SKYSHINE AND ADJACENT STRUCTURES Thomas Potts, M.S.

Radiation scattered by the atmosphere above a vault to points on the ground around the outside perimeter. Skyshine is important when a vault roof is essentially unshielded, i.e. the roof is designed to protect from the elements only.

Where:

 d_s = horizontal distance in meters from isocenter to point of measurement.

d_i = vertical distance from target to 2 meters above the roof surface.

Where:

d_s = horizontal distance in meters from isocenter to point of measurement.

d_i = vertical distance from target to 2 meters above the roof surface.

 Ω = solid angle of maximum radiation field size

$$\begin{split} B_{XS} &= 4.02 \times 10^{-6} \ D(d_i d_s)^2 / (D_{io} \Omega^{1.3}) \qquad \text{(eq. 1)} \\ \text{Where:} \\ B_{XS} &= \text{roof material transmission ratio} \\ D &= \text{photon dose equivalent rate} \\ & \text{(nSv s}^{-1}\text{) at point of measurement.} \\ D_{io} &= \text{linac output (cGy/s) at isocenter (1 m).} \end{split}$$

To Add a Level of Shielding:

NCRP 51, p 69

Solving Eqn. 1 for D:

$$D = 2.49 \times 10^5 B_{xs} D_{io} \Omega^{1.3} / (d_i d_s)^2$$
(eq. 2)

Determination of Solid Angle

■ For a beam with a circular cross section:

$$Ω = 2π(1-\cos θ)$$

Where: Ω = solid angle in steradians

iq = n

 θ = angle between CAX and

beam edge.

Determination of Solid Angle

For a 40 cm x 40 cm field at 100 cm:

 $\theta = \tan^{-1}(20 \text{ cm}/100 \text{ cm}) = 11.3^{\circ}$

So:

 $\Omega = 6.28 (1 - \cos 11.3) = 0.122 \text{ ster}$

A Photon Calculation

A Photon Calculation

Assume:

■ D_{io} = 600 cGy/min = 10 cGy/s at isocenter (100 cm)

A Photon Calculation

Assume:

- \blacksquare D_{io} = 600 cGy/min = 10 cGy/s at isocenter (100 cm)
- Roof provides no photon shielding, i.e. $B_{xs} = 1.00$

A Photon Calculation

Assume:

- D_{io} = 600 cGy/min = 10 cGy/s at isocenter (100 cm)
- Roof provides no photon shielding, i.e. $B_{xs} = 1.00$
- Calculation of solid angle adequately approximates square beam geometry.

A Photon Calculation

Then:

 $D = 2.49 \times 10^5 B_{xs} D_{io} \Omega^{1.3} / (d_i d_s)^2$

=2.49 x $10^{5}(1)(10)(0.122^{1.3})/(8.2x5.3)^{2}$

=85.6 nSv/sec

NEUTRONS

Where:

■ Ω = solid angle defined by target and vault walls.

Where:

- Ω = solid angle defined by target and vault walls.
- d_i and d_s are as previously defined.

To calculate shielding:

 $B_{ns} = 1.19 \times 10^{-5} \,H \,(d_i)^2/\Phi_o \Omega$ (eq. 3)

Where:

 B_{ns} = roof neutron shielding ratio.

H = neutron dose equivalent at ground (nSv/s).

 d_i = distance from target to roof + 2 m.

 Φ_0 = neutron fluence rate (cm⁻²s⁻¹) at isocenter.

 Ω = solid angle defined by target and vault walls. NCRP 51 p 71

To calculate shielding:

■ Note absence of d_s in equation 3.

To calculate shielding:

- Note absence of d_s in equation 3.
- Equation 3 is intended for use at all distances d_s < 20 meters.

Solving Eqn. 3 for H:

 $H = 8.4 \times 10^5 B_{ns} \Phi_o \Omega / d_i^2$ (eq. 4)

To predict dose equivalent rates within 20 feet of an outside wall.

Determination of Solid Angle BRIDGE SECTION

Determination of Solid Angle

- Floor to isocenter = 1.3 m
- Target to isocenter distance = 1.0 m
- Wall height = 3.5 m

So, target to ceiling = 3.5-1.3-1=1.2 m (the side adjacent to θ)!

Determination of Solid Angle BELLING SECTION

Determination of Solid Angle

 Using an architect's scale, the distance from the isocenter to the wall = 5.0 m (the side opposite θ)!

So,
$$\theta = \tan^{-1}(5/1.2) = 76.5^{\circ}$$

OR.....

Determination of Solid Angle

You could just measure θ with a protractor....

Determination of Solid Angle

So:

 $\Omega = 2\pi(1-\cos 76.5^{\circ}) = 4.8 \text{ ster}$

To Calculate H:

From McGinley, page 96:

 $\Phi_{\rm o}$ = 6.6 x 10⁵ cm⁻²s⁻¹ based the author's on measurements using an 18 MV beam.

To Calculate H:

From NCRP 51, Appendix F, p 117:

 ${
m B}_{
m ns}$ = 3 x 10⁻¹⁰ Sv cm⁻² for a average neutron energy of 1.1 MeV.

Energy based on "CLINAC 1800, 2100C(/D), 21EX,23EX RADIATION LEAKAGE DATA" VARIAN Oncology Systems (4/98)

To Calculate H: So: $H = (8.4 \times 10^{4})(3 \times 10^{-10})(6.6 \times 10^{5})(4.8)/(3.4)^{2}$ = 6.9 nSv/s

How well does it work? McGinley, page 98: Neutrons: Predicts a constant exposure out to d_s = 20 meters. Measured data varies by a factor of three over this range.

What has changed? ■ Skyshine: NCRP report 151, pp 84-87: NOTHING NEW!!!