,204.0 $0.53 $1.06 $2.10 2.7 5.5 10.9
Yellow perch 564,857.0 $0.53 $1.06 $2.10 298.4 596.8 1,188.1
Total (Panfish) 3,153,418.0 $0.53 $1.06 $2.10 1,666.0 3,332.0 6,633.0
Salmon 5.0 $8.16 $13.27 $21.61 0.0 0.0 0.0
Total (Salmon) 5.0 $8.16 $13.27 $21.61 0.0 0.0 0.0
American shad 2,968.0 $1.61 $5.36 $18.07 4.8 15.9 53.7
Striped bass 19,136.0 $1.61 $5.36 $18.07 30.9 102.4 346.1
Sturgeon 1,450.0 $1.61 $5.36 $18.07 2.3 7.8 26.2
Total (Small Game) 23,554.0 $1.61 $5.36 $18.07 38.0 126.0 426.0
Northern pike 35.0 $1.98 $4.10 $8.53 0.1 0.1 0.3
Sauger 148,695.0 $1.98 $4.10 $8.53 294.6 609.9 1,267.7
Walleye 173,822.0 $1.98 $4.10 $8.53 344.4 713.0 1,482.0
Total (Walleye/Pike) 322,552.0 $1.98 $4.10 $8.53 639.0 1,323.0 2,750.0
Total (Unidentified) 5,932,467.0 $1.08 $2.23 $4.60 6,433.0 13,236.0 27,290.0
Total (Undiscounted) 11,061,370.0 . . . 15,751.0 32,690.0 68,154.0
Total (3% discount rate) . . . . 9,578.0 19,879.0 41,449.0
Total (7% discount rate) . . . . 7,361.0 15,277.0 31,856.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-34: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 3 (I&E Mortality Everywhere) in the Inland Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Smallmouth bass 164,627.0 $4.28 $9.01 $19.08 705.4 1,483.6 3,140.5
White bass 1,509,996.0 $4.28 $9.01 $19.08 6,469.6 13,609.0 28,805.5
Total (Bass) 1,674,624.0 $4.28 $9.01 $19.08 7,175.0 15,092.0 31,946.0
Whitefish 1,999.0 $1.52 $2.83 $5.29 3.0 6.0 11.0
Total (Other Trout) 1,999.0 $1.52 $2.83 $5.29 3.0 6.0 11.0
Black bullhead 30,167.0 $0.53 $1.06 $2.10 15.9 31.9 63.5
Black crappie 126,378.0 $0.53 $1.06 $2.10 66.8 133.6 265.8
Bluegill 418,926.0 $0.53 $1.06 $2.10 221.4 442.8 881.2
Brown bullhead 13,347.0 $0.53 $1.06 $2.10 7.1 14.1 28.1
Bullhead 5,077.0 $0.53 $1.06 $2.10 2.7 5.4 10.7
Channel catfish 410,600.0 $0.53 $1.06 $2.10 217.0 434.0 863.7
Crappie 334,101.0 $0.53 $1.06 $2.10 176.6 353.1 702.7
Menhaden 300.0 $0.53 $1.06 $2.10 0.2 0.3 0.6
Rainbow smelt 8,347.0 $0.53 $1.06 $2.10 4.4 8.8 17.6
Smelts 1.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Sunfish 1,320,111.0 $0.53 $1.06 $2.10 697.6 1,395.3 2,776.7
White Perch 5,273.0 $0.53 $1.06 $2.10 2.8 5.6 11.1
Yellow perch 578,320.0 $0.53 $1.06 $2.10 305.6 611.2 1,216.4
Total (Panfish) 3,250,948.0 $0.53 $1.06 $2.10 1,718.0 3,436.0 6,838.0
Salmon 5.0 $8.16 $13.27 $21.61 0.0 0.0 0.0
Total (Salmon) 5.0 $8.16 $13.27 $21.61 0.0 0.0 0.0
American shad 2,997.0 $1.61 $5.36 $18.07 4.8 16.1 54.1
Striped bass 19,322.0 $1.61 $5.36 $18.07 30.8 103.8 348.7
Sturgeon 1,509.0 $1.61 $5.36 $18.07 2.4 8.1 27.2
Total (Small Game) 23,828.0 $1.61 $5.36 $18.07 38.0 128.0 430.0
Northern pike 35.0 $1.98 $4.10 $8.53 0.1 0.1 0.3
Sauger 155,207.0 $1.98 $4.10 $8.53 307.2 637.0 1,323.3
Walleye 181,266.0 $1.98 $4.10 $8.53 358.8 743.9 1,545.4
Total (Walleye/Pike) 336,508.0 $1.98 $4.10 $8.53 666.0 1,381.0 2,869.0
Total (Unidentified) 6,101,138.0 $1.08 $2.23 $4.60 6,616.0 13,612.0 28,066.0
Total (Undiscounted) 11,389,049.0 . . . 16,216.0 33,654.0 70,160.0
Total (3% discount rate) . . . . 9,966.0 20,684.0 43,122.0
Total (7% discount rate) . . . . 7,592.0 15,755.0 32,847.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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Table I-35: Recreational Fishing Benefits from Reducing I&E Mortality Losses at In-scope 
Facilities Under Option 4 (I for Facilities > 50 MGD) in the Inland Region, by Species (2009$) 

5th Mean 95th 5th Mean 95th

Smallmouth bass 9,339.0 $4.28 $9.01 $19.08 40.0 84.2 178.2
White bass 633,751.0 $4.28 $9.01 $19.08 2,715.0 5,711.7 12,089.8
Total (Bass) 643,090.0 $4.28 $9.01 $19.08 2,755.0 5,796.0 12,268.0
Whitefish 1,602.0 $1.52 $2.83 $5.29 2.0 5.0 8.0
Total (Other Trout) 1,602.0 $1.52 $2.83 $5.29 2.0 5.0 8.0
Black bullhead 24,562.0 $0.53 $1.06 $2.10 13.0 26.0 51.7
Black crappie 13,727.0 $0.53 $1.06 $2.10 7.2 14.5 28.9
Bluegill 326,002.0 $0.53 $1.06 $2.10 172.1 344.6 685.6
Brown bullhead 4,655.0 $0.53 $1.06 $2.10 2.5 4.9 9.8
Bullhead 3,165.0 $0.53 $1.06 $2.10 1.7 3.3 6.7
Channel catfish 222,702.0 $0.53 $1.06 $2.10 117.6 235.4 468.3
Crappie 23,555.0 $0.53 $1.06 $2.10 12.4 24.9 49.5
Menhaden 251.0 $0.53 $1.06 $2.10 0.1 0.3 0.5
Rainbow smelt 3,021.0 $0.53 $1.06 $2.10 1.6 3.2 6.4
Smelts 1.0 $0.53 $1.06 $2.10 0.0 0.0 0.0
Sunfish 189,046.0 $0.53 $1.06 $2.10 99.8 199.8 397.6
White Perch 3,967.0 $0.53 $1.06 $2.10 2.1 4.2 8.3
Yellow perch 291,387.0 $0.53 $1.06 $2.10 153.9 308.0 612.8
Total (Panfish) 1,106,041.0 $0.53 $1.06 $2.10 584.0 1,169.0 2,326.0
Salmon 4.0 $8.16 $13.27 $21.61 0.0 0.0 0.0
Total (Salmon) 4.0 $8.16 $13.27 $21.61 0.0 0.0 0.0
American shad 2,506.0 $1.61 $5.36 $18.07 4.0 13.4 45.2
Striped bass 16,158.0 $1.61 $5.36 $18.07 25.7 86.6 291.6
Sturgeon 179.0 $1.61 $5.36 $18.07 0.3 1.0 3.2
Total (Small Game) 18,843.0 $1.61 $5.36 $18.07 30.0 101.0 340.0
Northern pike 29.0 $1.98 $4.10 $8.53 0.1 0.1 0.2
Sauger 7,619.0 $1.98 $4.10 $8.53 15.3 31.3 65.1
Walleye 12,831.0 $1.98 $4.10 $8.53 25.7 52.6 109.6
Total (Walleye/Pike) 20,479.0 $1.98 $4.10 $8.53 41.0 84.0 175.0
Total (Unidentified) 2,425,487.0 $1.08 $2.23 $4.60 2,630.0 5,411.0 11,157.0
Total (Undiscounted) 4,215,546.0 . . . 6,043.0 12,566.0 26,275.0
Total (3% discount rate) . . . . 4,947.0 10,287.0 21,511.0
Total (7% discount rate) . . . . 4,513.0 9,384.0 19,623.0

Species

Annual Increase in 
Recreational 

Harvest
(harvestable adult 

fish)

Value per Fish
Annual Benefits from Increase in 

Recreational Harvest
(2009$, thousands)
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J 

Appendix J: Methods Used in the Habitat Based Methodology for 
Estimating Nonuse Values 

J.1  Equations for estimating nonuse values using a habitat based 
methodology 

Equation J-1: estimating lost production from I&E mortality on an annual basis. 

Productivity loss due to I&E mortality is calculated as: 

i

n

i

k

j
ijixjitotx DMMCLSP  

 1 1
,,,, Equation J-1 

where:  

 SPx,tot is the estimated loss in regional production for all I&E mortality species under regulatory 
option x, measured in kg dry mass per year. 

 Li,x is the number of individuals of species i (with n species in the region) at life history stage j 
(with k life history stages) lost to I&E mortality under regulatory option x. Measured in organisms 
per year. 

 Ci,j is the ratio used to convert losses of species i and life history stage j into age-1 equivalents. 

 Mi  is the mass of an individual of species i at age 1. Measured in kg. 

 DMi is the ratio of dry mass to wet mass for species i. 

 

Equation J-2: Estimating habitat-based fish production 

The calculation of secondary productivity per acre (SPrest) is as follows: 

321)1( TCTCTCEPPSPrest  Equation J-2 

where:  

 PP is primary productivity per acre of restoration 

 E  is the rate of productivity export, the portion of primary productivity excluded from transfer to 
higher trophic levels 

 TC1  the trophic conversion efficiency from primary productivity to detritus  

 TC2  the trophic conversion efficiency from detritus to first level consumers  

 TC3  the trophic conversion efficiency from first level consumers to second level consumers  

 
 
B1 
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Equation J-3: Estimating habitat-based fish production 

The number of habitat acres (A) estimated to generate annual productivity equivalent to reduction in I&E 
mortality achieved by regulatory option x is calculated for each region as: 

rest

n

i
xix SPSPA 







 

1
,  Equation J-3 

where: 

 Ax is the number needed to achieve ecological equivalence with option x 

 SPi,x is the total increase in secondary productivity per year for species i under option x   

 SPrest is the total secondary productivity gained per year per acre or restoration 
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J.2 Estimated Primary Productivity and Carbon Export in Marine and Aquatic Habitats 

 
Table J-1: Summary of Aboveground Primary Productivity (measured in kg dry mass acre-1 yr-1) 

Species Study Region(s) 
Sample 

Size Min Max Mean Sources 
Eelgrass 
Zostera marina 

North Atlantic, Mid-
Atlantic, and South 
Atlantic 

6 934 7,561 3,745 Beal et al. (2004), Nixon and Oviatt (1972), Murray and Wetzel (1987), 
Rizzo and Wetzel (1985), Bach et al. (1986) 

Smooth cordgrass 
Spartina alterniflora 

North Atlantic and Mid-
Atlantic 

10 1,416 6,520 3,332 Reimold and Linthurst (1977)*, Valiela, Teal, and Sass (1975)*, Steever 
(1972)*, Walton (1972)*, Cahoon (1975)*, Mendelssohn and Marcellus 
(1976)* 

Smooth cordgrass 
Spartina alterniflora 

South Atlantic and Gulf 
of Mexico 

13 1,331 16,148 6,372 Stroud and Cooper (1968)*, Marshall (1970)*, Odum and Fanning 
(1972)*, de la Cruz (1974)*, Kirby (1972)*, Kirby and Gooselink (1976)*

Turtle grass  
Thalassia testudinum 

Gulf of Mexico 5 1,329 3,570 2,417 Tomasko et al. (1996), Kaldy and Dunton (2000) 

Giant Kelp  
Macrocystis pyrifera 

California 4 1,472 11,344 7,312 Dayton (1985), Rassweiler (2008) 

Broadleaf cattail  
Typha latifolia 

Great Lakes and Inland  14 2,024 12,971 6,199 Gustafson (1976)*, Penko and Pratt (1986), Grace and Wetzel (1982), 
Mitsch et al (2002), Smith and Kadlec (1985), Rocha and Goulden (2009), 
van der Valk and Davis (1978)*, Keefe (1972)*, Whigham and Simpson 
(1975)*, Johnson (1970)* 

Sample size is the number of estimates included in calculation of the mean value.  The sample size differs from the number of sources because several studies provide multiple productivity values from 
different sites. 
Values reported in units of g C m-2 day-1 were converted using specifes-specific factors. 
 Eelgrass – carbon accounts for 38% of dry weight biomass (Thom 1988). 
 Smooth cordgrass - carbon accounts for 45% of dry weight biomass (French McCay and Rowe 2003; Gallagher 1975). 
 Turtle grass - carbon accounts for 36.4% of dry weight biomass (Fourqurean and Zieman 2002). 
 Kelp – carbon accounts for 33% of dry weight biomass (Dayton 1985). 
 Broadleaf cattail - carbon accounts for 40.2% of dry weight biomass (Esteves et al. 2008). 
* Indicates values were taken from USEPA (1980). 
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Table J-2: Estimates of Carbon Export from Salt Marshes 

Location 
C Export 

(g C m-2 yr-1) 
ANPP 

(g C m-2 yr-1) 
Export as 
% of NPP Dominant Species Source 

Cape Cod, MA 3 67.5 4.4% Spartina alternaflora Howes et al (1985)1 
Flax Pond, NY -53 372 -14.2% Spartina alterniflora Woodwell et al (1977) 
Canary Creek, DE 159 252 63.1% Spartina alterniflora Roman & Daiber (1989) 
Ware Creek, VA 115 599 19.2% Spartina alterniflora Axelrad et al. (1976) 
Carter Creek, VA 142 599 23.7% Spartina alterniflora Axelrad et al. (1976) 
Beaufort, NC 40 548 7.3% Spartina alterniflora Bach et al. (1986)* 
Beaufort, NC 124 568 21.9% Spartina alterniflora Bach et al. (1986)* 
Beaufort, NC 32 837 3.9% Spartina alterniflora Bach et al. (1986)* 
Bly Creek, SC 252 1080 23.3% Spartina alterniflora Williams et al. (1992)* 
Bly Creek, SC 493 1080 45.6% Spartina alterniflora Williams et al. (1992)* 
North Inlet, SC 456 1059 43.1% Spartina alterniflora Dame et al (1986) 
Bly Creek, SC 242 1028 23.5% Spartina alterniflora Dame et al. (1991) 
Duplin River, GA 1090 2025 12.8-53.8% Spartina alterniflora Wang and Cai (2004) 
Sapelo Island, GA 393 878 44.8% Spartina alterniflora Teal (1962) 
Sapelo Island, GA 365 992 36.8% Spartina alterniflora Teal (1962)* 2 

Barataria Basin, LA 224 600 37.3% 
Panicum hemitomo 
Eleocharis sp Feijtel et al (1985)  

Barataria Basin, LA 296 550 53.8% 
Spartina patens 
Distichlis spicata Feijtel et al (1985) 

Barataria Basin, LA 183 860 21.3% Spartina alterniflora Feijtel et al (1985) 
LA 226 1147 19.7%  Day et al. (1973)* 
LA 47 926 5.1%  Hopkinson et al. (1978)* 
LA 55 1267 4.3%  Hopkinson et al. (1978)* 
LA 161 599 26.8%  Hopkinson et al. (1978)* 
LA 821 2416 34.0%  Hopkinson et al. (1978)* 
LA 80 540 14.9%  Hopkinson et al. (1978)* 
LA 26 518 5.0%  White et al. (1978)* 

Coon Creek, TX 25 559-900 2.7-4.5% 
Spartina patens 
Distichlis spicata Borey et al. (1983) 

EMS-Dollard Marsh 
  Netherlands -125 500 -25.00% 

Puccinellietum maritime
Spartina anglica Dankers et al (1984) 

Kariega Marsh,  
  South Africa 16 200-300 5.0-8.0% 

Spartina perennis,  
Chenolea diffusa Taylor & Allanson (1995) 

Hong Kong 0 880 0.0% Phragmites communis Lee (1990)* 
Unknown 58 105 55.8%  McLusky (1981)* 
Unknown 51 181 28.2%  McLusky (1981)* 
Unknown 142 1080 13.2%  Schlesinger (1997)* 
Unknown 431 1080 39.9%  Schlesinger (1997)* 
Unknown 117 1080 10.8%  Schlesinger (1997)* 
Unknown 99 1080 9.1%  Schlesinger (1997)* 
Unknown 164 1080 15.2%  Schlesinger (1997)* 
* Indicates values taken from Cebrian (2002). 
1 Carbon export for Howes et al. (1985) was calculated based on annual sediment budget in mol m-2 yr-1. 
2 These values were calculated directly based on Teal (1962) and differ from values included in the meta-data of Cebrian (2002). 

 

J.3 Regional Determination of Preferred Habitat 

In the North Atlantic region, species accounting for the greatest proportion of I&E mortality [rock gunnel 
(42% of regional I&E mortality), winter founder (11%), radiated shanny (7%), cunner (7%), American 
sand lance (7%) and seaboard goby (7%)] are generally found in estuarine, sandy or nearshore rocky reef 
areas, and are not strongly associated with coastal wetlands (Fishbase 2009). Therefore, eelgrass was 
selected for scaling I&E mortality losses in the North Atlantic.   
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In the Mid-Atlantic region, species with the greatest I&E mortality by mass [bay anchovy (65% of the 
regional I&E mortality losses), blue crab (10%), Atlantic menhaden (5%) and spot (4%)] are commonly 
found in tidal salt marshes (Fishbase 2009). Consequently, the preferred habitat for restoration projects is 
smooth cordgrass, the dominant foundation species in Atlantic salt marshes.  

Similarly, in the South Atlantic, important I&E mortality species [bay anchovy (71%), forage shrimp 
(13%), gobies (4%) and other forage fish (4%)] are associated with salt marshes dominated by cordgrass. 
Thus, saltmarsh is the preferred habitat choice for this region.   

In the Gulf Coast region, there is less dominance by a single species in I&E mortality results [pink shrimp 
(30%) blue crab (15%) bay anchovy (14%) and other forage fish (11%)], and there is no strong ecological 
argument for preferring turtle grass or saltmarsh. Consequently, due to its higher productivity, smooth 
cordgrass was chosen as the preferred habitat type for regional restoration calculations.  

In California, the preferred habitat choice is the highly productive giant kelp (M. pyrifera), known to be a 
nursery habitat for many fish species.  

In the Great Lakes and Inland regions, the freshwater macrophyte broadleaf cattail (T. latifolia) was 
selected for restoration calculations. 
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J.4 Willingness to Pay for Fish Production and Other Aquatic Habitat Goods and Services 

Table J-3: Studies Used to Estimate WTP Values for Fish Production Services and Habitat  

Study 
Survey 
Year 

Location 
(State) Habitat 

WTP acre-1 yr-1 
(2009$)1 

Population  
(Sample Size) Change Valued Survey Methods 

Peconic Estuary Study 
(Johnston et al. 2002a; 
Johnston et al. 2001; 
Mazzotta 1996; Opaluch 
et al. 1995; Opaluch et al. 
1998) 

1995 New York Eelgrass and 
Salt marsh 

Eelgrass - 
$0.07608 
 
Saltmarsh- 
$0.0672 

East End Long 
Island Households 
(968 completed 
surveys) 

Eelgrass presented at current 
level of 9,000 acres, “no action” 
level of 8,000 acres, and with 
restoration level of 11,000 acres.
Wetlands presented at their 
current level of 16,000 acres, 
“no action” level of 12,000 
acres, and with restoration level 
of 17,500 acres. 

Used an original contingent 
choice study to estimate 
relative preferences of 
residents for preserving key 
natural and environmental 
resources.  
 
 

Bauer, Cyr, and Swallow 
(2004)   

2004 Rhode Island Salt marsh $0.0190 Rhode Island 
Households (320 in-
person surveys 
administered) 

Survey level included four levels 
of wetland preservation or 
restoration; 33, 64, 101, or 135 
acres.  One-time payment 
converted to annual value 
assuming 3% discount rate. 

Stated-preference survey 
designed to elicit public 
preferences for salt marsh 
mitigation projects and to 
determine public willingness 
to trade off mitigation-site 
attributes such as cost, size, 
public access, and presence of 
endangered species. 

De Zoysa (1995) 1994 Ohio Freshwater 
wetlands 

$0.0299 Residents of 
Maumee, Ohio (476 
responses) 

Wetlands program description 
indicated that the proposed 
program would restore and 
protect 3,000 acres of wetlands 
from a baseline of 10,000 
existing acres that were 
declining.   

The study used the contingent 
valuation method with seven 
versions of the survey, each 
of which described a different 
resource conservation 
program involving 
groundwater, surface water, 
wetlands, or some 
combination thereof. 

Bishop et al. (2000) 1999 Wisconsin Freshwater 
wetlands 

$0.00125 Households within a 
ten county area 
around Green Bay 
(470 responses) 

Restoration level ranging up to a 
11,600 acre increase in wetlands 
within five miles of Green Bay, 
WI to support birds, fish, and 
other wildlife equivalent to a 
20% increase from the 58,000 
baseline acres.  WTP reported 
here is the mid-point of marginal 
values for 5% and 20% changes.

Total Value Equivalency 
(TVE) study conducted to 
support restoration planning 
conducted as part of the 
Lower Fox River/Green Bay 
NRDA. 
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Table J-3: Studies Used to Estimate WTP Values for Fish Production Services and Habitat  

Study 
Survey 
Year 

Location 
(State) Habitat 

WTP acre-1 yr-1 
(2009$)1 

Population  
(Sample Size) Change Valued Survey Methods 

Mullarky (1997; 1999)  1994 Wisconsin Freshwater 
wetlands 

$0.00822 Wisconsin residents 
(239 complete 
surveys) 

Case study of a highway 
expansion project in Northwest 
Wisconsin which would require 
filling of 110 acres of wetlands. 
One-time payment converted to 
annual value assuming 3% 
discount rate. 

Contingent valuation study of 
Wisconsin wetlands.  Losses 
would be mitigated by the 
creation of 220 acres of 
isolated basin along the 
highway; WTP reported here 
is based on a mean from the 
“scope group” which was not 
informed that mitigation was 
being conducted. 

Blomquist and Whitehead 
(1998) 

1990 Kentucky Freshwater 
wetlands 

$0.0056 Kentucky residents 
(379 responses) 

WTP to purchase and manage 
500 acres which if not purchased 
would be mined and reclaimed 
after ten years. 

Contingent valuation study 
resulting in WTP values for 
four separate wetland types.  
WTP reported here is for the 
Flat creek persistent emergent 
wetland, which is most 
consistent with scaled habitat.

Whitehead and Blomquist 
(1991) 

1989 Kentucky Freshwater 
wetlands 

$0.0037 Kentucky residents 
(215 responses) 

WTP for purchase and 
management of the 
approximately 5,000 acres Clear 
Creek wetland which would be 
mined if not purchased. 

Contingent valuation study 
with three groups with each 
presented different 
information about related 
environmental resources.  
Smaller sample than 
Blomquist and Whitehead 
(1998) 

1 WTP values were converted to 2009$ based on the Consumer Price Index (CPI). 
2 Mullarky (1997; 1999) present multiple WTP estimates based on the survey group used for the estimate (“base group” or “scope group”) and certainty level treatment of 
the polychotomous choice format.  The reported value is based for the “scope group”, which was not informed regarding mitigation, and the highest certainty level for 
responses. 
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J.5 Narragansett Bay Wetland Restoration Study 

J.5.1 Survey Development and Data Collection 

EPA designed a survey instrument, entitled Rhode Island Salt Marsh Restoration: 2001 Survey of Rhode 
Island Residents to assess tradeoffs among attributes of salt marsh restoration plans. Development of this 
survey required more than 16 months and involved extensive background research, interviews with 
experts in salt marsh ecology and restoration, and 16 focus groups with more than 100 Rhode Island 
residents. Numerous pretests, including verbal protocol analysis (Schkade and Payne 1994) ensured that 
the survey language and format would be easily understood by respondents, and that respondents would 
have a common understanding of survey scenarios (cf. Johnston et al. 1995). 

Johnston et al. (2002b) chose attributes distinguishing restoration plans based on background research, 
expert interviews, and focus groups. The authors tailored these attributes to reflect primary salt marsh 
services in the northeast United States that would be influenced by restoration activities, and 
characterized each wetland by the size of the marsh, together with effects of restoration, on (1) habitat for 
birds, (2) habitat for fish, (3) habitat for shellfish, (4) potential to control mosquito nuisance, (5) 
recreational access, and (6) household cost.64 Based on the results of focus groups and expert interviews, 
habitat and mosquito control services were presented from a standardized, statewide perspective. For 
example, improvements to fish habitat were characterized as “ecological improvements to RI fish 
populations…[resulting from a particular restoration project]…as judged by wetlands experts, compared 
to all other potential salt marsh restoration projects in Rhode Island.” 

Following the general approach of Johnston et al. (1999), the conjoint (or multi-attribute choice) survey 
presented respondents with four sets of discrete choices, each involving two alternative, multi-attribute 
restoration plans. The authors used fractional factorial design to construct a range of survey questions 
with an orthogonal array of attribute levels, resulting in 80 contingent choice questions divided among 20 
unique booklets. Attributes distinguishing plans were selected based on background research, expert 
interviews, and focus groups. All attributes were free to vary over their full range for both restoration 
plans presented in each question, with no imposed ordering of attribute levels between the two plans. 
Based on these attributes, respondents chose one of the two plans, or chose “Neither Plan.” 

The survey was conducted from September through December, 2001. Respondents were intercepted in 
person at Rhode Island Department of Motor Vehicle offices, public libraries, and other survey sites. 
Interviewers did not tell respondents that the survey concerned salt marsh restoration.  Rather, 
interviewers asked respondents to participate in an important survey regarding “environmental issues in 
Rhode Island,” to reduce the potential for topic-related nonresponse. Following the general approach of 
Johnston et al. (1999), the survey presented respondents with four sets of discrete choices, each involving 
two alternative, multi-attribute restoration plans. Attributes included in the survey included the size of salt 
marsh restoration, and the importance of (1) habitat for birds, (2) habitat for fish, (3) habitat for shellfish, 

                                                      
64Additional, non-habitat services that may be provided by salt water wetlands include, among others, nutrient transformation, 

storm buffering, and coastal erosion control. Interviews with experts on salt water wetland functions in New England (and 
Rhode Island in particular) indicated, however, that wetland restoration would provide negligible impacts on these non-
habitat functions in the majority of cases. They based this assessment on the small size of most New England coastal 
wetlands, and on the fact that restoration may not always increase substantially the ability of a wetland to provide such 
functions as storm buffering or erosion control. Based on this advice, the survey focused mainly on wetland habitat 
functions. 
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(4) the potential for mosquito control, (5) recreational access, and (6) household cost. Based on variations 
in the presented attributes of conservation plans, respondents either chose either one of two plans 
presented, or chose “Neither Plan.” In total, interviewers collected 661 completed surveys, providing 
complete and usable responses to 2,341 individual contingent choice questions (89% of a potential 2,644). 

J.5.2 Results 

Table J-4 presents variables incorporated in the analysis of salt marsh restoration choices. These variables 
include: (1) a dummy variable identifying the “neither” option, (2) quadratic interactions between this 
dummy and certain demographic characteristics, and (3) variables for the restored salt marsh attributes. 
Mean values for salt marsh attributes (Table 9-5) indicate the mean values of these attributes over all 
completed surveys included in the analysis. The final column of the table calculates these mean values 
with "neither plan" data rows excluded. (As noted above, each wetland restoration choice included the 
option of choosing neither plan. In the multinomial logit data, these options are presented as a "plan" with 
zeros for all wetland attributes.) 

Table J-5 presents results for a conditional logit model of survey data. The model is significant at p 
<0.0001 (-2LnL P2=1157.56, df = 13); all individual parameter estimates are significant at p <0.05, with 
most significant at p <0.01. 

The signs of parameter estimates correspond with prior expectations derived from focus groups, where 
prior expectations exist. Respondents favor plans that restore larger salt marshes; improve bird, fish, and 
shellfish habitat; control mosquitoes; provide public access; and result in lower costs to the household. 
Comparing preferences for habitat improvements and mosquito control (all measured on a ten-point 
scale), respondents placed the greatest weight on mosquito control, followed by habitat improvements for 
shellfish, fish, and birds, respectively. The likelihood of rejecting restoration outright (i.e., choosing 
neither plan) was smaller for members of environmental organizations, and larger for members of 
taxpayers organizations, lower income individuals, and more highly educated individuals (Johnston et al. 
2002b). Changes in education and income do not influence the marginal utility of fish and shellfish 
habitat, or that of other wetland attributes. 

Results of the conjoint analysis (i.e., the public survey results) presented by Johnston et al. (2002b) allow 
policy makers to rank restoration projects based on their estimated influence on residents’ welfare. These 
results also allow assessment of residents’ willingness to trade off elements of wetland restoration plans, 
or WTP for particular wetland attributes. Finally, for any specified restoration plan, provided that 
incremental gains or losses in wetland services are known, it allows the calculation of the proportion of 
the total gain in social value attributable to a particular service (e.g., fish habitat). 

To estimate the proportion of value associated with fish habitat, in a representative, conservative scenario, 
EPA began with the average wetland restoration scenario considered by the Rhode Island survey sample. 
The mean values of wetland attributes presented to survey respondents provide the most representative set 
of results from which value proportions may be estimated, and forecast the value proportions that would 
result from an average survey respondent confronted with an average wetland restoration scenario, as 
characterized by the Rhode Island Salt Marsh Restoration Survey data. Excluding all “Neither Plan” 
scenarios, which offered zero restoration, Table J-4 summarizes the mean values for services considered 
by the Rhode Island sample. 
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Table J-4:  Definitions and Summary Statistics for Model Variables for Narragansett Bay Wetland 
Restoration Study  

Variable 
Name Description 

Whole Sample 
Mean (Std. Dev.) 

Mean, Excluding 
“Neither Plan” 

Scenariosa 
Neither Neither=1 identifies “neither plan” options 0.333 

(0.471) 
0.000 

Environ Dummy variable identifying respondents with membership in 
environmental organizations 

0.190 
(0.392) 

0.190 

Taxgrp Dummy variable identifying respondents with membership in taxpayer 
associations 

0.023 
(0.151) 

0.023 

Loincome Dummy variable identifying respondents with household income less than 
$35,000/year 

0.245) 
(0.430) 

0.245 

Hiedu Dummy variable identifying respondents with greater than a four-year 
college degree 

0.182 
(0.386) 

0.182 

Birds Ecological improvement to statewide bird populations resulting from 
specified salt marsh restoration plan, compared to all other potential salt 
marsh restoration plans in Rhode Island (0-10 scale) 

2.761 
(2.607) 

4.141 

Fish Ecological improvement to statewide fish populations resulting from 
specified salt marsh restoration plan, compared to all other potential salt 
marsh restoration plans in Rhode Island (0-10 scale) 

2.908 
(2.653) 

4.361 

Shellfish Ecological improvement to statewide shellfish populations resulting from 
specified salt marsh restoration plan, compared to all other potential salt 
marsh restoration plans in Rhode Island (0-10 scale) 

2.907 
(2.652) 

4.362 

Mosquito Increased ability to control statewide mosquito nuisance resulting from 
specified salt marsh restoration plan, compared to all other potential salt 
marsh restoration plans in Rhode Island (0-10 scale) 

2.908 
(2.651) 

4.362 

Size Size of restored salt marsh (minimum 3 acres; maximum 12 acres) 4.889 
(4.397) 

7.334 

Pro-access Dummy variable indicating that respondent feels that access to salt 
marshes should be “somewhat limited” or “unlimited” 

0.837 
(0.370) 

0.837 

Con-access Dummy variable indicating that respondent feels that access to salt 
marshes should be “severely limited” or “prohibited” 

0.227 
(0.419) 

0.163 

Platform Dummy variable indicating that restoration provides “viewing platforms” 
but no “trails” 

0.222 
(0.415) 

0.340 

Both Dummy variable indicating that restoration provides both “viewing 
platforms” and “trails” 

0.222 
(0.415) 

0.332 

Cost Annual cost of restoration plan in increased taxes (minimum $0; maximum 
$200) 

63.169 
(70.782) 

94.754 

a Each wetland restoration choice included the option of choosing neither plan.  In the multinomial logit data, this option is presented as a “plan” with 
zeros for all wetland attributes.  The final column of the table calculates means with the “neither plan” zeros excluded. 

 

Although mean values are used for most attributes (i.e., wetland attributes or services considered by 
survey respondents in choice scenarios), changes in certain attributes are set to zero to correspond more 
closely with the policy scenario and with the Peconic study (because the purpose of this analysis is to 
assess the proportion of the Peconic wetland values that may reasonably be attributed to fish habitat 
services). For example, because the Peconic study survey did not specify or discuss the provision of 
viewing platforms or trails at preserved wetlands, EPA assumed that survey respondents to the Peconic 
study did not consider such provisions when making survey choices. Accordingly, in calculating value 
proportions in this analysis using the Rhode Island data, EPA assumed that viewing platforms and trails 
are not provided. 

EPA also assumed that any wetland created or restored to provide fish habitat will likely not provide a 
great degree of additional mosquito control, because a large proportion of existing salt marshes have 
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already been modified to minimize mosquito production.65 For this reason, modern marsh restoration 
typically does not provide a significant increase in mosquito control. Rather, it often replaces older, more 
detrimental (to marsh function and habitat) forms of mosquito control with Open Marsh Water 
Management (OMWM), in which open water and natural fish predation is used to control mosquito 
nuisance (Kennish 2001).  OMWM has not been an “unqualified success” at eliminating the mosquito 
nuisance (New York Conservationist 1997). Accordingly, for many salt marshes, the positive net effect of 
restoration on mosquito nuisance, if any, is often minimal. To generate the most conservative estimates, 
however, and in recognition of the fact that some salt marsh restoration projects may provide significant 
mosquito control, EPA also estimated value proportions assuming that significant additional mosquito 
control is provided. For all other wetland attributes included in the Rhode Island survey, EPA used the 
mean values shown in the final column of Table J-4.   

Estimation of value proportions is based on the estimated utility function v(.), which specifies the utility 
provided by a wetland restoration plan as a function of the attributes or services provided by that plan 
(Johnston et al. 2002b). That is, following the standard random utility model of Hanemann (1984), the 
underlying model specifies respondents’ choices using the conditional logit specification, in which the 
probability (Pi) of choosing any wetland restoration plan i (plan A, plan B, or neither plan) over the two 
remaining options (j or k) is given by: 
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where v(.) represents the relative benefits or utility resulting from each restoration option, including the 
“neither plan” option. The function v(.) is typically estimated as a simple function of program attributes 
(in this case wetland restoration); in practice linear, functional forms are often used (Johnston et al. 
2002b). 

From the assumptions and model noted above, the attribute definitions given in Table J-4, and the model 
results of Table J-5, the estimated utility function used to calculate value proportions is specified as 
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If mosquito control is not provided, then mosquito=0. Given this linear specification, the proportion of 
wetland restoration value provided by the gain in fish habitat services is given by 
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  Equation J-6 

where v(.)fish represents the value of v(.) with the gain in fish habitat services set to its mean value (as 
described above), and v(.)fish=0 represents the value of the function with the gain in fish habitat services 
set to zero.  

 

                                                      
65The mosquito control variable was included in the survey in response to the strong concern of Rhode Island residents over the 

impact of restoration on mosquitoes and related illnesses for which mosquitoes are the primary vector. Wetlands experts 
indicated, however, that salt marsh restoration had limited impact on mosquito populations in most cases. 

 



 

March 28, 2011  J-12 
Environmental and Economic Benefits Analysis of the Proposed Section 316(b) Existing Facilities Regulation 

Table J-5:  Conditional Logit Results for Narragansett Bay Wetland 
restoration Study 
 Parameter Estimate Std. Error z P>|z| 
Neither 1.157 0.193 5.98 0.0001 
Neither x Environ -1.182 0.223 -5.30 0.0001 
Neither x Tax 0.868 0.365 2.38 0.0170 
Neither x Loincome 0.310 0.144 2.16 0.0310 
Neither x Hiedu 0.415 0.169 2.46 0.0140 
Birds 0.119 0.015 7.78 0.0001 
Fish 0.147 0.016 9.36 0.0001 
Shellfish 0.159 0.016 9.78 0.0001 
Mosquito 0.161 0.016 9.95 0.0001 
Size 0.051 0.010 5.22 0.0001 
Pro-access x Platform 0.168 0.083 2.03 0.0420 
Pro-access x Both 0.431 0.084 5.11 0.0001 
Cost -0.007 0.001 -14.23 0.0001 
-2LnL P2 1157.56 Prob>P2 0.0001 

 

Table J-6 shows the resulting value proportions, in which EPA calculated the proportion of wetland 
restoration value associated with different wetland services based on mean values of wetland attributes 
presented to survey respondents, as discussed above. Analogous methods were used to assess value 
proportions associated with shellfish and other habitat services; Table J-6  shows these results for 
comparison. The table also illustrates the results of a sensitivity analysis in which EPA calculated 
analogous value proportions for wetland habitat services, but allow wetland size to vary. Wetland size 
was allowed to vary from its minimum value in the Rhode Island survey data (3 acres) to its maximum 
value (12 acres), while holding habitat service changes constant.  EPA chose these size values to be 
representative of unrestored salt water wetlands currently existing in Narragansett Bay, which are 
typically quite small (i.e., less than five acres). The three estimates of acreage are therefore likely closer 
to the “average” Rhode Island wetland than estimates based on larger acreages. (In actual wetlands, 
changes in restored acres are typically correlated with larger gains in habitat services (Johnston et al. 
2002b). To illustrate even more conservative estimates, however, Table J-6  contains cases in which 
restored wetland size increases from the mean, without any resultant increase in habitat services.) 

Across scenarios the proportion of value associated with fish habitat ranges from 0.2035 to 0.3231, with a 
mean value over all scenarios of 0.2564 (Table J-6). Scenario 1a is perhaps the most representative 
scenario for estimating value proportions for two reasons: (1) restored wetlands are not expected to 
provide additional mosquito control and (2) other wetland attributes are set to their mean values. Its 
results are somewhat higher than those of scenario 3a, which represents the mean value over all scenarios 
presented. To be conservative (i.e. low) in its estimates, EPA used the proportion calculated in scenario 3a 
(0.2564) as an estimate of the proportion of total wetland restoration value attributable to gains in fish 
habitat services, given representative, mean values for other wetland services.   
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Table J-6:  Proportions of Restored Wetland Value Associate with Various Service 
Categories 

Restoration Scenario 
Percentage of Value Associated with Service: 

Fish Habitat Bird Habitat Shellfish 
Habitat 

Mosquito 
Control 

Otherb 

1a: No additional mosquito 
control; mean values for all other 
attributes 

0.291 0.224 0.315 0.000 0.170 

1b: No additional mosquito 
control; mean values for habitat 
gains; Size=3 acres 

0.323 0.249 0.350 0.000 0.077 

1c: No additional mosquito 
control; mean values for habitat 
gains; size=12 acres 

0.262 0.202 0.284 0.000 0.251 

2a: Mosquito control at mean 
value; mean values for all other 
attributes 

0.220 0.170 0.239 0.242 0.129 

2b: Mosquito control at mean 
value; mean values for habitat 
gains; size=3 acres 

0.238 0.184 0.258 0.262 0.057 

2c: Mosquito control at mean 
value; mean values for habitat 
gains; size=12 acres 

0.204 0.157 0.220 0.224 0.195 

3a: Mean over all scenarios 0.256 0.198 0.278 0.121 0.147 
 

a Results assume that restoration does not provide viewing platforms or hiking trails. 
b Other services may include, among others, nutrient transformations, storm buffering, and coastal erosion control. 

 

Although these numbers are not directly comparable to other results found in the literature, they appear to 
be reasonable and conservative compared to similar proportions generated for freshwater habitats. For 
example, Schulze et al. (1995) estimate that between 32.98 percent and 33.44 percent of WTP for 
resource cleanup in the Clark Fork River Basin was associated with “aquatic resources and riparian 
habitat” (p. 5-13). 

EPA also considered directly the parametric results of Table J-5 for further support of the soundness of 
the proposed value proportions. Estimates presented in Table J-5 indicate that the parametric weights are 
similar among the dominant wetland services in Narragansett Bay (i.e., bird habitat services, fish habitat 
services, shellfish habitat services, and mosquito control). In other words, the parameter estimates are 
very similar among these four variables. This correspondence suggests that restoration providing similar 
scale improvements for each of these services should produce a roughly equivalent increment to utility. 
Given the four habitat services considered in the survey (including mosquito control), each service 
provides roughly 1/4 (or 25 percent) of the total marginal utility associated with the combination of 
habitat improvements and mosquito control. For wetlands that do not provide substantial access 
provisions (e.g., boardwalks) and that are of moderate or small size, it would be highly improbable for the 
proportion of value associated with fish habitat to fall significantly below the 25.64 percent 
approximation estimated here. 
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J.6 Determining the Affected Population and Estimating Aggregate Values 

 
 
 

Table J-7: Number of Households by State and Percentage of Regional Habitat Acres Assigned to 
Each State.  

State 
No. of 

Households California 
North 

Atlantic Mid-Atlantic
South 

Atlantic 
Gulf of 
Mexico Great Lakes Inland 

AL 1,836,096 - - - - - - 5.90% 
AR 1,132,706 - - - - - - 1.53% 
AZ 2,266,797 - - - - - - 0.21% 
CA 12,371,970 100.00% - - - - - <0.01% 
CO 1,891,368 - - - - - - 0.22% 
CT 1,365,529 - 29.83% - - - - 0.14% 
DC 268,559 - - - - - - <0.01% 
DE 329,246 - - 5.08% - - - 0.02% 
FL 7,252,011 - - - 70.27% 53.26% - 0.54% 
GA 3,472,892 - - - 2.66% - - 2.36% 
IA 1,248,977 - - - - - - 1.73% 
IL 4,821,525 - - - - - 3.76% 7.30% 
IN 2,501,050 - - - - - 11.63% 4.58% 
KS 1,120,251 - - - - - - 1.56% 
KY 1,695,340 - - - - - - 2.53% 
LA 1,595,221 - - - - 7.44% - 5.02% 
MA 2,533,224 - 49.80% - - - - 0.11% 
MD 2,138,174 - - 24.02% - - - 0.34% 
ME 561,927 - 3.54% - - - - 0.08% 
MI 3,977,292 - - - - - 35.46% 1.62% 
MN 2,095,360 - - - - - 1.27% 1.56% 
MO 2,373,024 - - - - - - 4.51% 
MS 1,106,531 - - - - 2.28% - 0.66% 
MT 383,318 - - - - - - 0.13% 
NC 3,562,025 - - - 19.12% - - 6.24% 
ND 285,857 - - - - - - 0.65% 
NE 719,904 - - - - - - 2.17% 
NH 518,506 - 12.92% - - - - 0.17% 
NJ 3,186,057 - - 22.20% - - - 0.08% 
NM 735,720 - - - - - - 0.03% 
NV 947,691 - - - - - - 0.05% 
NY 7,303,783 - - 31.93% - - 19.52% 1.85% 
OH 4,622,384 - - - - - 11.95% 4.92% 
OK 1,431,014 - - - - - - 1.36% 
OR 1,476,434 - - - - - - 0.04% 
PA 5,021,383 - - 0.17% - - 0.20% 4.77% 
RI 419,621 - 3.91% - - - - - 
SC 1,718,297 - - - 7.94% - - 4.36% 
SD 327,165 - - - - - - 0.01% 
TN 2,449,562 - - - - - - 6.81% 
TX 8,271,247 - - - - 37.02% - 17.89% 
UT 837,511 - - - - - - 0.03% 
VA 2,996,176 - - 16.60% - - - 1.32% 
VT 260,831 - - - - - - 0.23% 
WA 2,519,727 - - - - - - 0.18% 
WI 2,302,752 - - - - - 16.21% 1.23% 
WV 756,778 - - - - - - 2.80% 
WY 211,883 - - - - - - 0.16% 


