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Preface

These are the lecture notes for the graduate-level Physical Meteorology MAPH40240 module,

part of the MSc in Meteorology at UCD (http://mathsci.ucd.ie/met/msc/). Chapters 2 and

3 draw heavily from Bohren and Albrecht’s excellent Atmospheric Thermodynamics, one

of the best textbooks I have ever come across in any field. Other useful references are:

G.W. Petty, A First Course in Atmospheric Radiation; R.T. Pierrehumbert, Principles of

Planetary Climate (http://geosci.uchicago.edu/ rtp1/ClimateBook/ClimateBook.html) and

Garratt, The Atmospheric Boundary Layer.
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Chapter 1

Introduction

1.1 Composition of the atmosphere

Atmospheric constituents can be classed in two groups: those that are well mixed, and those

that are variable. Nitrogen and oxygen, which account for roughly 99% of the atmosphere

(Table 1.1), are examples of the former. These constituents have long residence times—they

enter and leave the atmosphere much more slowly than the typical time it takes for turbulence

to mix them up thoroughly throughout the atmosphere. As a result, their number fraction is

essentially constant in space and time. Because of this, it is possible (from the physical and

thermodynamic point of view) to treat the “soup” of well-mixed gases as if it consisted of

a single species with molecular weight equal to the constituents’ average molecular weight.

This fictitious gas is called dry air.

The most important variable constituent is water vapour. Water is the only atmospheric

constituent that can change phase at the typical pressures and temperatures experienced in

the Earth’s atmosphere. It can condense to form clouds and precipitate out as rain, and it

can evaporate from the surface and from cloud and rain droplets. These are fast processes, so

the residence time of water vapour is brief. At any given instant, water vapour can account

9



CHAPTER 1: INTRODUCTION 10

for anything between 5% of the atmosphere (near the surface in the tropics) and almost zero

(in the stratosphere). To an excellent approximation, the atmosphere can be considered as

a two-component gas, made up of variable proportions of dry air and water vapour.

Table 1.1: Composition of the atmosphere. Number fractions (other than for water vapour) are specified

with respect to dry air.

Constituent Number fraction [%]

Nitrogen (N2) 78.08

Oxygen (O2) 20.95

Argon (Ar) 0.93

Carbon dioxide (CO2) 0.038

Neon (Ne) 0.001818

Helium (He) 0.000524

Methane (CH4) 0.0001745

Krypton (Kr) 0.000114

Hydrogen (H2) 0.000055

Water vapour (H2O) 0—5

Ozone (O3) 0—0.00001

1.2 Observed vertical structure

Vertical soundings of temperature, pressure and humidity are taken daily at a large number of

meteorological stations spanning the globe. The data thus obtained are among the principal

inputs to weather forecasting. There is a single sounding station in the Republic of Ireland,

picturesquely sited in Valentia Island off the Kerry coast. Figure 1.1 shows a randomly

selected sample sounding from Valentia. This serves to illustrate some key general features

of the atmosphere’s vertical structure:

• Pressure decreases smoothly with height. Surface pressure is about 1000 hPa.
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Figure 1.1: Sounding at Valentia station, south-west Ireland, at 00Z on 14 September 2005.

• Temperature also decreases with height, though there is much more structure (more

wiggles) in the profile. The rate of decrease or lapse rate is on average 6◦C/km (though

in this particular sounding is closer to 5◦C/km). Above a certain height (about 15 km)

the temperature increases with height (the lapse rate is negative). The cross-over point

is known as the tropopause, separating the troposphere below from the stratosphere

above. Surface temperature is about 15◦C or 288 K. A useful round-number value to

keep in mind as a typical surface temperature is 300 K.

• Density decreases with height, mirroring the pressure. The surface value is roughly 1

kg/m3.

• Humidity decreases sharply with height, dropping to near zero above 2–3 km.



Chapter 2

Thermodynamics of dry air

2.1 Pressure, temperature and the ideal gas law

The pressure exerted by a gas on a surface is due to the incessant pelting of the surface

by the gas’s constituent molecules. The more molecules there are near the surface, and the

faster they are moving, the higher the pressure. Note that pressure is due to only to the local

properties of the gas and not to anything going on far away. Also, if the molecular motion has

no preferred direction (i.e. if the gas as a whole is at rest), then pressure does not depend on

the orientation of the surface. The number of molecules can be expressed as a density, and,

as we will see, the mean speed can be expressed as a temperature. Thus, pressure increases

with density and temperature; the ideal gas law is a formal (i.e. mathematical) statement

of this relationship.

To derive the gas law, we first need to quantify the force exerted by a molecule colliding

with a surface. Consider a particle of mass m and velocity v colliding elastically with a wall

over the course of the time interval t (Figure 2.1). Using Newton’s 2nd law

F = ma = m
dv

dt
, (2.1)

12
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Figure 2.1: A particle bouncing elastically off a solid wall.

we can write the cumulative force experienced by the particle over time t, a quantity known

as the impulse, as

I =
∫ t

0
Fdt = m(v′ − v). (2.2)

Assuming that the collision is elastic, the components of the impulse are

Ix = −2mvx (2.3)

Iy = 0. (2.4)

This is the impulse on the particle; by Newton’s 3rd law, the impulse on the wall will be

equal and opposite, giving Ix = 2mvx.

Now consider a box of volume V containing N identical molecules (Figure 2.2). We make 4

assumptions: (i) the particles have negligible volume; (ii) the particles do not attract each

other (though they may collide); (iii) collisions with the wall are elastic, and (iv) the motion

is isotropic, i.e. there are equal numbers of particles moving in each direction. The impulse

on a wall of the box, orthogonal to the x-axis, due to particles moving with x-velocity vx is

Ix(t, vx) = 2mvx · Avxt
N

V
P (vx) = 2mnv2

xP (vx)At (2.5)

where A is the area of the wall, n = N/V is the particle number density, and P (vx) is the

probability that a given particle has x-velocity vx. The formula above is derived by noting
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vx t

Figure 2.2: A box full of moving particles. All particles with x-velocity component vx contained in the

shaded volume will collide with the right-hand wall over the time period t.

that all molecules having speed vx and contained in a sub-volume of thickness vxt adjacent

to the wall, will collide with the wall over the time period t.

To get the total impulse, we need to sum over the contributions due to all positive values of

vx (particles with negative vx will obviously not collide with the wall):∫ ∞

0
Ix(t, vx)dvx = mn〈v2

x〉At, (2.6)

where we have defined

〈v2
x〉 ≡

∫ ∞

−∞
v2

xP (vx)dvx = 2
∫ ∞

0
v2

xP (vx)dvx (2.7)

and the second equality follows from the assumption of isotropy. Isotropy also implies that

〈v2〉 = 〈v2
x〉 + 〈v2

y〉 + 〈v2
z〉 = 3〈v2

x〉 (2.8)

where for simplicity we use v2 to denote the squared modulus |v|2. Finally, we define pressure

as the impulse per unit time (i.e. force) per unit area:

p =

∫∞
0 Ix(t, vx)dvx

At
=

1

3
nm〈v2〉. (2.9)

Thus, as anticipated above, pressure is proportional to density and to the mean squared

velocity. To bring temperature into the picture, we simply define

kT ≡ 1

3
m〈v2〉. (2.10)
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where T is temperature (in Kelvin) and k = 1.38 × 10−23 J K−1 is Boltzmann’s constant.

Note that Boltzmann’s constant is not a universal constant (like the speed of light), but

is simply a unit conversion factor. Temperature is just another name for the mean kinetic

energy density of molecular motion.

With this definition, we arrive at the ideal gas law:

p = nkT, (2.11)

which can also be written in the more familiar form

p = ρRT (2.12)

where ρ = nm is the mass density and R = k/m is the gas constant. Dry air has m = 28.97

atomic mass units (AMU)1 and R = 287 J K−1 kg−1.

2.1.1 Momentum flux and the pressure gradient force

Until now, we have only considered the pressure acting on a solid surface in contact with a

gas. However, we would also like to define pressure in the interior of the fluid, away from

the walls of the box—the atmosphere, after all, has pressure everywhere, not just where it

makes contact with the ground. To do this, we need to consider the way that momentum is

transported around by the moving particles.

Given any physically measurable quantity (such as mass, particle number or momentum), its

flux is the amount of the quantity flowing through a unit area per unit time. For instance,

consider a pipe of cross-sectional area A containing an ideal gas with an isotropic velocity

distribution (Figure 2.3). Following the same reasoning used to obtain (2.5) and (2.6), we

can write the flux of particles across an imaginary cross-sectional surface (indicated by S in

the figure) as
1

At

∫ ∞

0
[vxtAnP (vx) − vxtAnP (−vx)] dvx = 0, (2.13)

1The atomic mass unit, 1.661×10−27 kg, is defined as 1/12 the mass of a 12C atom.
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vx t vx t

S S'

Figure 2.3: A pipe full of moving particles. All particles with x-velocity component ±vx contained in the

shaded volume will pass through imaginary surface S in time t.

where the 1st term on the l.h.s. counts particles moving from left to right while the 2nd

term counts those moving from right to left. Because of isotropy, P (vx) = P (−vx) and so

the result is 0. There is no net transfer of particles across the imaginary surface: though its

constituent molecules are whizzing around tirelessly, the gas as a whole is at rest (there is

no wind in this wind tunnel). Note that the flux defined here is a vector quantity, so the

particles moving from right to left give a negative flux.

Now consider the flux of momentum across the same imaginary surface:

1

At

∫ ∞

0

[
mv2

xtAnP (vx) + mv2
xtAnP (−vx)

]
dvx = mn〈v2

x〉 = p. (2.14)

Though there is no net flux of particles, there is a positive flux of momentum, which is

exactly equal to the pressure that would be exerted on a solid wall. Pressure is a flux of

momentum.

This may seem slightly pointless up to here, but it becomes more interesting when you

consider what happens when pressure is not uniform in the pipe. Let’s say the molecules

are moving a bit more slowly at position S′ in the pipe, so that the pressure p′ there is a bit

smaller than at S. The molecular motion is still isotropic, so there is still no overall flow in

the pipe. But now, more momentum is entering through S than is leaving through S′. The

net momentum of the gas contained in the segment SS′ is increasing: if it was zero initially,

it will grow and become non-zero. In other words, the gas will accelerate and begin to flow.

The flow occurs down the pressure gradient, i.e. from high pressure to low. The key point
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here is that you can’t really speak of the gas to the left of S “pushing” on the gas to the right

of S. Rather, it is a case of fast particles travelling into SS′ from the left and slow particles

moving out from the right, so that overall the rightward (positive) velocity increases.

2.2 The Maxwell-Boltzmann distribution

In the derivation of the ideal gas law, the probability distribution P (vx) played a key role.

In particular, we defined the temperature as a quantity proportional to the mean squared

speed of the molecules. But just what is this distribution? Can it change over time?

The possibility of time variability causes a bit of a problem. Consider, for instance, a gas

in an isolated box. Imagine you initialize all the molecular velocitites to point in the same

direction, like a beam. There is a well-defined velocity distribution, and so we can (at least

in principle) define a temperature. However, molecular motion is a chaotic process. Any tiny

initial anomalies in the molecules’ direction will be amplified as molecules collide with walls

and with each other. This will remove molecules from the original beam and create a set

of “diffuse” molecules moving in random directions. The probabiltiy distribution will thus

change; as a result, the temperature and pressure will also, in general, change over time. But

this contradicts our usual experience (or assumption) that a gas left alone in an isolated box

will maintain constant temperature and pressure. This is the definition of thermodynamic

equilibrium, and classical thermodynamics deals only with equilibrium systems.

So can we conceive of a velocity distribution which does not change in time, which would

characterize a gas in equilibrium? The answer is yes. The key characteristic of such an

invariant velocity distribution is that collisions will redirect as many molecules away from

a given velocity as they do into that same velocity. This condition can be expressed mathe-

matically as follows. Consider two molecules, moving with velocities v1 and v2 respectively,

which after colliding take on velocities v′
1 and v′

2. Then a necessary and sufficient condition
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for the velocity distribution f to be time-invariant is

f(v1)f(v2) = f(v′
1)f(v′

2) (2.15)

for all possible sets of initial and final velocities. Note that there is no need for the collisions

themselves to be isotropic–i.e., some collisions may be more frequent than others.

Given the condition above, we can derive the full functional form of the invariant distribution.

Taking the logarithm of Eq. (2.15),

ln f(v1) + ln f(v2) = ln f(v′
1) + ln f(v′

2), (2.16)

which implies that ln f(v) must be a constant of motion, i.e. a quantity that is conserved at

all times during the motion. A simple point particle has 4 constants of motion: the kinetic

energy mv2/2 and the 3 components of the linear momentum, mvx, mvy, mvz. If the mass is

constant and equal for all particles, then the relevant constants of motion are v2, vx, vy and

vz. Equation (7.1) implies that ln f(v) must be a linear combination of these constants of

motion, which can be written in the most general form as

ln f(v) = −B|v − v0|2 + ln A, (2.17)

implying

f(v) = A e−B|v−v0|2 (2.18)

where A, C and the three components of v0 are 5 constants. To determine these constants,

we first note that the mean velocity

〈v〉 = A
∫

ve−B|v−v0|2dvxdvydvz = A
∫

(v − v0)e
−Bv2

dvxdvydvz = v0, (2.19)

so if we assume that the gas has no mean motion, then v0 = 0. We can then use spherical

coordinates to write

f(v)dvxdvydvz = Ae−Bv2

v2 cos ϕ dϕdθdv (2.20)

and integrating over ϕ and θ we find that the probability density function for the speed v is

f(v) = 4πA v2 e−Bv2

. (2.21)
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The constants A and B are determined by the normalization condition

∫ ∞

0
f(v)dv = 1 (2.22)

and the definition of temperature

kT =
1

3
m〈v2〉 =

1

3
m
∫ ∞

0
v2f(v)dv. (2.23)

Carrying out the integrations and solving for A and B yields the Maxwell-Boltzmann distri-

bution

f(v) = 4π
(

m

2πkT

)3/2

v2 e−
mv2

2kT . (2.24)

This is the probability distribution function for the molecular speeds of a gas in equilibrium,

in terms of the single macroscopically-measurable quantity T . Note that the distribution is

isotropic, i.e. does not depend on the direction but only on the speed of the molecules. It can

be shown that a gas initialised with any velocity distribution will always evolve over time to

assume just such a time-invariant isotropic distribution, a process referred to as relaxation

to thermodynamic equilibrium.

2.3 Hydrostatic equilibrium

z

z+∆zg

Figure 2.4: Ideal gas under the action of gravity.

Now let’s look at the particles in the box again, but this time we’ll add the effect of gravity.

The effect is quite interesting: we expect the particles to accelerate as they travel downwards,
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and slow down as they travel upwards, rather like a bouncing ball. Mean velocities will be

greater near the bottom of the box than near, the top: in other words, pressure decreases

with height. We will now work out an equation giving the precise rate of decrease.

Consider a thin horizontal layer of thickness ∆z. If we assume that the gas as a whole is at rest

(or is moving with constant velocity), then the layer cannot be gaining or losing momentum.

Recalling from the previous section that pressure is simply the flux of momentum, we can

write the vertical momentum budget for the layer as

p(z)A − p(z + ∆z)A − A∆znmg = 0 (2.25)

which can be rearranged to
p(z + ∆z) − p(z)

∆z
= −nmg (2.26)

and in the limit ∆z → 0 :
dp

dz
= −ρg, (2.27)

which is the equation of hydrostatic equilibrium. Remember the key assumption: the gas is

not accelerating in the vertical (though it may be moving and accelerating in the horizontal).

2.3.1 When is the atmosphere in hydrostatic equilibrium?

u 

w

x 

z 

u' 

Figure 2.5: Horizontal convergence produces vertical acceleration.

The atmosphere will be close to hydrostatic equilibrium when vertical accelerations are much

smaller than g. To answer the question, we need to examine the mechanisms that generate
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vertical acceleration. One is horizontal convergence. When the horizontal wind field is not

uniform, the air will tend to “bunch up” in some areas (see Figure 2.5). Since air, is to

all intents and purposes, incompressible (just try squeezing air in a plastic bag), air must

accelerate vertically in these bunching-up or convergence zones. To estimate the size of this

acceleration, consider the following. The volume of the box sketched in Figure 2.5 is xz, and

must stay constant in time because of incompressibility. Thus

d

dt
(xz) = 0 = x

dz

dt
+ z

dx

dt
= xw − z∆u, (2.28)

where ∆u = u − u′, and so

w =
z

x
∆u. (2.29)

The vertical acceleration is then

d

dt
w =

w

x
∆u +

z

x2
∆u2 = 2

z

x2
∆u2 (2.30)

where we have taken ∆u to be constant. To get an order-of-magnitude estimate, take z ∼ 10

km (the depth of the troposphere) and ∆u ∼ 10 m s−1. Then if x = 1000 km, the acceleration

will be order 10−6 m s−2, which is negligible compared to g = 9.8 m s−2. On the other hand,

x = 1 km gives an acceleration of order 1 m s−2, which begins to be comparable with

gravity. Horizontal velocity changes of ∼ 10 m s−1 over distances of ∼ 1 km are sometimes

observed in the vicinity of surface fronts, and in these regions hydrostatic balance will not

be a good approximation. But on scales > 10 km the atmosphere is hydrostatic to a very

good approximation.

Another way of generating vertical acceleration is static instability, which occurs when denser

fluid lies over lighter fluid. Since the atmosphere is mostly heated from the surface, static

instability occurs very often, and leads to overturning motion with areas of strong rising and

sinking. Within these areas, the atmosphere is not in hydrostatic equilibrium. However, the

size of these patches is small, with typical horizontal scale less than ∼ 10 km. Averaging

over a horizontal area of, say, 100 km2, the up and down motions cancel out. Once again, on

scales greater than ∼ 10 km, the atmosphere remains in hydrostatic equilibrium. Overall, it

can safely be stated that atmospheric motions with horizontal scales > 10 km are always in

hydrostatic equilibrium.
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2.4 Surface pressure and the mass of the atmosphere

If we integrate (2.27) vertically from the surface (z = 0) up to a very large height, where

p = 0, we find

ps =
∫ ∞

0
gρ dz = Mg, (2.31)

where ps is surface pressure and M is the total mass of atmosphere contained in a column

of unit cross section. Thus, for a fluid in hydrostatic equilibrium, pressure at a certain point

is proportional to the mass of fluid above that point. This nice simple result needs to be

interpreted with some care to avoid confusion. Consider the following:

• When a Jumbo jet passes overhead, the mass of the atmospheric column above your

head increases quite considerably. If you are holding a barometer in your hand, would

you expect it to give a much higher reading?

• If you’re scuba diving and a supertanker passes over you, does the pressure on you

increase? Is this situation identical to the previous one?

2.5 Vertical structure of pressure, scale height

Since g and ρ are always positive, hydrostatic equilibrium (2.27) implies that pressure always

decreases with height. To compute the vertical structure of pressure, we need to know the

behaviour of ρ with height, which depends on temperature: using the ideal gas law, we have

dp

dz
= − g

RT
p. (2.32)

This can be integrated to give

p(z) = p0e
−z/H(z) (2.33)

where p0 is surface pressure and we have introduced the scale height

H(z) =
R〈T 〉

g
, (2.34)
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Figure 2.6: Left panel: Temperature profile at Valentia. The profile does not depart from the vertical

average (dotted line) by more than about 20%. Right panel: Observed pressure profile (solid) and

approximation computed using constant scale height (dotted).

where

〈T 〉 =

(
1

z

∫ z

0

dz

T

)−1

(2.35)

is the so-called harmonic mean of temperature between the ground and z.

Note that the scale height thus defined depends on z, since T generally changes with height.

In our atmosphere, however, its variation is actually not so great (see Figure 2.6), so it’s not

too bad an approximation to take H as a constant. In this case, p decreases exponentially

with a decay rate H . As shown in Figure 2.6, the fit is quite good.

2.6 Layer thickness and the hypsometric equation

Equation (2.33) implies that as temperature increases, pressure decreases more slowly with

height, ie. the atmosphere gets deeper. To show this explicitly, we can invert (2.33) to get

the hypsometric equation (from the Greek hupsos for height):

z = ln

(
p0

p

)
H(p) (2.36)

where H(p) is the scale height for the layer between the ground and pressure-level p.
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Exercise 2.6: Show that the harmonic mean (2.35) can also be written as

〈T 〉 =

∫ p0
p Td ln p∫ p0
p d ln p

. (2.37)

The hypsometric equation says that the thickness of an atmospheric layer bounded by any

two pressures is proportional to the (harmonic) mean temperature within the layer. This

implies that a horizontal temperature gradient will create a horizontal pressure gradient,

generally leading to motion.

2.7 Surface pressure and sea level pressure

Figure 2.7: January climatology of sea level pressure (left) and surface pressure (right). Data from NCEP

Reanalysis.

Atmospheric motions cause changes in pressure at the surface—this is why a barometer

is useful in predicting weather. However, as Fig. 2.7 makes clear, these changes are tiny

(∼ 10 mb) compared to changes in surface pressure due to orography—mountain ranges on

Earth have heights comparable to the scale height. To plot and track the meteorologically

significant pressure perturbations, we need to subtract the orographic effect. This is done
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by projecting surface pressure over mountain ranges down to sea level using the hypsometric

equation. In other words, we plot the sea-level pressure that would be obtained if the

mountain were replaced by air. This requires an arbitrary assumption about the temperature

of the air that replaces the mountain. The simplest assumption is that this temperature is

the same as the air temperature just above the mountain. This is good for low mountains,

but for tall mountains it can lead to substantial biases. It is a particular problem over

Greenland, which is tall (∼ 3 km) and very cold.

2.8 Energy of a point mass in Earth’s gravitational

field

For a point of mass m interacting gravitationally with Earth (assumed spherical), Newton’s

laws give

− GMEm

(RE + z)2
= m

dvz

dt
, (2.38)

where G is the universal gravitational constant,ME and RE are Earth’s mass and radius and

z is height above the surface. Multiplying by vz,

− GMEm

(RE + z)2

dz

dt
= mvz

dvz

dt
, (2.39)

which can be re-written
d

dt

(
1

2
mv2

z −
GMEm

RE + z

)
= 0. (2.40)

The quantity in parentheses is an invariant of the motion called energy. Note that the

expression “conservation of energy” is something of a tautology, since energy is conserved

by definition. Because of the derivative on the l.h.s., we are free to add a constant to the

definition of energy. We choose the constant GMEm/RE , which leads to energy defined as

E =
1

2
mv2

z +
GMEm

RE

(
1 − 1

1 + z/RE

)
(2.41)

The first term on the r.h.s is called the kinetic energy (KE), and is always positive. The

second term is the gravitational potential energy (PE), and is also positive assuming particles
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do not go below Earth’s surface. Because energy is constant, any increase in KE must be

compensated by a decrease in PE and vice-versa.

Since Earth’s atmosphere is only about 100 km thick, z � RE , and a first-order Taylor

expansion gives

E =
1

2
mv2

z + mgz (2.42)

where

g =
GME

R2
E

(2.43)

is the acceleration due to gravity at the Earth’s surface.

2.9 Molecular interpretation of the scale height

Recalling that R = k/m, the scale height (2.34) can be written

H =
k〈T 〉
mg

=
m〈v2〉/3

mg
(2.44)

which allows us to interpret H as roughly the distance a molecule must rise for its potential

energy to match its typical kinetic energy. By conservation of energy, particles will be able

to rise higher the greater the temperature or the smaller the gravity. Thus, an atmosphere

in hydrostatic equilibrium gets thicker as it gets warmer, and for a given temperature, a

smaller planet will have a thicker atmosphere.

2.10 Escape velocity and why we don’t lose our atmo-

sphere

Imagine a molecule near the top of the atmosphere which is moving directly upward. Since

it is near the top of the atmosphere, it is unlikely to collide with other molecules. If its initial



CHAPTER 2: THERMODYNAMICS OF DRY AIR 27

velocity is low, it will gradually convert all its KE into PE, come to a halt, and fall back

down to Earth. However, (2.41) shows it takes a finite amount of energy, GMEm/RE , to lift

a mass from the ground to infinity. If the molecule’s initial KE is greater than this value,

it will never come to a halt, and will escape the Earth for good. The threshold velocity is

known as the escape velocity

ve =
(

2GME

RE

)1/2

(2.45)

and is about 11.2 km s−1.

If a substantial number of molecules achieve escape velocity, then the atmosphere will rapidly

be lost to space. The probability that a given molecule’s speed will exceed ve is given by

fe =
∫ ∞

ve

f(v)dv (2.46)

where f(v) is the Maxwell-Boltzmann distribution (2.24). There will always be some chance

of finding a molecule moving faster than ve. However, if m is large or T is small, the

probability will be so small that it would take billions of years to lose the atmosphere. Given

typical Earth temperatures, all atmospheric constituents find themselves in this situation.

2.11 Energy of two point masses joined by a spring

x1 x2

F1 F2

Figure 2.8: Two point masses joined by a spring.

An ideal spring is one which exerts a force proportional to its extension. Consider two

identical point masses joined by such a spring (Fig. 2.8). The equation of motion for mass

1 is

F1 = K∆x = mv̇1 (2.47)
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where K is the spring constant, ∆x = x2 − x1 and we are using the notation ẋ = dx/dt. For

mass 2 we have

F2 = −K∆x = mv̇2 (2.48)

implying v̇1 = −v̇2. Subtracting one equation from the other and multiplying through by

v2 − v1:

−2K∆ẋ∆x = m(v2 − v1)(v̇2 − v̇1) = 2m(v1v̇1 + v2v̇2) (2.49)

which can be rewritten
d

dt

(
1

2
mv2

1 +
1

2
mv2

2 +
1

2
K∆x2

)
= 0. (2.50)

Thus, this system also has an energy, which can be thought of as the sum of the KE of the

two masses plus an elastic PE. This is a fairly good model for a diatomic molecule, except

for one important detail: at the molecular level, quantum mechanics applies, and the energy

of the molecule can only take on a discrete set of values. This has important macroscopic

consequences, as we will see shortly.

2.12 External and internal energy

Let’s consider now the energy of a large collection of particles—that is, let us look at energy

from the macroscopic perspective. For definiteness, consider N diatomic molecules in a rigid,

isolated box. “Rigid” means that the molecules conserve their kinetic energy when colliding

with the walls, and that the box does not change shape or size; “isolated” means that no

forces (other than gravity) act on the molecules. Under these circumstances, the total energy

of the molecules will remain constant. The total energy of the molecules is simply the sum of

their KE, gravitational PE and elastic PE (we neglect electronic and other forms of energy

since they are largely irrelevant for atmospheric processes):

E =
∑

i

(
1

2
mv2

i + mgzi + Ri + Vi

)
(2.51)

where the sum extends over all molecules in the box, zi and vi are the height and speed of

(the centre of mass of) each molecule, Ri represents rotational KE and Vi vibrational PE

(the elastic PE due to stretching of the molecular bond).
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Now let’s write

vi = 〈v〉 + ṽi, (2.52)

that is as the sum of the mean velocity and a zero-sum deviation from the mean. Then

∑
i

v2
i = N〈v2〉 = N〈v〉2 + N〈ṽ2〉, (2.53)

and the total energy can be written

E =
N

2
m〈v〉2 + Nmg〈z〉 +

N

2
m〈ṽ2〉 + N〈R〉 + N〈V 〉. (2.54)

The first two terms on the r.h.s. are the KE and gravitational PE associated with the centre

of mass of the N molecules: they can be thought of as the macroscopic (or external) KE

and PE. The rest of the r.h.s. is the energy associated with microscopic molecular motions

around the centre of mass, and is referred to as the internal or thermal energy of the system,

and given the symbol U .

The distinction between internal and external energy is central to thermodynamics. External

energy is energy organised at the macroscopic level, which can be harnessed to do useful work

in a machine. Internal energy is disorganised random motion which sums to zero. If we were

to apply the categories of the Protestant work ethic to senseless molecules (an example

of anthropomorphism, which is very hard to resist), we would call external energy “good”

and internal energy “bad”. The science of thermodynamics arose in the 19th century when

engineers were faced with the problem of converting “bad” energy released by burning coal

to “good” energy of moving pistons.

2.13 Heat capacity

The name “thermal energy” suggests a close association between this type of energy and

temperature. For a monatomic gas in a rigid, isolated box, the internal energy has no

rotational or vibrational components, and temperature is the internal energy:

U =
N

2
m〈ṽi

2〉 =
3

2
NkT. (2.55)
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Heat capacity measures the change in internal energy for a given temperature change. The

heat capacity at constant volume is defined by the change in U when the volume of the

system does not change:

Cv =
∂U

∂T

∣∣∣∣∣
v

(2.56)

and we can immediately see from (2.55) that for a monatomic gas,

Cv =
3

2
Nk. (2.57)

When we consider polyatomic molecules, the relation between internal energy and tem-

perature becomes more problematic, since we don’t know how to express rotational and

vibrational energy in terms of temperature. This problem is solved by the principle of

equipartition, which states that in equilibrium, each independent degree of freedom of the gas

has an average energy of kT/2. A “degree of freedom” is a unique way for the system to

move: for instance, motion of a point mass in 2 dimensions has two degrees of freedom, since

any direction in the plane can be expressed as a sum of two vectors. The physical content of

the principle is that, through molecular collisions, energy is quickly and evenly redistributed

throughout the gas, so that each degree of freedom of each molecule has the same average

energy as all the others.

A diatomic molecule moving in 3 dimensions has 6 degrees of freedom: 3 for translation of

the centre of mass, 2 for rotation around the centre of mass, and 1 for vibration (stretching

along the molecular axis). We thus expect its heat capacity to be 6Nk/2. Is this actually

true? In fact, measurements of the heat capacity at constant volume of diatomic gases

at typical atmospheric temperatures show Cv � 5Nk/2, as if we had one less degree of

freedom. The reason for this is quantum-mechanical. Molecules are not free to have any

value of energy they want; they can only occupy discrete energy levels, with intermediate

levels forbidden. For translational and rotational energy, the separation between energy

levels is small compared with typical atmospheric values of kT/2, and so these degrees of

freedom actively participate in the motion. Vibrational energy, on the other hand, has very

widely separated energy levels: with the typical thermal energy available to atmospheric
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molecules, it is very rarely possible to cause vibrational transitions. As a result, vibrational

degrees of freedom are effectively “frozen out” and do not contribute to the heat capacity.

In general, a gas composed of molecules having s effective degrees of freedom has a heat

capacity

Cv =
s

2
Nk. (2.58)

Dividing through by the total mass of gas, Nm, we obtain the specific heat capacity at

constant volume,

cv =
s

2
R. (2.59)

2.14 Heating, working and the First Law

Figure 2.9: A cylinder fitted with a sliding piston. Pressure in the enclosure is kept constant at the value

set by the weight of the piston.

Consider once more a set of molecules within a box. If we heat the gas by some means

(radiative or conductive) at a rate Q, and the box is rigid, then the gas’s temperature will

increase at a rate set by Cv:

dU

dt
=

∂U

∂T

∣∣∣∣∣
v

dT

dt
= Cv

dT

dt
= Q. (2.60)

Since p = nkT and the number density n is not changing, p will also increase.
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But what if the volume of the box can change? Consider the setup shown in Fig. 2.9.

Initially, the pressure of the gas matches the weight of the piston, so that the system is in

equilibrium. If we heat the gas without changing the volume, both temperature and pressure

will increase as above. The piston will now be out of equilibrium and will move upwards.

As it does so, the gas expands and the pressure decreases until equilibrium is re-established.

Raising the piston increases its gravitational potential energy at the expense of the gas’s

internal energy. Following (2.60), this can be formalised as

Cv
dT

dt
+ W = Q. (2.61)

where W is the rate at which work is done to lift the piston. If the piston rises a distance

∆z in time ∆t,

W =
pA∆z

∆t
→ p

dV

dt
. (2.62)

Dividing through by the total mass of the gas, Nm, we have

cv
dT

dt
+ p

dα

dt
= J (2.63)

α = 1/ρ is the specific volume and J = Q/Nm is the heating rate per unit mass. The

physical content of (2.63) is quite simple: if a gas is heated, the energy added will be used

both to increase the temperature (i.e. increase the mean speed of molecular motion) and to

expand the gas doing work on the environment. This equation is usually referred to as the

“law of conservation of energy” or First Law of Thermodynamics: it says that if you put

energy into a gas, the energy goes somewhere, it doesn’t just disappear.

2.15 Heat capacity at constant pressure, enthalpy

Using the ideal gas law in the form pα = RT , we have

p
dT

dt
= R

dT

dt
− α

dp

dt
(2.64)

we can rewrite (2.63) as

cp
dT

dt
− α

dp

dt
= J, (2.65)
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where

cp = cv + R =
s + 2

2
R (2.66)

is the specific heat capacity at constant pressure and s is the effective number of degrees of

freedom per molecule. If pressure is constant, then heating the gas raises the temperature

at a rate slower than if volume is constant; the extra energy is lost to the environment by

expansion.

The enthalpy per unit mass is defined as

h = u + pα = cvT + RT = cpT, (2.67)

where u is the internal energy per unit mass. For a constant pressure system,

dh

dt
= cp

dT

dt
= J. (2.68)

Thus, enthalpy may be thought of as the amount of energy left over after the system has

done expansion work to keep the pressure constant.

2.16 Entropy and the Second Law

Again using the ideal gas law, (2.65) can be written

1

T

dT

dt
− R

cp

1

p

dp

dt
=

d

dt
ln
(
Tp−R/cp

)
=

J

cpT
, (2.69)

or equivalently
ds

dt
=

J

T
(2.70)

where

s ≡ cp ln
(
Tp−R/cp

)
+ const. (2.71)

is the entropy per unit mass. Choosing a fixed reference pressure p0 and temperature T0,

and defining the constant in (2.71) to be cp ln(T0p
−R/cp

0 ), then

s = cp ln

(
Tp−R/cp

T0p
−R/cp

0

)
. (2.72)
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Equation (2.70) says that heating is a source of entropy. From the energy point of view,

heating and working are equivalent—they both change the internal energy by the same

amount. But from the entropy point of view, they are quite distinct: energy exchange with

the environment through disorganised molecular motion (heating) changes the entropy of

the gas, while energy exchange through organised, macroscopic motion (working) leaves the

entropy unchanged.

Processes in which there is no heating (J = 0) are called adiabatic. Equation (2.70) suggests

that entropy is constant in an adiabatic process. Actually, this is not really true: many

strictly adiabatic processes do not conserve entropy. Here is a simple example. Consider

a gas in an insulated piston-and-cylinder system as in Fig. 2.9. The gas is initially in

equilibrium, and the piston is then lifted instantaneously by some distance. The gas will

freely expand to fill the container. Since the gas does no work in expansion, its internal

energy (and thus temperature) does not change. However the density, and thus the pressure,

have both decreased. Therefore the entropy must increase.

So what is wrong here? Why does (2.70) mislead us? The answer is that (2.70), which

derives from (2.63), assumes there is a well-defined and uniform temperature and pressure

at each instant—it assumes the system is progressing through a sequence of thermodynamic

equilibrium states. Such a process is called quasi-static. Furthermore, (2.70) assumes that

any volume change involves work through the term pdα/dt. Both assumptions are violated

during free expansion: after the piston is lifted, the gas is out of equilibrium (the empty half

of the cylinder will fill with faster molecules first, so it will not have a Maxwell-Boltzmann

distribution), and the gas expands but does no work. Thus, (2.70) simply does not apply to

the free expansion problem.

Free expansion is an example of an irreversible process: the molecules will not spontaneously

return to the lower half of the cylinder, and if we compress the gas back to its original volume,

its temperature will be higher than originally. Some processes are reversible, however: if we

allow the gas to expand quasistatically by lowering the external pressure very gradually, then

we can recompress it again just as slowly and return to the original state with no change in
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entropy.

Reversible processes can be defined to be those which leave the total entropy of the universe2

unchanged. Free expansion is an irreversible process leading to an increase in total entropy.

Do all irreversible processes increase total entropy? The answer to this question (yes) is the

Second Law of Thermodynamics: the entropy of an isolated system (such as the universe)

cannot decrease.

Where does all this leave us as atmospheric scientists? Motion in a gas can be considered

quasi-static if its speed is much slower than the speed of sound. Since this is true for all

naturally occurring motion in the atmosphere, and since parcel expansion in the atmosphere

is invariably connected with work done against the surrounding air, we can always safely

assume that Eq. (2.70) is valid. As a corollary, any atmospheric motion which is adiabatic will

entail zero entropy change and is therefore reversible. In what follows, we will always assume

that adiabatic processes are isentropic (i.e. they conserve entropy) (but remember that this

is an approximation, not a law of nature). As it turns out, many atmospheric motions of

importance—specificallly, motions on synoptic and smaller scales—are fast enough to be

considered adiabatic, so isentropic motion occupies a very important place in atmospheric

science.

2.17 Thermodynamic equilibrium and heat conduction

The Second Law implies a ratcheting effect for entropy: once a certain entropy has been

acheived, there is no going back. This gives a directionality to natural processes. A system

that is evolving in time and experiencing many different states will gradually increase its

entropy. It will stop evolving once it has reached a state of maximum entropy. Thus,

thermodynamic equilibrium is characterized by having the highest entropy compatible with

2The “universe” can be thought of as a large isolated system surrounding the particular system we are

focusing on. “Isolated” means that the system cannot exchange energy with any other system, either through

heating or working.
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the constraints on the system.

When the constraints are weak, thermodynamic equilibrium is isothermal—the temperature

is uniform throughout the system. To see this, consider a closed system consiting of two

parts, 1 and 2, with temperature T1 and T2 respectively which exchange heat at rate Q. Say

that heat is going from 1 to 2. In time dt, the entropy changes will be ds1 = −Qdt/T1 and

ds2 = Qdt/T2. Since entropy must increase, ds1 + ds2 > 0 which implies T1 > T2. This has

two consequences: (1) heat can only flow from the warmer to the colder body, and (2) heat

flow will stop when T1 = T2, at which point the system is isothermal and can gain no more

entropy.

But heat conduction within a gas is controlled by molecular motions at the microscopic level.

Are we sure that these motions will behave in the proper way to satisfy the Second Law?

A rough estimate for the molecular heat flux in an ideal gas serves to illustrate that the

answer is yes. Consider again a gas in a pipe, as in Fig. 2.3. The flux of kinetic energy in

any direction within the pipe is

∼ n〈v〉1
2
m〈v2〉 ∼ 〈v〉nkT ∼ p

√
T (2.73)

where n is number density and p is pressure, and we have used the ideal gas law and the

relation 〈v〉 ∼
√

T . Now consder specifically the flux from left to right accross surface S,

which is due mostly to molecules coming from a region of width λ (the mean free path) to

the left of S; since such molecules generally do not colide, they will conserve their energy.

The flux is roughly

f+ ∼ p(x − λ)
√

T (x − λ) ∼ p
√

T − p

2
√

T

dT

dx
λ (2.74)

where x is the position of the surface S. To obtain the last expression, we have expanded to

first order and assumed the gas is not accelerating, so that dp/dx = 0. With an analogous

estimate for the flux f− moving from right to left accross S we obtain the net rightward flux

f = f+ − f− ∼ − p√
T

dT

dx
λ ∼ −n〈v〉λdT

dx
. (2.75)

Thus, heat flows down the temperature gradient (from hot to cold) and ceases to flow when
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temperature is uniform, exactly as required by the Second Law. A more precise calculation

using the full apparatus of kinetic theory gives the same qualitative result.

Exercise 2.17: Extend the argument above to show that (2.75) also applies to a vertical

column of air in hydrostatic equilibrium.

2.18 The Carnot engine

A heat engine is a mechanical device which takes thermal energy from an outside source and

tries to convert as much of as possible into useful work. The efficiency of the engine may

be defined as the ratio of heat intake to work production. Understanding the limitations on

efficiency is obviously of great interest.

The simplest way to turn heating into working is to heat a gas and allow it to expand. In

any real machine which needs to operate continuously, the gas cannot be allowed to expand

forever, so it must be periodically recompressed. Thus, heat engines work in an expansion-

compression cycle. The Carnot engine is an idealised heat engine which allows particularly

clear theoretical insight into the question of efficiency. The cycle of a Carnot engine can be

illustrated using a p − α diagram (Fig. 2.10). Beginning at point 1, the cycle consists of

an isothermal expansion at temperature Thot, followed by adiabatic expansion which lowers

the temperature to Tcold. The cycle is closed by an isothermal compression at Tcold and an

adiabatic compression bringing the temperature back to Thot.

If we integrate the First Law,

cv
dT

dt
+ W = J (2.76)

over a cycle, we obtain

∆W = ∆J = ∆Jhot − ∆Jcold (2.77)

where ∆W =
∫
cycle Wdt is the total work done, ∆J is the total heat entering the system over

the cycle, ∆Jhot is the heat entering the system during isothermal expansion, and ∆Jcold
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Figure 2.10: The Carnot engine.

is the heat exiting the system during isothermal compression (no heat enters during the

adiabatic segments, obviously). Since ∆Jhot is the engine’s heat intake in each cycle, we can

define the efficiency as

η =
∆W

∆Jhot

= 1 − ∆Jcold

∆Jhot

. (2.78)

The initial and final temperature and pressure of the gas are the same, so the total entropy

change of the gas over a cycle is zero. Assuming the processes to be reversible, we can write

the entropy change as

∆s =
∫ 2

1

Jdt

Thot
−
∫ 4

3

Jdt

Tcold
=

∆Jhot

Thot
− ∆Jcold

Tcold
. (2.79)

Now comes the key point: entropy is a state variable, meaning that is is purely a function of

thermodynamic state, identified by p, T and ρ. At the end of the cycle, the system returns

to its inital state and all thermodynamic quantities return to their inital values. Therefore,

there is no overall change in the systems entropy over the cycle:

∆s = 0 (2.80)

which implies
∆Jcold

∆Jhot
=

Tcold

Thot
, (2.81)
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so finally:

η = 1 − Tcold

Thot
, (2.82)

which is known as the Carnot efficiency.

Up to now, the 2nd Law has played no role. This is because we have considered only

reversible processes, which are an idealised abstraction. In reality, all processes entail some

amount of irreversibility, and the 2nd Law states that they must therefore generate some

entropy. Thus, we can write the entropy integral over the cycle as

∆Jhot

Thot
− ∆Jcold

Tcold
+ ∆sirr = 0 (2.83)

where ∆sirr is the (positive) entropy generated by irreversibility. Note that the total must

still equal 0, since entropy is still a state variable: what happens is that the extra entropy

generated by irreversibility is ejected during the cold compression phase, requiring ∆Jcold to

be larger than before. Thus
∆Jcold

∆Jhot
>

Tcold

Thot
. (2.84)

Therefore, the Carnot efficiency is the maximum possible efficiency for any heat engine which

takes in heat at temperature Thot and dumps it at temperature Tcold.

2.19 Potential temperature and static energy

Meteorologists generally do not work with directly entropy. Instead, we define the potential

temperature

Θ = T

(
p

p0

)−R/cp

, (2.85)

where p0 is a fixed reference pressure. It is related to entropy by

Θ = T0 es/cp (2.86)

where T0 is the reference temperature. Just like entropy, potential temperature is conserved

under adiabatic, reversible transformations. It has many advantages in atmospheric appli-

cations, mostly related to its simple physical interpretation: it is the temperature a parcel of
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air will have if brought adiabatically to pressure p0. To see this, note that for an adiabatic

process,

T0p
−R/cp

0 = Tp−R/cp (2.87)

where T and p are the starting temperature and pressure, and T0 is the temperature once

pressure reaches p0. Then

T0 = T

(
p

p0

)−R/cp

= Θ. (2.88)

If we assume hydrostatic equilibrium, (2.65) can be written

cp
dT

dt
+ g

dz

dt
= J, (2.89)

which implies that the quantity

η = cpT + gz (2.90)

is also conserved under reversible adiabatic motion. η is called the dry static energy: “static”

because there is no kinetic energy contribution, and “dry” because there is no latent heat.

2.20 The dry adiabat

Now consider an atmosphere whose vertical temperature structure is such that Θ is constant.

Such an atmosphere has the following interesting property: any parcel brought adiabatically

to the reference pressure p0 will have the same temperature on arrival as the ambient air. In

other words, the temperature structure is invariant with respect to adiabatic rearrangements.

However much you stir this atmosphere, the temperature structure does not change. In

an incompressible fluid (e.g. water), this is only possible if the temperature is uniform.

Since the atmosphere is compressible, however, the invariant profile actually has temperature

decreasing with height, at a constant rate known as the dry adiabatic lapse rate Γd. The

“dry” here really means that no condensation occurs upon parcel displacement—the parcel

can contain some moisture, just not too much for it to condense.
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θT0

Figure 2.11: Dry adiabatic profiles absolute temperature (left) and potential temperature (right).

The value of Γd is found by noting that for an atmosphere on the dry adiabat,

dΘ

dz
=

(
p

p0

)−R/cp
(

dT

dz
+

g

cp

)
= 0, (2.91)

which implies

Γd =
g

cp
. (2.92)

Figure 2.11 shows profiles of temperature and potential temperature for an atmosphere on

the dry adiabat. The absolute temperature follows the straight line

T = T0 − Γdz, (2.93)

while the potential temperature is, of course, constant with height. For perfectly dry air,

the dry adiabatic lapse rate is 9.8 K km−1, which is considerable larger than the typical 6 K

km−1 found in the midlatitude atmosphere.

2.20.1 Does an adiabatically lifted parcel follow the dry adiabat?

If we lift an air parcel adiabatically up from sea level, its potential temperature will stay

fixed but its absolute temperature will decrease, since pressure decreases. At what rate will

it decrease? We can compute this by dividing the adiabatic version of (2.65) by the vertical

velocity dz/dt to obtain:

cp
dT

dz
− 1

ρ

dp

dz
= 0. (2.94)
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Now assume that the parcel immediately adjusts its internal pressure to match the pressure

of its surroundings, ps—this is a very good approximation, even for parcels rising very

rapidly (the equilibration is accomplished by sound waves, which travel very fast). If the

surroundings are in hydrostatic equilibrium, then

dT

dz
= − g

cp

ρs

ρ
= − g

cp

T

Ts

, (2.95)

where ρs and Ts are the density and temperature of the surroundings. If atmosphere is on the

dry adiabat, then the parcel temperature will always match the surroundings, T = Ts, and so

the parcel temperature will change according to the dry adiabatic lapse rate. However, the

real atmosphere is generally not on the dry adiabat, and so the temperature inside the parcel,

will deviate from the dry adiabat. In practise, T generally does not differ from Ts by more

than a few percent, so it is generally assumed that temperature inside an adiabatically-lifted

parcel does follow the adiabat—but you should remember that this is an approximation.

Exercise 2.20.1: Consider an atmosphere with surface temperature T0 = 300 K and lapse

rate Γ = 6 K km−1. If a parcel is lifted adiabatically from the surface to the 10 km level,

compute the error made in assming that the parcel temperature follows the dry adiabat.

2.21 The concept of static stability

We all know that if you put dense fluid over lighter fluid, the denser fluid will fall down

and the lighter fluid will rise to the top. In the troposphere, cold air lies over warmer air

(Fig. 2.12). We generally think that warmer air will be less dense than colder air, so isn’t the

profile shown in Fig. 2.12 unstable? Why doesn’t the warm air rise, the cold air fall, and the

temperature gradient reverse? The answer, of course, is that the atmosphere is compressible,

and density is affected not only by temperature but also by pressure. This is different from

the case, say, of water heated in a pot: pressure is irrelevant, and warmer water will always

we lighter than colder water.

To assess the stability of a given atmospheric temperature profile, we need to know how the
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Figure 2.12: Temperature sounding at Valentia (solid line) with dry adiabats superimposed.

density of an air parcel changes as it moves. In particular, consider the parcel marked A

in Fig. 2.12, and imagine that some external force gives it a small upwards displacement.

From the ideal gas law, we know that ρ = p/RT . We can safely assume that pressure

inside the parcel will quickly equilibrate with the pressure of the surroundings. But what

about temperature? If there is strong heat exchange between parcel and surroundings, we

might expect that parcel temperature will also match the surroundings. In this case, the

parcel would always equal that of the surroundings, and there would be no tendency to

rise or fall. But consider the opposite extreme, where there is no heat exchange with the

surroundings. Then the parcel’s temperature will approximately follow the dry adiabatic

profile, shown by the dotted line passing through A. In this case, the parcel will always be

colder and therefore denser than the surroundings, and will tend to fall back down. Thus the

profile is stable: an initial upward displacement will be followed by the parcel spontaneously

returning to its initial position. While there will always be some heat exchange between

the parcel and its surroundings, it is generally a good approximation for the atmosphere to

consider displacements to be adiabatic. We will formalise these ideas below, beginning with

the concept of buoyancy.
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2.22 Buoyancy and the Brunt-Väisälä frequency

Consider a fluid at rest, and imagine selecting an irregularly-shaped sub-volume V within the

fluid. The net force on this sub-volume must be zero, otherwise it would not be stationary.

The net vertical force acting on the sub-volume is the sum of the gravitational and pressure

forces:

Fz =
∫

S
p cos θdS − g

∫
V

ρdV = 0 (2.96)

where S indicates the surface of the sub-volume and θ is the angle between the normal

to the surface and the vertical. Now imagine replacing this sub-volume by a foreign body

(for instance, that of Archimedes) which happens to have exactly the same shape as the

sub-volume of fluid that is being displaced, but different density ρA. The net force is now

different from zero:

Fz =
∫

S
p cos θdS − g

∫
V

ρAdV = g
∫

V
(ρ − ρA)dV. (2.97)

Thus, if Archimedes’s density is greater than that of the fluid, Fz < 0 and he will sink, while

if his density is lesser he will float. The net upwards force experienced by Archimedes is

called the buoyancy force.

z0

Ts

z

Tp

Figure 2.13: Parcel lifted adiabatically from level z0 to level z. Ts is the temperature of the surroundings,

while Tp is the temperature of the parcel and follows the dry adiabat.

Now, given an atmosphere with a specified temperature profile, take a parcel of air and move

it adiabatically upwards from z0 to z = z0 + ∆z (Fig. 2.13). Newton’s second law applied to

the displaced parcel is

g(ρs − ρp)V = ρpV
d2

dt2
∆z. (2.98)
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The term on the l.h.s. is the buoyancy force (we’re assuming the parcel is small enough

that its density can be considered homogeneous), and the r.h.s. is mass times acceleration.

Subscript p refers to the parcel, while subscript s refers to the surroundings (or sounding).

We can re-write this as
d2

dt2
∆z = g

(
ρs

ρp
− 1

)
. (2.99)

Since the pressure inside the parcel is always equal to the surroundings, we have

ρs

ρp
=

Tp

Ts
=

Θp

Θs
. (2.100)

Since the parcel is displaced adiabatically, Θp is constant and equal to its value before being

displaced:

Θp = Θs(z0). (2.101)

The potential temperature of the surroundings, on the other hand, generally changes with

height. If the displacement is small, we can describe the vertical variation using a first-order

Taylor expansion:

Θs(z) � Θs(z0) +
dΘs

dz

∣∣∣∣∣
z0

∆z. (2.102)

Using a further Taylor expansion, we have

Θp(z)

Θs(z)
� Θp(z)

Θs(z0)

(
1 − 1

Θs(z0)

dΘs

dz

∣∣∣∣∣
z0

∆z

)
= 1 − 1

Θs(z0)

dΘs

dz

∣∣∣∣∣
z0

∆z (2.103)

where the second equality follows because the parcel is displaced adiabatically and therefore

its potential temperature is constant. Finally, substituting back into (2.99) gives

d2

dt2
∆z + N2∆z = 0, (2.104)

where

N =

(
g

Θ

dΘ

dz

)1/2

(2.105)

is known as the Brunt-Väisälä frequency. Equation (2.104) describes a harmonic oscillator,

with general solution

∆z = aeiNt + be−iNt, (2.106)

where a and b are constants determined by the initial conditions. The behaviour of the

solutions depends on the sign of dΘ/dz:
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• dΘ/dz > 0 implies N is a real number, N = |N |, and the solution can be written

∆z = A cos(|N |t + φ), (2.107)

where amplitude A and phase φ are functions of a and b. The solution is oscillatory:

after being displaced, the parcel falls back down, overshoots its initial position until

positive buoyancy makes it stop and come back up, and so on. This is exactly the

same behaviour as that of a ball rolling around at the bottom of a well. The system is

stable, as gravity acts to counteract the initial perturbation.

• dΘ/dz < 0 implies N is imaginary, N = i|N |, and the solution takes the form

∆z = ae−|N |t + be|N |t. (2.108)

The solution is the sum of two exponentials; one damps to zero, but the other one

grows indefinitely. The system is unstable, since gravity acts to amplify the initial

perturbation. This is the same behaviour as a ball initially balanced on a hill top,

which, if given a small push, will roll away never to come back.

• Finally, dΘ/dz = 0 implies

∆z = a + b, (2.109)

that is, the parcel simply remains in its perturbed position; the profile is neutral.

To summarise:

• If potential temperature increases with height, the profile is stable.

• If potential temperature is constant with height, the profile is neutral.

• If potential temperature decreases with height, the profile is unstable.

Thus, plotting the potential temperature shows at a glance whether a sounding is stable.

Figure 2.14 shows that the sounding at Valentia is stable in the troposphere and even more

stable in the stratosphere.
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Figure 2.14: Potential temperature for the same sounding as in Fig. 2.12.

2.23 CAPE

Now consider the idealised temperature profile shown in Fig. 2.15. This profile is unstable

between points A and B, and stable everywhere else. It would be nice to have a single number

which characterised the strength of the instability, which will be connected with the energy

of the ensuing motion. To do this, consider the fate of a parcel which begins at level A and

is displaced upwards. The parcel will be positively buoyant all the way up to level C. This

means the atmosphere will do work on the parcel between A and C. This work shows up as

increased KE of the parcel: it is exactly as if the parcel “fell” from A to C. This amount of

energy is called convective available potential energy or CAPE. A parcel starting from some

point between A and B will be positively buoyant up to a corresponding point between B

and C and will also gain kinetic energy, though the energy will be less since the parcel will

“fall” a shorter distance. Thus, the energy gained by the parcel travelling from A to C is a

maximum, and provides a reasonable measure of the overall instability of the profile.

To compute CAPE, we need to compute the work done by the buoyancy force (2.97) between

A and C: ∫ zC

zA

g

(
ρs

ρp

− 1

)
dz =

∫ zC

zA

(αp − αs) gρsdz, (2.110)
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Figure 2.15: An unstable temperature profile (solid line) with selected dry adiabats (dotted).

which using hydrostatic equilibrium and the ideal gas law, gives

CAPE = R
∫ pA

pC

(Tp − Ts)d ln p. (2.111)

As noted above, the work done on the parcel will show up as kinetic energy of the parcel, so

vz(zC) =
√

2 CAPE, (2.112)

where vz is the vertical velocity.



Chapter 3

Thermodynamics of moist air

Until now we have been dealing with a single-component gas: all molecules are identical.

How do things change when two or more different types of molecule are mixed together? If

none of the gases can condense, then very little changes, aside from a modified gas constant

(see below). However, water can condense at the temperatures typical of Earth’s atmosphere.

The consequent release of latent heat, and the formation of liquid droplets (clouds) has a

huge impact not only on the thermodynamics of the atmosphere, but also its dynamics and

radiative transfer. The presence of water makes the atmosphere enormously more complex

and interesting, and keeps an army of atmospheric scientists in business.

3.1 Ideal gas law for a mixture of gases: partial pres-

sures

Take two identical boxes of volume V . One contains N1 molecules of gas 1, the other N2

molecules of gas 2. If both gases are ideal and are kept at the same temperature, the pressures

49
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inside the boxes will be

p1 =
N1

V
kT (3.1)

and

p2 =
N2

V
kT. (3.2)

What happens if we put all the molecules of one box into the other? Ideal gases behave as

if each molecule ignored all others. Therefore, the gas already present in the box will not

even realise that new gas is being put in; and the gas entering the box will behave as if the

box were empty. After the new gas is put in, the pressure is simply the sum of the pressures

due to each gas:

p = p1 + p2 =
N1 + N2

V
kT. (3.3)

This is known as Dalton’s law of partial pressures: the total pressure is the sum of the

pressures exerted by each of the gases if it occupied the volume alone. The law applies to a

mixture with any number of components:

p =

∑
i Ni

V
kT, (3.4)

and defining the mean molecular mass

〈m〉 =

∑
i Nimi∑

i Ni
=
∑

i

fimi, (3.5)

where fi is the number fraction of component i, we can write

p =

∑
i Nimi

V

k

〈m〉T = ρRT. (3.6)

Thus, a mixture of ideal gases behaves just like a single-component ideal gas with gas constant

R = k/〈m〉.

As we noted in Section 1.1, the number density of atmospheric components other than water

vapour is essentially constant in space and time. It is thus useful to define a gas constant

for dry air

Rd =
k∑

i=N2,O2,Ar,... fimi

=
k

md

, (3.7)
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where the sum extends to all components other than water vapour, and the gas constant for

water vapour

Rv =
k

mv
. (3.8)

3.2 Six ways to quantify moisture content

From the point of view of thermodynamics, the atmosphere may be considered a variable

mixture of two components, dry air and water vapour. This mixture is called moist air.

There are many equivalent and widely-used ways of specifying the amount of moisture in

dry air. We list them here for later reference, together with the typical units:

Number density nv [molecules m−3]

Partial pressure e = nvkT [hPa]

Number fraction, also called volume mixing ratio, fv = nv/(nv + nd) = e/p [%]

Mass density ρv = nvmv [kg m−3]

Specific humidity q = ρv/ρ [g kg−1]

Mass mixing ratio w = ρv/ρd [g kg−1]

Note the subtle distinction between specific humidity (mass density of water divided by total

density of water+dry air mixture) and mass mixing ratio (density of water divided by density

of dry air only).

The above definitions are all equivalent and can be expressed one as a function of the other.

Some useful conversions are:

q =
ρv

ρv + ρd
=

w

w + 1
, (3.9)
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w =
ρv

ρd
=

e/RvT

pd/RdT
=

e

p − e

Rd

Rv
=

εe

p − e
, (3.10)

and

fv =
q

ε − (ε − 1)q
, (3.11)

where

ε =
mv

md
=

18

28.9
= 0.622. (3.12)

3.3 Potential temperature of moist unsaturated air

The potential temperature is defined as

Θ = T

(
p

p0

)−R/cp

, (3.13)

where the R and cp are moist values. Let us make the dependence on humidity explicit.

Firstly,

R =
k

fdmd + fvmv

=
Rd

1 + (ε − 1)fv

, (3.14)

so using (3.11) we have

R = Rd

(
1 +

1 − ε

ε
q
)

= Rd(1 + 0.608q). (3.15)

Because of equipartition, the heat capacity of a mixture is the sum of the heat capacities of

the components. The specific heat capacity is just the mass-weighted mean:

cp = cpd
ρd

ρ
+ cpv

ρv

ρ
(3.16)

where cpd and cpv are the specific heat capacities of dry air and water vapour (1005 and 1952

J K−1 kg−1 respectively). Thus

cp = cpd

(
1 − q +

cpv

cpd
q

)
= cpd(1 + 0.94q), (3.17)
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Figure 3.1: Sounding at Valentia showing temperature (solid) and virtual temperature (dotted).

and
R

cp
=

Rd

cpd

(
1 + 0.608q

1 + 0.94q

)
� Rd

cpd
(1 − 0.33q) (3.18)

Since q is rarely larger than about 4% in the atmosphere, the ratio R/cp does not deviate

from the dry value by more than 1%, and this difference is safely ignored. Thus, even for

moist air we take

Θ = T

(
p

p0

)−Rd/cpd

. (3.19)

3.4 Virtual temperature

The ideal gas law, p = nkT , says that pressure depends on the number of molecules but not

on their mass. This is somewhat counter-intuitive, since we might expect heavier molecules

to bang more strongly on the sides of the box and produce a higher pressure. The trick is

that temperature is the product of mass and mean square velocity: for a given temperature,

lighter molecules travel faster and produce the same momentum flux. As a result, at fixed

temperature and pressure air becomes less dense the moister it is (since mv < md).

A quirk of meteorology is an insatiable desire to express everything in terms of a tempera-
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ture: thus, entropy is expressed as a potential temperature, the density effect of moisture is

expressed as a virtual temperature, and we’ll encounter a few more as go along; they are all

unknown outside meteorology. To define virtual temperature, we use (3.15) above to write

the ideal gas law for moist air as

p = ρRdTv (3.20)

where the virtual temperature is defined by

Tv = (1 + 0.608q)T. (3.21)

Virtual temperature can be up to 2–3% higher than ordinary temperature, which can mean

a difference of several degrees (Fig. 3.1).

3.5 Static stability of moist non-condensing air

We can take temperature madness further by defining a virtual potential temperature

Θv = Tv

(
p

p0

)−Rd/cpd

, (3.22)

using dry values in the exponent as discussed in the Section 3.3. The beauty of virtual

temperature is that we can now carry through the derivation of the Brunt-Väisälä frequency

exactly as in Section 2.22, simply replacing Θ with Θv everywhere (you should go through

the derivation and think about why this is possible). Thus, in moist, unsaturated air the

static stability criterion is

dΘv

dz
> 0 (stable),

dΘv

dz
< 0 (unstable). (3.23)

As can be seen by explicitly computing the vertical derivatives, this implies

dTv

dz
> − g

cpd
(stable),

dTv

dz
< − g

cpd
(unstable). (3.24)

Since virtual temperature is always greater than temperature, and moisture is always greater

near the surface, the virtual temperature effect always acts to destabilise the atmosphere.
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Figure 3.2: Schematic of the intermolecular force between two water molecules.

3.6 Inter-molecular forces

A key part of the definition of an ideal gas is that the component molecules do not interact

with each other. This is not true in reality: the molecules of all gases can exert strong

electrostatic forces on one another (Fig. 3.2). When two molecules are very close, they will

repel each other, but when they are somewhat farther apart they will attract. The forces

drop off to zero quite rapidly. If the gas is dilute, the molecules will on average be far

from each other, the intermolecular forces can be neglected and the gas will behave as an

ideal gas; this is the case for the atmosphere. However, if density is high enough, molecules

will spend more time close to each other, intermolecular attraction will play a greater role

and the gas may condense. Whether or not this happens depends on the mean separation

between molecules (i.e. density) and the mean speed of the molecules (i.e. temperature):

fast-moving molecules will escape each other’s attraction, just as they may escape Earth’s

gravity (Section 2.10). Because of its peculiar arrangement of electrons and nuclei, the water

molecule has a strong, permanent electric dipole and the attractive force is very strong. For

this reason, water can condense at the typical temperature and (partial) pressure at which

it is found in the atmosphere, unlike other major constituents which do not have permanent

dipoles.
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p = 0 ! p = es(T)

Figure 3.3: A cylinder with a tight-fitting piston containing liquid water. When the piston is lifted, water

molecules leave the liquid and fill the empty space until their density is such that the flux of outgoing

molecules matches the flux of molecules coming back in to the liquid.

3.7 Saturation vapour pressure

Consider the thought experiment illustrated in Fig. 3.3. We put some liquid water in a

cylinder and cap it with a perfectly-fitting piston, with no air between the piston and the

cylinder. Now we yank the piston upwards. If the cross-section of the cylinder is small

enough, you can do this with your hand. What happens next? In the first instant, there will

be a vacuum between the water and the piston. But this will not last long: water molecules

will soon escape from the liquid and fill the cavity with vapour. This process is very much

like the escape-from-gravity process of Section 2.10. In the liquid, the mean distance between

molecules is roughly where the force curve in Fig. 3.2 crosses zero. Just as in the gas phase,

the molecules are jiggling around—they have a mean KE, measured by the temperature

of the liquid. As two molecules move apart, the intermolecular force does work on them,

resulting in conversion of KE into electrostatic PE: the molecules slow down, and eventually

move back together again. However, molecular velocities are again distributed according

to the Maxwell-Boltzmann distribution, and there will be a finite number of molecules with

sufficient KE to entirely overcome the attraction and escape to infinity, joining the gas phase.

As molecules fill the cavity and bounce around in it, some of them will re-enter the liq-

uid. Eventually, a steady state will be reached where the flux of particles leaving the liquid

matches the ingoing flux. The pressure in the cavity at this point is called the saturation

vapour pressure and given the symbol es. The saturation vapour pressure clearly depends on

temperature, and will increase with increasing temperature. It also depends on the strength
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of the intermolecular forces, and will be greater for liquids with weaker intermolecular at-

traction. As we will see later, it also depends on the shape of the liquid-gas interface and

on the purity of the liquid. Thus we can state that the saturation vapour pressure of water

above a plane surface of pure liquid depends only on temperature, es = es(T ).

3.8 Relative humidity and dew-point temperature

In Section 3.2 we gave 6 ways of specifying the humidity content of air. The concept of

saturation vapour pressure allows for two more definitions:

• Relative humidity. Given the saturation vapour pressure es, we can use (3.10) to define

the saturation mixing ratio

ws =
εes

p − es
. (3.25)

Relative humidity r is then defined as the ratio of the actual mixing ratio to the

saturation value:

r =
w

ws
, (3.26)

which again using (3.10) can be written

r =
e

es

p − es

p − e
� e

es

, (3.27)

since e/p is never more than a few percent.

• Dew point temperature Td is defined as the temperature to which an air parcel must be

cooled at constant pressure to achieve saturation, and is given by

e = es(Td). (3.28)
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3.9 Latent heat of vaporisation

It is clear from the discussion above that energy transformations play a key role in evap-

oration and condensation. Only the most energetic molecules can leave the liquid, and so

evaporation implies a net loss of KE for the liquid and a consequent lowering of the temper-

ature: this is why sweating cools you down. In exactly the reverse process, the molecules

accelerate as they enter the fluid, attaining above-average KE and hence increasing its tem-

perature: this is the famous “release of latent heat”.

How can we quantify the energies involved? Consider the situation in the right-most panel in

Fig. 3.3, but now imagine that the outside pressure is es(T ), and that the cylinder is adiabatic.

Now add a little heat to the liquid (how you do this through an adiabatic container is part

of the magic of thought experiments): instead of raising its temperature, the heat will go

into evaporating some of the liquid. The energy required to evaporate 1 kg of liquid under

these conditions is called the latent heat of vaporisation, and is given by

�v = uv − ul + p(αv − αl). (3.29)

The term uv − ul is the difference in internal energy (per unit mass) between the vapour

and liquid: it is the total energy required to overcome the molecular attractions between 1

kg’s worth of molecules. The second term is the work done against the external pressure to

expand the cavity and keep it at constant pressure: αv − αl is the change in volume when 1

kg of liquid water is converted into vapour at constant pressure. Recalling that the enthalpy

per unit mass is

h = u + pα, (3.30)

we can also write

�v = hv − hl. (3.31)

Calculating �v from first principles, assuming a given structure for intermolecular forces, is

a very difficult task. Fortunately, we don’t need to do it: we can just measure its value. It

turns out to be about 2.5×106 J kg−1 K−1 (at 0◦C). This is a lot of energy: the heat capacity
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of liquid water is 4218 J kg−1 K−1, so with the heat released by condensing 1 kg of water

vapour you could bring more than 7 kg of water from room temperature to the boiling point.

3.10 Wet-bulb temperature

Consider a drop of rain falling in a column of unsaturated air with uniform temperature and

humidity. Let’s assume that the drop’s temperature is initially the same as the surroundings’.

Since the surroundings are unsaturated, the drop cools by evaporation as it falls, but is

warmed by contact with the air. Eventually, the drop will reach a steady-state temperature.

What is this temperature?

To answer this, consider the situation once the drop has reached its steady-state temperature,

which we will call Tw. As the drop falls into some new, undisturbed air, it will find itself out

of equilibrium with the air around it. The drop’s surface will quickly equilibrate with a very

thin layer of air surrounding it (the thickness of this layer will be a few times the distance

a molecule can travel before colliding with another molecule, typically 1 µm or less). Here,

“equilibrate” means that by exchanging energy and molecules, the drop’s surface and the

thin air layer quickly reach the same temperature, and the air becomes saturated. However,

we are assuming that the drop’s temperature is in steady state, so after equilibration the

surface of the drop will have come back to temperature Tw. Thus the air around the molecule

will also have temperature Tw, and its vapour pressure will be the saturation vapour pressure

at Tw. As the drop moves on, the saturated layer is stripped away and replaced by fresh

unsaturated air, and the whole process is repeated. Thus the drop continuously loses mass,

leaving behind itself a trail of saturated air at Tw.

Based on this picture, we can see that Tw is the temperature to which an air parcel drops

when it gives up the energy required to evaporate just enough water to bring it to saturation.

Tw is called the wet-bulb temperature. To make the definition precise, we make two further

assumptions: that the process occurs at constant pressure, and that the water which is being
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evaporated is already at temperature Tw. We can now write down an equation relating wet-

bulb temperature to temperature and mixing ratio. The amount of energy (more precisely,

enthalpy) needed to raise the temperature of a moist parcel from Tw to T at constant pressure

is

(Mdcpd + Mvcpv)(T − Tw), (3.32)

where Md and Mv are the masses of dry air and moisture in the parcel. The amount of

enthalpy needed to evaporate enough water to make the parcel saturated is

�v(Mvs − Mv) (3.33)

where Mvs is the mass of water in the parcel when it is saturated at the wet-bulb temperature.

Setting (3.32) equal to (3.33) and dividing by Md gives

(cpd + wcpv)(T − Tw) = �v(ws − w). (3.34)

Neglecting the wcpv contribution on the l.h.s., we have

w = ws(Tw) − cpd

�v
(T − Tw), (3.35)

or using w � εe/p,

e = es(Tw) − pcpd

ε�v
(T − Tw) (3.36)

which is known as the psychrometric equation.

If we have a good way of measuring Tw, we have a way to determine the humidity of air

(“psychro” is Greek for “cold”, so “psychrometric” means “measuring the cold”). Humidity

is tricky to measure directly, but measuring the temperature is easy. In a sling psychrometer,

the bulb of a thermometer is wrapped in gauze soaked in water and then spun around; this

approximates the situation for the falling raindrop, and the steady-state temperature reading

approximates Tw for the ambient air. From a forecasting point of view, if Tw falls below zero

in a layer near the surface, then snow or hail falling through the layer will reach the surface

without melting, while rain falling through this layer may reach the surface as freezing

rain—supercooled drops that freeze on impact.
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3.11 The Clausius-Clapeyron equation

We saw above that the saturation vapour pressure above a flat surface of pure liquid depends

only on temperature. The Clausius-Clapeyron equation quantifies this relationship. It can

be derived from very general thermodynamic considerations. The derivation is somewhat

involved and not amazingly illuminating from a physical point of view, so we will not give it

here; it can be found in many atmospheric science textbooks, including Bohren & Albrecht

and Wallace & Hobbs. The Clausius-Clapeyron equation states

des

dT
=

1

T

�v

αv − αl

(3.37)

where �v is the latent heat of vaporisation and αv − αl is the change in specific volume

upon vaporisation. Note that the term on the r.h.s. is always positive, so saturation vapour

pressure always increases with temperature.

The specific volume of liquid water is always much smaller than that of the vapour, so we

can approximate
des

dT
� 1

T

�v

αv
=

es�v

RvT 2
. (3.38)

If we assume �v is a constant (which it isn’t), this can be integrated to give

es(T ) = es0 exp

(
�v

RvT0

)
exp

(
− �v

RvT

)
. (3.39)

where T0 is a reference temperature and es0 the corresponding vapour pressure, which must

be empirically determined: for reference, T0 = 0◦C gives es0 = 6.11 hPa.

Equation 3.39 has a nice physical interpretation: writing

�v

RvT
=

mv�v

kT
, (3.40)

we see that the exponent is the ratio of the energy required to evaporate a single molecule

of liquid, to the mean kinetic energy of the molecules.

For more accurate work, we need to include the temperature dependence of �v. From (3.29)

we see that
d�v

dT
= cpv − cl, (3.41)



CHAPTER 3: THERMODYNAMICS OF MOIST AIR 62

the difference in specific heats of vapour and liquid (note that since the volume of liquid

water changes very little with temperature, the specific heat at constant volume and at

constant pressure are almost identical, so we use the single symbol cl to indicate both). The

difference between specific heats is to a good approximation constant with temperature (at

least over the range of interest to Earth’s atmosphere), so we can integrate to obtain

�v = �v0 + (cpv − cl)(T − T0) (3.42)

where �v0 is the latent heat at some reference temperature T0. Substituting this into (3.38)

and integrating:

ln
es

es0
=

�v0 + (cl − cpv)T0

Rv

(
1

T0
− 1

T

)
− cl − cpv

Rv
ln

T

T0
(3.43)

= 6808
(

1

T0
− 1

T

)
− 5.09 ln

T

T0
, (3.44)

where the second equality is obtained by taking T0 = 0◦C.

3.12 Scale height of water vapour

Since temperature decreases with height in the troposphere, es will also decrease with height,

and we expect the atmosphere to become drier with height. We can estimate the rate of

decrease by assuming an atmosphere with a dry-adiabatic lapse rate, so that using (3.39):

es(z) = es0 exp

(
�v

RvT0

)
exp

(
− �v

Rv(T0 − Γdz)

)
� es0 exp

(
− z

Hv

)
, (3.45)

where the water vapour scale height

Hv =
RvT

2
0

�vΓd

=
RvT0

g

cpdT0

�v

=
cpdT0

ε�v

H, (3.46)

with H = RdT0/g the pressure scale height for dry air and ε given by (3.31). For Earth-like

parameter values, Hv ∼ H/5 ∼ 2 km.
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3.13 Level of cloud formation: the lifting condensation

level

The most common way to form clouds on Earth is by lifting: as moist air rises, it cools and

eventually becomes saturated, at which point a cloud forms. Section 2.3.1 reviews lifting

mechanisms in the atmosphere; these mechanisms are generally rapid enough that air parcels

are lifted adiabatically. The level at which a parcel adiabatically lifted from near the surface

first reaches saturation is called the lifting condensation level or LCL. If the parcel is lifted

further, a cloud forms. On a sunny summer day, strong solar heating at the surface produces

dry static instability; the consequent rising motion can produce clouds known as fair weather

cumulus, whose sharply-defined base corresponds to the LCL.

To estimate the height of the LCL, note that the number fraction of water molecules in the

parcel, fv, remains constant as the parcel is lifted, so

e(z) = fvp(z) � fvp0 exp(−z/H). (3.47)

Thus the vapour pressure in the parcel decreases at a rate given by the pressure scale height.

The saturation vapour pressure, on the other hand, decreases at the much faster rate given by

the water vapour scale height. The LCL is where the two curves meet and e = es (Fig. 3.4).

Setting (3.47) equal to (3.45) gives

zLCL =
HHv

H − Hv

ln
es0

fvp0

� −Hv ln r0 (3.48)

using H 	 Hv; here r0 is the relative humidity of the parcel before lifting. If r0 = 0 then

zLCL = ∞ and the parcel never saturates; if r0 = 1 then zLCL = 0 and the parcel is already

saturated at the ground. For typical near-surface r values of 70-80%, zLCL ∼ 700 m.

Note carefully that cloud formation on ascent is possible on Earth only by virtue of the fact

that H > Hv. The opposite case, H < Hv, is entirely feasible; as shown by (3.46), it requires

higher temperature and/or higher cpv/�v, which is possible in planetary atmospheres. In this

case, clouds would form on descent. You should look at Fig. 3.4 and convince yourself of

this.
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Figure 3.4: Vapour pressure (solid) and saturation vapour pressure (dotted) for a parcel adiabatically

lifted from the ground where e = fvp0 = e0 and es = es0. Also shown is a field of fair weather cumulus

clouds.

3.14 Moist entropy and equivalent potential tempera-

ture

In complete analogy to what we did in Section 2.16, we will now derive an expression for the

entropy of a moist air parcel in which condensation may occur. This will allow us to define

a moist equivalent of the dry potential temperature. We begin with the law of conservation

of energy:
dU

dt
= Q − p

dV

dt
. (3.49)

For a saturated air parcel, the internal energy can be written as

U = Mdud + Mvuv + Mlul (3.50)

where subscripts d, v and l indicate dry air, water vapour and liquid water components

respectively and Mi is the mass of component i. Thus

dU

dt
= Md

dud

dt
+ Mv

duv

dt
+ Ml

dul

dt
+ (uv − ul)

dMv

dt
, (3.51)

since dMv/dt = −dMl/dt (i.e., the increase of vapour mass is equal to the loss of liquid

mass). Analogously, the volume V of the parcel can be written

V = Vl + (V − Vl) = Mlαl + Mvαv = Mlαl + Mdαd, (3.52)
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where Vl is the volume occupied by liquid droplets and α = 1/ρ = V/M is the specific

volume; Eq. (3.52) essentially states that both dry air and water vapour occupy the same

volume, V − Vl. Differentiating (3.52) and multiplying by p gives

p
dV

dt
= p


Ml

dαl

dt

∣∣∣∣∣
Ml

+ Mv
dαv

dt

∣∣∣∣∣
Mv

+ αv
dMv

dt

∣∣∣∣∣
αv

+ αl
dMl

dt

∣∣∣∣∣
αl


 (3.53)

= p

(
Mv

dαv

dt
+ (αv − αl)

dMv

dt

)
(3.54)

= pdMd
dαd

dt
+ pvMv

dαv

dt
+ p(αv − αl)

dMv

dt
. (3.55)

Equation (3.54) follows by taking

Ml
dαl

dt

∣∣∣∣∣
Ml

≈ 0, (3.56)

since the volume of a fixed mass of liquid is essentially constant, and by again using dMv/dt =

−dMl/dt. Equation (3.55) follows by writing p as the sum of partial pressures, p = pd + pv,

and noting that

Mv
dαv

dt

∣∣∣∣∣
Mv

=
d

dt
(V − Vl) = Md

dαd

dt

∣∣∣∣∣
Md

. (3.57)

Substituting in (3.49), we obtain

(Mdcvd + Mvcvv + Mlcl)
dT

dt
+ �v

dMv

dt
+ pdMd

dαd

dt
+ pvMv

dαv

dt
= Q (3.58)

with the latent heat of vaporisation �v given by (3.29).

We now write

pdMd
dαd

dt
= MdRd

(
dT

dt
− T

pd

dpd

dt

)
(3.59)

and

pvMv
dαv

dt
= MvRv

(
dT

dt
− T

e

de

dt

)
(3.60)

Substituting into (3.58) and dividing by MdT we obtain

(cpd + wscpv + wlcl)
1

T

dT

dt
− Rd

pd

dpd

dt
− wRv

e

de

dt
+

�v

T

dw

dt
=

Q

MdT
. (3.61)

where w is the vapour mixing ratio and wl is the liquid water mixing ratio.
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Now

�v

T

dw

dt
=

1

T

d

dt
(�vw) − w(cpv − cl)

1

T

dT

dt
(3.62)

=
d

dt

(
�vw

T

)
+

�vw

T 2

dT

dt
− w(cpv − cl)

1

T

dT

dt
(3.63)

where we have used d�v/dT = cpv − cl. Substituting in (3.61) and using Clausius-Clapeyron

gives

[cpd + (w + wl)cl]
1

T

dT

dt
− Rd

pd

dpd

dt
− wRv

e

de

dt
+

wRv

es

des

dt
+

d

dt

(
�vw

T

)
=

Q

MdT
. (3.64)

Defining the effective heat capacity

cp = cpd + (w + wl)cl, (3.65)

(which is a constant, since total water is conserved), we see that the moist entropy

s = cp ln

[
T p

−Rd/cp

d

(
e

es

)−wRv/cp

exp

(
�vw

cpT

)]
+ const. (3.66)

is conserved under reversible adiabatic transformations. The equivalent potential tempera-

ture,

Θe = T

(
pd

p0

)−Rd/cp ( e

es

)−wRv/cp

exp

(
�vw

cpT

)
, (3.67)

is also conserved. Physically, Θe is the temperature a saturated parcel would have if all

the water vapour in it were to condense and the parcel were brought to sea level. Note

that the above definition of Θe applies whether or not the parcel is saturated. However, the

derivation assumes that the parcel is in thermodynamic equilibrium at all times, so if the

parcel is subsatured there can be no liquid water, wl = 0 (any liquid water in a subsaturated

parcel will evaporate irreversibly until the parcel is saturated). Note also that if the parcel

if perfectly dry, then Θe = Θ, the dry potential temperature (note that limx→0 xx = 1).

For a subsaturated parcel, we can also define a saturation equivalent potential temperature

Θes as the equivalent potential temperature that an unsaturated parcel would have if it were

saturated:

Θes = T

(
pd

p0

)−Rd/cp

exp

(
�v(T )ws(T )

cpT

)
, (3.68)
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with cp = cpd + ws(T )cl, where ws(T ) is the saturation mixing ratio at temperature T . Note

that Θes is not conserved as a parcel is adiabatically lifted.

3.15 The moist adiabatic lapse rate

In Section 2.20 we derived the dry adiabat, defined as the temperature profile a non-

condensing atmosphere needs to have in order for the temperature in an adiabatically-lifted

parcel always to match that of its surroundings. Here we derive the analogous result for a

parcel in which condensation is occurring.

For a saturated parcel lifted adiabatically at speed dz/dt, (3.64) implies

cp
dT

dz
− RdT

pd

dpd

dz
+ T

d

dz

(
�vws

T

)
= 0. (3.69)

Now let’s work on the 2nd term:

RdT

pd

dpd

dz
=

1

ρd

d

dz
(p − es) = − ρ′

ρd

g − ρv

ρd

des

dT

dT

dz
= − pRdT

pdR′T ′g − �vws

T

dT

dz
. (3.70)

We have used Clausius-Clapeyron in the last step; primes refer to properties of the surround-

ings (we do not use subscript s, as in Section 2.20, to avoid confusion with s for “saturated”

as used here), which are assumed hydrostatic. As for the dry case, we define the moist

adiabat as the temperature profile an atmosphere needs to have so that temperature within

an adiabatically-lifted saturated parcel always matches the surroundings, T = T ′. This still

leaves an annoying pRd/pdR
′ in (3.70) which we will simply approximate as 1, since moisture

mixing ratio never exceeds a few percent. With this approximation, (3.69) and (3.70) give

dT

dz
= − g

cp
− 1

cp

d

dz
(�vws). (3.71)

Thus the moist-adiabatic lapse rate is simply the dry-adiabatic lapse rate plus a contribution

due to condensation. Note that since

ws =
εes

p − es
� εes

p
∼ εes0

p0
exp

(
− z

Hv
+

z

H

)
(3.72)
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and Hv < H (see Section 3.12), ws decreases exponentially with height, so the condensation

term in (3.71) is positive. This means that the moist adiabatic lapse rate is always less than

the dry adiabatic. To see this more explicitly, we can use the approximation in (3.72) to

write
1

ws

dws

dz
= −1

p

dp

dz
+

1

es

des

dz
=

g

RT
+

�v

RvT 2

dT

dz
. (3.73)

Taking �v as constant in (3.71) and using (3.73) finally gives

dT

dz
= − g

cpd + (ws + wl)cl

1 + �vws/RT

1 + �2
vws/cpdRvT 2

. (3.74)

Thus the moist adiabatic lapse rate will be less than the dry adiabatic if �vws/RT <

�2
vws/cpdRvT

2, which implies cpdT/ε�v < 1: as we saw in Section 3.12, this is true in our

atmosphere.

3.16 Moist adiabats and pseudoadiabats

To compute the structure of the moist adiabat explicitly, we need to integrate (3.74) in

the vertical. Because of the complicated dependence of ws on T , this needs to be done

numerically. In practise, we use a finite-difference approximation to write

T (z + ∆z) = T (z) −
(

g

cpd + (ws + wl)cl

1 + �vws/RT

1 + �2
vws/cpdRvT 2

)∣∣∣∣∣
z

∆z, (3.75)

which allows the profile to be built up step by step given initial values of temperature and

humidity. To actually do the computation, we need to express ws, �v, and wl as functions of

z:

• For �v, we use (3.42) to write �v(z) = �v(T (z)).

• For ws we take

ws(z) =
ε es(z)

p(z) − es(z)
(3.76)



CHAPTER 3: THERMODYNAMICS OF MOIST AIR 69

where es(z) = es(T (z)). p(z) is computed using the hydrostatic equation, which con-

sistently with the approximation ρ′ � ρd made to derive (3.71) can be written

d ln p

dz
= − g

RdT
(3.77)

and integrated numerically as above.

• For wl (the mass mixing ratio of liquid water), the situation is more complicated. If

none of the condensed water precipitates out of the parcel during ascent, then the total

water content wt = ws +wl is constant, in which case we simply use the initial value of

wt in (3.75). This is called a true adiabat or reversible adiabat, in which entropy (and

equivalent potential temperature) is exactly conserved. In realistic situations, some of

the condensed water may fall out as precipitation. Exactly how much falls out depends

on somewhat intractable cloud microphysical processes, discussed in Chapter 4. If

all the condensate drops out, then we can set wl = 0 in (3.75). This yields the

pseudoadiabat; “pseudo” because it’s not a real adiabat, since entropy is not exactly

conserved.

Some examples are shown in Fig. 3.5. To compute each of these curves, we start with a

saturated parcel of specified temperature at the surface and integrate upwards. As the parcel

rises, water condenses releasing latent heat, and so temperature decreases more slowly than in

the dry case. This effect is stronger the warmer (and hence moister) the initial conditions. At

typical Earth-like surface temperatures, the effect is very strong: for a starting temperature

of 5◦C, the mean lapse rate over the first 5 km is 7.2 K km−1, for 20◦C it is 4.8 ◦C km−1

and for 35◦C it is 3.3 ◦C km−1 (compare with 9.8 ◦C km−1 for the dry adiabat).

As the parcel rises, more and more water condenses and the effect on the lapse rate becomes

weaker. At great height, temperatures are very low, ws becomes very small, and the pseu-

doadiabatic lapse rate converges to the dry adiabatic, g/cpd, while the true adiabatic lapse

rate converges to the smaller value g/(cpd + wtcl).
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Figure 3.5: Moist adiabats (black solid lines) and pseudoadiabats (dotted) starting at z = 0 with

temperatures of –25, –10, 5, 20 and 35◦C and the corresponding saturation humidity, with no condensed

water initially. Surface pressure is 1000 hPa. Gray lines show dry adiabats to which the pseudoadiabats

converge at high altitude.

3.17 Visualising the connection between the

various meteorological temperatures

As we have seen, meteorologists enjoy defining a bewildering array of temperatures (potential,

equivalent, wet-bulb etc.) which are connected to everyday absolute temperature by well-

defined physical processes. These processes can be visualised graphically as shown in Fig. 3.6,

which provides a handy way to tie all the temperatures together and remember the processes

that connect them.

Consider a parcel initially at some height above the surface (black dot in Fig. 3.6), where
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Figure 3.6: Transformations of an unsaturated parcel (black dot) lifted or lowered adiabatically from an

initial state with temperature T . Black solid line is a moist pseudoadiabat. Gray lines are dry adiabats.

Red line shows change in dew point temperature.

it has some temperature T , some pressure p and some mixing ratio w < ws (i.e. it is

unsaturated). If the parcel is lowered adiabatically, it will follow a dry adiabat. When

it reaches the surface, its temperature will equal its potential temperature Θ (potential

temperature is the temperature an unsaturated parcel would have if brought adiabatically to

the surface). If the parcel is raised adiabatically, if will follow a dry adiabat up to the LCL.

At this point the parcel is saturated, and upon further lifting will follow a moist adiabat.

If all condensate is removed from the parcel, then if follows a pseudoadiabat. Following a

pseudoadiabat all the way to the top of the atmosphere results in complete drying of the

parcel. If we then bring the parcel down again, it will follow a dry adiabat. When we get back

down to the initial height, the parcel’s temperature will equal the equivalent temperature

Te (equivalent temperature is the temperature a parcel would have if all its water were made

to condense while pressure was kept fixed). If we keep going to the surface, the parcel’s

temperature will be the equivalent potential temperature Θe (equivalent temperature is the

temperature a parcel would have if all its water were made to condense and the parcel were

brought adiabatically to the surface).

Now consider the final possibility: we raise the parcel dry-adiabatically from its initial level

to the LCL, and then lower it pseudoadiabatically. In pseudoadiabatic descent, water is

added to the parcel—just enough water to keep the parcel saturated (exactly the opposite to
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Figure 3.7: Three idealised temperature (black line) and dew-point (gray) soundings, all with the same

fixed temperature lapse rate of 7◦C/km and vertically constant relative humidity of 30% (left), 60%

(middle) and 100% (right).

the removal of condensate in pseudoadiabatic ascent). When we get back to the initial level,

the parcel’s temperature will be the wet-bulb temperature Tw (wet-bulb temperature is the

temperature a parcel reaches by evaporating enough water to make itself saturated). Finally,

if we keep going to the surface (always following a pseudoadiabat) we reach the wet-bulb

potential temperature Θw.

3.18 Static stability of a moist atmosphere

In Section 2.21, we examined the stability of a dry atmosphere to infinitesimal displacements

of a test parcel. This gives two stability categories: if a parcel displaced upward becomes

positively buoyant, then the temperature profile is unstable; otherwise, it is stable. When

dealing with the stability of a moist atmosphere, it is useful to consider also finite-size

displacements. This introduces a third category, called conditional instability: a profile is

unstable if a parcel can become positively buoyant when displaced far enough upward

Consider for instance the three idealised soundings depicted in Fig. 3.7. In all 3 cases,
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the ambient lapse rate is 7◦C km−1 and relative humidity is constant with height. In the

left panel, relative humidity is 30%. A parcel lifted from the surface, being unsaturated,

will initially follow a dry adiabat. Eventually, it will reach its LCL and the follow a moist

adiabat. Throughout, its temperature will be less than the surroundings’, and the parcel

will be negatively buoyant (i.e. will want to fall back down); the same is true for parcels

lifted from any level. Thus the profile is stable to parcel displacements of any size from any

level.

In the middle panel, relative humidity is 60%. A parcel lifted from the surface will initially

be negatively buoyant. But some distance above the LCL, at a point called the level of

free convection (LFC), the moist adiabat crosses the sounding temperature, and the parcel

becomes positively buoyant: this an example of conditional instability (which in turn is

an example of subcritical instability, the general term for instabilities requiring a triggering

perturbation of finite size). Parcels lifted from higher up in the atmosphere, on the other

hand, never achieve positive buoyancy. Overall, the profile is stable to all infinitesimal

perturbations but unstable to some finite-size perturbations; in this case, the profile as a

whole is classed as conditionally unstable.

In the third case (right-hand panel) the atmosphere is saturated everywhere. Parcels near

the surface are unstable even to infinitesimal perturbations, though parcels further up are

stable; the profile as a whole is classed as unstable.

A word of warning: there is an alternative, and more traditional, definition of “conditional

instability”, whereby a profile is conditionally unstable if its lapse rate is less than dry adi-

abatic but greater than moist adiabatic. This definition is fundamentally different from the

finite-size perturbation definition given here: a profile that is conditionally unstable accord-

ing to the traditional definition may actually be stable to all adiabatic parcel displacements

of whatever size. Confusingly, the two definitions coexist and are sometimes mixed together.

The conflict between the two definitions is a matter of current debate (see e.g. Sherwood,

2000). That such a basic definition should still be debated in a discipline over a century old

is, among other things, a testament to the diversity of the those involved in meteorology,
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Figure 3.8: Real soundings from (left) Kuching, 6 Oct 2005 12Z, and (right) Valentia, 13 Oct 2006 12Z.

Lower two panels show the same soundings plotted on a skew-T ln-p grid (the temperature isolines have

been rotated clockwise by about 45◦).

ranging from rough-and-ready practitioners to ivory-tower academic theorists. This diversity,

and the ensuing communication problems, is both the bane and the charm of meteorology.

Now let’s look at the stability of some real soundings. Fig. 3.8 shows two examples, one

from Kuching in Malaysia and the other from Valentia in Ireland. In the Kuching sounding,

surface parcels reach their LFC at around 900 hPa, and remain positively buoyant all the way

up to about 120 hPa. Parcels higher up in the atmosphere are stable; overall, the sounding

is conditionally unstable. The sounding at Valentia contains a strong inversion (a layer of

the troposphere where temperature increases with height) which has a strongly stabilising
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effect: parcels lifted from the surface experience some small positive buoyancy in a thin layer

just under the inversion, but are negatively buoyant above the inversion. Overall, the profile

may be classed as stable.

3.19 Skew-T and tephigram charts

Determining the stability of a sounding involves comparing the temperatures (and hence

densities) of the sounding and of adiabatically lifted parcels. It is a fact of life that the

troposphere is generally never very far from a moist adiabat—more precisely, the difference

between a temperature sounding and a nearby moist adiabat is usually small compared with

the overall temperature change from surface to tropopause. As a result, plots such as those

along the top row in Fig. 3.8 are graphically inefficient: sounding and parcel trajectories are

bunched up along the diagonal, with white space elsewhere. A neat trick to improve the

presentation and make the important features stand out more clearly is to tilt the constant-

temperature lines by 45◦, as shown along the bottom row of Fig. 3.8: note how much more

clearly (compared with Fig. 3.8) you can see the regions of positive and negative buoyancy,

and how the shift from dry to moist adiabats is much more pronounced.

A skew-T ln-p chart is a special diagram used to plot atmospheric soundings. An example

is shown in Fig. 3.9. Aside from pressure and tilted temperature lines, it has dry and moist

adiabats at regular intervals, as well as lines showing dew-point temperature at fixed mixing

ratio (so-called mixing-ratio isopleths; “isopleth” means “having the same value”). Since

mixing ratio is conserved in an adiabatically-lifted unsaturated parcel, these lines permit

quick identification of the LCL: given the temperature and dew-point of a parcel, just follow

temperature up the dry adiabat and dew-point up the humidity isopleth until the two meet,

and that’s the LCL.

A tephigram chart is very similar to a skew-T chart, but it uses as coordinates Θ and T ,
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Figure 3.9: The Kuching sounding of Fig. 3.8 plotted on a skew-T ln-p chart. Black lines show pressure

and temperature. Brown lines are dry adiabats, green lines moist adiabats, and yellow dashed lines show

dew-point temperature at fixed mixing ratio.

with axes at right-angles1. Since Θ = T (p/p0)
−Rd/cpd , a line of constant p is a a straight line

making an angle arctan(p/p0)
−Rd/cpd to the horizontal. If we rotate this clockwise through

45◦, then the p = p0 = 1000 hPa line is horizontal, and lower-pressure lines are somewhat

tilted. The result is very similar to a skew-T chart, but the dry adiabats are straight lines.

An example is shown in Fig. 3.10.

1Actually, the traditional choice of axis is T and s = cp ln Θ, but since ln Θ is essentially linear over the

range of interest, it is simpler and almost equivalent to use Θ as an axis.
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Figure 3.10: A tephigram chart, courtesy of Maarten Ambaum at the University of Reading. He has

some interesting comments at http://www.met.reading.ac.uk/ sws97mha/Tephigram/
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3.20 CAPE and CINE

In Section 2.23, we defined CAPE as the work (per unit mass) done by the buoyancy force

when a parcel ascends from its level of free convection (LFC) to its level of neutral buoyancy

(LNB). This carries over to the moist case:

CAPE = Rd

∫ pLFC

pLNB

(Tvp − Tvs)d ln p, (3.78)

with the only difference that we use virtual temperature here. Graphically, this is the positive

area between the parcel trajectory and sounding on a skew-T or tephigram plot. CAPE is

positive for unstable and conditionally-unstable parcels, and zero for stable parcels. The

actual value of CAPE is related to the intensity of the ensuing convection.

Between the surface and the LFC, the parcel is negatively buoyant, so work must be done

to lift it to the LFC. This is called the convective inhibition energy (CINE), given by

CINE = Rd

∫ p0

pLFC

(Tvp − Tvs)d ln p, (3.79)

which is always negative. The greater the CINE, the more work is needed to lift parcels to

their LFC and the more difficult it is to trigger convection. The presence of CINE means

that CAPE is not immediately released as soon as it is generated, but can accumulate until

an adequate triggering event occurs. Very large amounts of CAPE can then be released all

at once, leading to very intense storms.

3.21 Stability indices and thunderstorm forecasting

Because CAPE is somewhat complicated to compute, a number of simpler “stability in-

dices” have been devised over the years; these are numbers which, like CAPE, characterise

the degree of instability of a profile, and are used in forecasting severe weather (such as

thunderstorms). The most classic is the Showalter index (SI), defined by

SI = T500 − T ′
850 (3.80)
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Figure 3.11: Probability distributions of the Showalter index conditional on a storm occurring (solid) and

not occurring (dotted). From Huntrieser et al. (1997).

where T ′
850 is the temperature of a parcel lifted pseudoadiabatically from 850 to 500 hPa,

and T500 is the temperature of the surroundings at 500 hPa. Clearly, positive SI indicates

stable conditions. Another widely-used index is the lifted index (LI), defined by

LI = T500 − T ′
s (3.81)

where now T ′
s is the temperature of a parcel lifted to 500 hPa from the surface. There are

many other indices besides these two, all of which compare the temperature, humidity and

winds at different levels.

Stability indices are indicators of convection and thunderstorms, but only in a statistical

sense. Thus, given a profile with very negative SI (or LI), there is no guarantee that con-

vection will occur, but there is a greater probability that it will. For stability indices to be

quantitatively useful in forecasting, we need to know the conditional probability that convec-

tion will occur given that the index has a certain value (or, equivalently, the probability that

the index has a certain value given that convection is observed). These probabilities can be

estimated empirically, by computing the index for a great many soundings at a given site,

and observing whether or not a thunderstorm develops. An example for SI in Switzerland is

shown in Fig. 3.11. Once we have these probability distributions, we can make a probabilistic

forecast: given a value of SI, we can say what is the probability that a thunderstorm will

develop today. The catch is that the probability distributions are site-specific, so we cannot
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Figure 3.12: Θe and Θes for the soundings shown in Fig. 3.8. The blue line shows the (constant) Θe of a

parcel lifted from the ground.

use data from one station to make predictions about faraway locations. In general, stability

indices are used in a “fuzzy” way, as a qualitative indicator. Operational forecasters, after

a few years of hands-on work, develop a seat-of-the-pants feel for how likely a thunderstorm

is given SI and other data.

3.22 Relation between Θe, Θes and stability

We saw in Section 2.22 that the static stability of dry air is determined by the vertical rate

of change of Θ: if Θ increases with height, the profile is stable, otherwise it is unstable. This

is because at a given pressure, Θ depends only on T ; so if we bring two parcels adiabatically

to the same pressure, the one with higher Θ will always be warmer and thus lighter than the

other.

For a parcel that can undergo condensation, things get more complicated. The conserved

quantity in this case is Θe, which depends on humidity as much as on temperature. Thus, two

parcels at the same pressure and with the same Θe can have very different temperatures; there
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is no simple relation between Θe and parcel buoyancies. However, we can get around this

by comparing the Θe of the test parcel with the saturated Θe (i.e. Θes) of the environment.

By making the environment saturated, we remove the dependency on humidity, so that the

comparison reflects only differences in temperatures. It can be shown that for a parcel that

has achieved saturation (i.e. one that is above its LCL) the approximate relation

Θ′ − Θ � Θ′
e − Θes

1 + β
(3.82)

is valid, where primes refer to the adiabatically lifted parcel and β = (�v/cp)∂ws/∂T .

Fig. 3.12 shows this for the two real soundings.

Exercise 3.22: Show that (3.82) is true. To do so, expand the exponential in Θe and Θes

to first order in a Taylor series, take the difference, and use a further expansion on ws(T ).

3.23 Mixing lines and contrails

To form condensation in air, i.e. to make a cloud, you need to either cool the air, make

it moister, or both. The easiest, fastest and by far the most common way for air to cool

sufficiently to form a cloud is by adiabatic expansion; hence the importance of lifting and

the emphasis on adiabatic processes in all we’ve done up to here. But there are other ways

to cool air, and though they play a less important role, they are worth discussing. These

processes involve exchange of heat and/or mass between an air parcel and its surroundings,

so they are diabatic (some prefer the term “non-adiabatic”; and why not a-adiabatic or

a-nondiabatic?).

One example is radiative cooling. As we will see later, all bodies (including bodies of gas)

spontaneously emit radiation, which carries away energy. Under the right conditions (at

night and under clear skies with weak winds), the Earth’s surface can cool dramatically

through radiative loss (hence the cold desert nights we’re all familiar with from Lawrence of

Arabia films). The air in contact with the surface will cool by conduction, and if it is humid

enough, a fog will form; this is called radiation fog.
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Figure 3.13: Contrails.

Another way to cool air is by mixing it with colder air. This is what happens when you

can see your breath on a cold day: the warm moist air coming out of your mouth mixes

with colder ambient air and, if conditions are right, the resultant mix is supersaturated

so condensation forms. A more dramatic example of the same phenomenon are contrails

(short for condensation trails), the linear clouds stretching behind aeroplanes high in the

sky (Fig. 3.13). Contrails are of interest to various people, among them the Air Force: it

makes the generals look bad when their multi-zillion dollar stealth fighter has a large cloud

pointing at it like a neon sign. A more PC interest in contrails derives from their possible

role in enhancing global warming. If you’ve ever stopped to look at contrails for a while, you

will have noticed that often they don’t just disappear, but evolve into more horizontally-

extensive cirrus clouds. These clouds are thin enough to let plenty of sunlight through, but

they still trap infrared radiation quite strongly (again, more on this later), so they lead to a

net warming.

To understand contrail formation, it helps to look at a figure like 3.14. A jet engine is a

machine that takes air with ambient temperature and humidity (represented by point 4 in

the figure), adds heat and water vapour to it (both resulting from combustion) and spews

it back out again in a highly turbulent state (point 1). Because of the turbulence, the hot,
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Figure 3.14: Schematic of contrail formation. From Schrader (1997).

moist exhaust air rapidly mixes with the much colder ambient air. If mass me of exhaust air

mixes with mass ma of ambient air, the temperature of the mixture is T = (1− f)Te + fTa,

where Te is exhaust temperature, Ta is ambient temperature, and f = me/(me + ma) is the

mixing fraction. A similar expression is valid for the humidity. As the exhaust air becomes

more and more diluted, f increases and the point representing the state of the mixed air

moves from point 1 to point 4 along a straight line called the mixing line. If the mixing

line crosses the saturation vapour pressure curves, then a contrail will form. Normally, the

ambient air is unsaturated, and so the contrail will eventually dissipate as the mixed air

approaches point 4 (this is why contrails typically have a beginning and an end). However,

it can happen that point 4 lies in between the ice and the water saturation curves (i.e., the

air is supersaturated with respect to ice but unsaturated with respect to water). Under these

conditions, clouds will not form spontaneously (because it is difficult to nucleate ice drops

directly), but icy contrails will persist for a long time.

Exercise 3.23: The air coming out of a jet engine is much warmer than its surroundings

and therefore very buoyant; you would expect it to shoot up into the sky like a balloon.

However, this does not happen appreciably: contrails form roughly at the same level as the

aeroplane. Give a quantitative (order-of-magnitude) explanation for this. It helps to look

closely at Fig. 3.13 and make reasonable assumptions about the speed and length of the

aeroplane and the temperature difference between exhaust and ambient air.



Chapter 4

Cloud microphysics

This chapter deals with the processes controlling the formation of cloud droplets and their

eventual transformation into precipitation. These processes occur on scales of microns (1

µm = 10−6 m), hence “microphysics”.

4.1 Homogeneous nucleation

How is a cloud formed? Well, you take a parcel of moist air, lift it adiabatically beyond its

LCL, the air becomes saturated and the excess water condenses out; end of story. Right? Life

is never so simple, unfortunately (or fortunately, depending on your viewpoint: if life were

simple, we wouldn’t need scientists, or universities). This simple picture of cloud formation,

empirically supported by the observation that supersaturation greater than a few percent

is never observed in the atmosphere, actually conceals a considerable amount of complexity

related to the details of the way condensation forms.

Take an enclosed parcel of pure moist air (i.e., just dry air and water vapour, no other

junk) and cool it to its dew point. What happens? As it turns out, nothing. No cloud

84
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forms. In fact you need to cool the air to the point where it is supersaturated by several

hundred percent before a cloud will form. To understand this, we need to consider the

process by which a cloud drop is formed. To form a cloud droplet out of pure moist air, you

need to start from a tiny clump of water molecules which come together by chance. This

proto-droplet, though tiny, is nevertheless liquid. As with any other liquid surface, we can

define a saturation vapour pressure as the vapour pressure such that the flux of molecules

entering the liquid matches the outgoing flux (Section 3.7). If the ambient vapour pressure

is greater than the saturation value, then the flux of molecules entering the drop exceeds

the number leaving. The droplet grows, and continues growing so long as the ambient air

remains supersaturated. This process is called homogeneous nucleation.

The catch is that saturation vapour pressure depends on droplet radius: the smaller the drop,

the greater the vapour pressure required to keep it in equilibrium. Thus, in the thought-

experiment above, the air is is supersaturated with respect to a flat surface of water (infinite

radius), but is subsaturated with respect to the tiny proto-drops generated by chance, which

evaporate as soon as they are formed. It is only when supersaturation (with respect to a flat

surface) exceeds 400% that a significant number of proto-drops can exist in equilibrium.

The reason for the radius dependence is that water molecules find it a lot easier to escape

from the surface of small drops than they do from a flat surface. This can be seen as a

consequence of the “party effect”. Imagine you’re in a party and you decide to leave. You

head for the door only to find a large group of your friends there. They hug you and engage

you in conversation, so you end up staying. This is the situation for a molecule near a

flat liquid surface: it is surrounded by fellow molecules which exert attractive forces on it,

retarding its departure. On the other hand, had you found the entrance hall deserted, you

would simply have left. This is more like the situation of a water molecule near the surface

of a small drop: because of the geometry, there are far fewer other molecules in its vicinity,

and the work required to leave the surface is much less than in the flat case.
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4.2 Kelvin’s equation

These ideas can be quantified by introducing the concept of surface tension, which roughly

speaking measures the force required to stretch the surface “skin” of a liquid (the existence

of this skin is exploited by insects light enough to walk on water without punching trough

its surface). As a droplet evaporates, its skin shrinks, resulting in a release of potential

energy which gives an increasingly important contribution to the overall energetics of the

evaporation/condensation process the smaller the radius. Though the derivation is not

particularly more difficult than anything we’ve done before, we will omit it for brevity. The

result is Kelvin’s equation, which gives the radius dependence of saturation vapour pressure:

es(T, r) = es∞ exp

(
2σ

rRvρwT

)
, (4.1)

where es(T, r) is the saturation vapour pressure above a drop of radius r and temperature

T , es∞ is the saturation vapour pressure above a flat surface, σ is the surface tension, and

ρw is the density of liquid water.

Kelvin’s equation has a simple physical interpretation. Recalling expression (3.39) for es∞,

we can write

es(T, r) = C exp

(
−mv�v − 2σmv/ρwr

kT

)
, (4.2)

where C is a constant and mv is the mass of a water molecule. The quantity in the exponent

is the ratio of the energy required for a molecule to break free from the droplet to the mean

kinetic energy of the molecules. The energy required to escape is is mv�v if the surface is flat

(r = ∞), but decreases as the the radius decreases.

A typical value for σ is 7.3 × 10−2 N m−1. Using this value, we can plot es as a function of

r (Fig. 4.1). Recall that is es is the vapour pressure at which a droplet of given radius and

temperature can exist in equilibrium with its environment—that is, es(r, T ) is the vapour

pressure such that a droplet of radius r and temperature T will in principle neither grow

nor shrink, but maintain its size indefinitely. However, this is an unstable equilibrium.

Droplet radius is subject to continuous fluctuations, due to the randomness of the processes
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Figure 4.1: Kalvin’s equation: supersaturation (es(r, T )/es∞ − 1) × 100 computed using (4.1) at

T = 20◦C.

by which molecules evaporate and condense onto it. If, by a random fluctuation, droplet

radius increases, this will make it more difficult for molecules to escape from it, reducing

the average outgoing molecule flux. At the same time, the average incoming flux remains

unchanged, so the drop will gain even more mass and so on in a runaway process. Similarly,

a small negative fluctuation away from equilibrium will cause the drop to evaporate and

disappear altogether. Thus in practise a small droplet will not be observed to maintain its

radius indefinitely: it will either grow or disappear.

4.3 Heterogeneous nucleation and aerosols

Since supersaturation never exceeds a few percent in the atmosphere, homogeneous nucle-

ation cannot play any role. So how do clouds actually form? The answer is heterogeneous

nucleation: all cloud droplets start their life by condensing around a speck of foreign mat-
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ter. All real air contains a large number of tiny particles. When such particles are small

enough, Brownian motion overwhelms gravity and the particles can remain in suspension

indefinitely, in which case they are called aerosols. Though small, each aerosol particle still

contains enough molecules to be considered a chunk of solid or liquid (i.e. an aggregated

state of matter). When they get small enough, aerosols start to behave more like a true

solution; this happens when they are smaller than about 10−3 µm. The opposite extreme,

in which gravity overwhelms Brownian motion, is called a suspension; suspensions will even-

tually settle out given sufficient time. The boundary between aerosols and suspensions is

fuzzy, but is generally set at around 1 µm. Clouds are an example of a suspension.

The origin and evolution of aerosols is a very complicated topic in atmospheric chemistry.

The chemical composition of aerosols is very varied—anything from very fine mineral dust, to

soot, to sulphate and nitrate salts. Human activities, especially fossil fuel burning, produce

a lot of aerosols. In general, aerosols are much more abundant over continents than over the

oceans, which has consequences for the clouds that form there. Because aerosols interact

with radiation and are crucial to cloud formation, they can strongly affect climate.

Not all aerosol particles can be used to form a cloud droplet: certain criteria apply. Those

aerosols meeting these criteria are called cloud condensation nuclei (CCN). There are 2 types

of aerosol which can act as CCN:

1. The aerosol is insoluble but wettable (or hydrophilic), and sufficiently large. A surface

is wettable when water collects on it in a thin film rather than bunching into drops

(the opposite of a wettable surface is called hydrophobic, the classic example being a

well-waxed car). In a moist atmosphere, a wettable aerosol will collect a film of water

around itself and act, to all intents and purposes, as a droplet of pure water. If the

particle’s radius is large enough, this “drop” will find itself to the right of the Kelvin

equilibrium line, and will grow indefinitely: a cloud drop is born. However, for this to

happen at supersaturations of only a few percent requires aerosols of radius ∼ 1µm.

Aerosols this big are rare, so this mechanisms is not the most common way to form

cloud drops.
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2. The other way for an aerosol to act as a CCN is for it to be soluble and large enough.

Though there is still a size restriction, it is much less stringent than in the previous

case. Because there are many more small aerosols than larger ones, this is the most

common way for cloud droplets to form. We examine this mechanism in detail in the

following section.

4.4 Raoult’s law

Vapour pressure is also affected by the purity of the water. This dependence is described by

Raoult’s law:

es(T, r, f) = f es(T, r, 1) (4.3)

where f is the number fraction of water molecules in the solution:

f =
nw

nw + i ns
, (4.4)

with nw the number density of water molecules, ns the number density of solute molecules,

and i the number of ions into which the solute dissolves (e.g., i = 1 for ethanol, which does not

ionise, while i = 2 for sodium chloride, which separates into Na+ and Cl− ions). es(T, r, f)

is the water vapour pressure above a drop at temperature T , radius r and concentration f ;

es(T, r, 1) is the vapour pressure above a similar drop of pure water. Note that since f ≤ 1,

adding impurities always reduces vapour pressure.

Exercise 4.4: A sling psychrometer (Section 3.10) is used to measure humidity. Estimate

the error in the humidity measurement if the water used in the wet bulb is dirty, so that of

every ten molecules, only 9 are water molecules.

Raoult’s law is striking both for its simplicity and for the fact that it applies to any solvent-

solute combination: it depends only on concentration, and not on the specific chemical

species involved. It is thus extremely powerful. The downside is that the law is not actually

true in general. It is exactly true only for ideal solutions, i.e. those for which there is no
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change in temperature or volume upon mixing solvent and solute. However, it also applies

approximately to non-ideal solutions provided they are dilute (1 − f � 1). Physically, the

reduction in vapour pressure has nothing to do with attraction between solvent and solute

molecules, as you might think—in fact, an ideal solution can be defined as one in which such

inter-molecular forces are zero. Rather, the effect of the solute molecules is to take up space

at the surface of the liquid, making it harder for water molecules to find their way out of

the liquid. The fraction of surface area taken up by solute molecules is proportional to their

concentration, which explains the simple form of (4.4).

4.5 Köhler diagrams

Now consider a soluble aerosol suspended in a moist atmosphere. Water molecules will

condense onto the aerosol, since initially f << 1 and so the atmosphere is strongly super-

saturated with respect to the aerosol. Eventually the aerosol becomes a droplet of solution.

The saturation vapour pressure above such a drop is obtained by combining Raoult’s law

(4.3) with Kelvin’s equation (4.1), which gives the Köhler relation

es(T, r, Ms) =
es∞

1 + AMs/r3
exp

(
B

rT

)
(4.5)

� es∞
(
1 − AMs

r3
+

B

rT

)
, (4.6)

where es∞ is the saturation vapour pressure above a flat surface of pure water,

A =
3imv

4πρwms
, B =

2σ

Rvρw
, (4.7)

Ms is the initial mass of the aerosol, ms the aerosol’s molecular mass, mv is the molecular

mass of water, and ρw is the density of liquid water.

Exercise 4.5: Derive (4.5).

Example Köhler curves for a range of aerosol sizes are shown in Fig. 4.2. At small r, the cubic

solute effect dominates, and the equilibrium vapour pressure is much less than for pure water.
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Figure 4.2: Köhler diagram computed using (4.5) for sodium chloride aerosols with the masses Ms

indicated (in units of 10−20 kg). Temperature is 20◦C. The molecular mass of NaCl is 58.44 AMU. The

ordinate shows relative humidity with respect to a flat surface of pure water, es/es∞ × 100.

Thus, small solution droplets can comfortably exist in equilibrium even at relative humidities

less than 100% (i.e. es/es∞ < 1). Below 100% relative humidity, a single equilibrium radius

is possible (for a given aerosol size), and this is a stable equilibrium: if a small fluctuation

makes r suddenly larger, the drop finds itself subsaturated and evaporates until it regains

its equilibrium radius. These stable droplets are called haze droplets, and are responsible for

the hazy, milky appearance of the horizon on a warm, humid day.

At relative humidities greater than 100%, two equilibrium radii are possible. The left-

hand equilibrium is stable, while the right-hand equilibrium is unstable, and drops will

grow indefinitely. For each aerosol size, there is a critical radius which separates stable

form unstable equilibria. The critical radius corresponds to the highest relative humidity

at which droplets can exist in equilibrium: at higher relative humidities, droplets will grow

indefinitely. This, then, is how most cloud droplets are born. As air is cooled and relative

humidity increases, haze droplets increase steadily in size following the Köhler curve. Once

the critical radius is reached, the droplets continue to grow spontaneously (that is, they will
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grow even if relative humidity were not increased any further). Having reached this stage,

droplets are said to be “activated” and will eventually become full-grown cloud droplets.

Air parcels in nature normally contain a large number of aerosols with a range of sizes. When

a parcel is adiabatically lifted, its relative humidity increases (Section 3.13) and some of the

aerosols become haze droplets. As soon as a parcel is lifted beyond its LCL, the largest

of the haze droplets will be activated. As the parcel is lifted further and supersaturation

increases, smaller and smaller haze droplets will be activated. The activated droplets grow

rapidly, sucking moisture out of the air and counteracting the tendency for supersaturation

to increase as the parcel is lifted. At some point, so many droplets are activated that the two

effects balance, supersaturation non longer increases and no new haze droplets are activated.

At this point, a cloud has been formed, containing a population of droplet sizes. The width

of the droplet size range depends on three factors:

• size distribution of aerosols: if all aerosols are roughly the same size, then all activated

droplets will also be of roughly the same size, and the drop size range will be narrow;

• total number of aerosols: if there are many aerosols, then many haze droplets will

quickly be activated, and the balance between creation of supersaturation by lifting and

destruction of supersaturation by condensation will be struck at low supersaturations:

thus, the more aerosols, the tighter the droplet size range;

• updraft velocity: the faster the parcel rises, the greater the supply of supersaturation,

and the greater the maximum supersaturation reached: the faster the updraft, the

broader the drop size range.

4.6 From cloud drops to precipitation

We now have a relatively convincing mechanism for forming clouds. The next step is to

form precipitation. Activated haze droplets have typical sizes < 1µm, while precipitation
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reaching the ground has a typical size of 1 mm. Thus, activated droplets must grow 1000-fold

to become precipitation. On the face of it, this does not pose a problem: since activated

droplets will grow indefinitely, given a continuous supply of supersaturation, we just need to

wait long enough and the requisite size will be achieved.

Here, nature’s complexity strikes once more. Activated droplets grow by absorbing water

vapour diffused to their surface from the supersaturated environment. It can be shown that

the growth rate of droplet radius r by this process is inversely proportional to the radius

itself:
dr

dt
∝ 1

r
. (4.8)

This has two major consequences:

(i) growth becomes very slow once the droplet is sufficiently large;

(ii) larger droplets grow more slowly than smaller ones, so the smaller drops will “catch

up” and make the range of drop sizes narrower.

A detailed calculation shows that the time required for a droplet to grow to millimiter size

by diffusion is on the order of several hours. However, clouds are regularly observed to

precipitate less than one hour following formation. Thus, growth by diffusion cannot be

the main mechanism for the formation of precipitation. Instead, the main mechanism is

collection. The larger a droplet, the faster it falls. Larger drops will thus overtake smaller

ones. The resulting collisions will often result in the drops merging (the probability that the

drops merge is referred to as the collection efficiency). In effect, the larger drops will grow

at the expense of the smaller ones. This is an accelerating process: the larger the drops get,

the greater their velocity, and thus the faster they collect smaller drops.

The problem with collection is that it requires a significant spread of drop sizes to initiate

the process. While there is a wide range of drop sizes at the moment of activation, this range

is rapidly reduced by effect (ii) above. Thus, other mechanisms are generally required to

keep the drop-size spectrum broad enough for collection to operate efficiently. The specific
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mechanisms at play (including giant aerosols, stochastic effects and turbulence) will vary

from situation to situation. This remains an open problem in atmospheric science.



Chapter 5

Atmospheric radiation

5.1 Electromagnetic radiation

5.1.1 Waves

When a stone is thrown into a pond, it injects kinetic energy into the water at the point of

impact. This energy is subsequently carried away from the point of impact by wave motion

in the water (called surface or external gravity waves). A cork floating in the water some

distance away will bob up and down (i.e. gain kinetic energy) when the waves pass it; we

can speak of the waves transporting energy from the point of impact to the cork, which then

absorbs some of the energy. Analogously, when a charged object moves in space, it excites

electromagnetic waves, which carry energy away that may be absorbed by distant objects.

Unlike surface gravity waves, which are carried by a material medium, electromagnetic waves

are carried by an immaterial medium called the electromagnetic field. The immateriality

means that electromagnetic waves are free to propagate through a vaccum. They can also

propagate through a material medium, though in general they will interact with it, being

refracted, absorbed or both.

95
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The classical theory for electomagnetic waves is encapsulated in Maxwell’s equations, which

show that all electromagnetic waves in a vacuum propagate at the same speed c = 3.00×10−8

m s−1, the speed of light. The wavelength λ (the distance between two successive crests) and

frequency ν (the inverse of the time taken for two crests to pass a given point) are therefore

connected by

ν =
c

λ
. (5.1)

An equation such as (5.1), linking the wavelength and frequency of a wave, is known as a

dispersion relation. The relation can also be expressed as

ν = kc (5.2)

where k = 1/λ is the wavenumber, often measured in units of cm−1.

The energy carried by wave a depends on the amplitude, the deviation of the field from its

undisturbed value. Electromagnetic waves are linear, meaning that when two waves meet,

the total amplitude at any point is simply the sum of the individual amplitudes. This is

equivalent to saying that the waves do not interact.

The range of all possible wavelengths, known as the electromagnetic spectrum, is convention-

ally subdivided in to a number of sub-ranges (Fig. 5.1). This subdivision is anthropomorphic,

the classes corresponding to particular engineering applications or to the way humans per-

ceive the wavelengths in question. At the long wavelength, low frequency end we have radio

waves, which are used in telecommunications. Proceeding towards shorter waves, we have

microwave radiation (used in, yes, microwave ovens); infrared radiation, so called because

it comes before the red end of the visible range, and also called thermal radiation, because

humans perceive this range as warmth on the skin; visible radiation, because humans per-

ceive it with their eyes; the ultraviolet, lying beyond the violet end of the visible; X-rays;

and finally gamma rays, produced by the very energetic nuclear processes.
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Figure 5.1: The electromagnetic spectrum.

5.1.2 Photons

Classical wave theory is not sufficient to fully describe radiation in the atmosphere: radiation

is the only part of atmospheric science where quantum effects are of the essence. In a quantum

description, electromagnetic radiation is considered not as a collection of waves, but as a gas

of particles. This wave-particle duality is every bit as weird as it sounds, and is not something

we can really “understand”; rather, it is an empirical fact that we must accept and learn to

live with.

The particles, or quanta, of electromagnetic radiation are called photons. Like any self-

respecting particle, a photon carries a discrete amount of energy and linear momentum.

However, even when behaving as a particle, radiation somehow “remembers” its wave nature,

and the energy and momentum of a photon are both proportional to its frequency. The
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energy is

E = hν (5.3)

where h = 6.626068 × 10−34 m2 kg s−1 is Planck’s constant, and the momentum is hν/c.

There is no concept of an amplitude for a photon: if you need more energy at a given

wavelength, you just increase the number of photons.

5.2 Interaction between radiation and matter: some

generalities

Molecules can interact with radiation in 3 ways:

1. Absorption, in which a photon and a molecule collide, the photon ceases to exist, and its

energy is stored as internal energy (rotational, vibrational or electronic) of the molecule.

The excited molecule subsequently collides with neighbouring molecules. After a few

collisions, the energy absorbed from the photon will be thermalized, i.e. randomly

distributed among the gas’s degrees of freedom in accordance with equipartition. This

includes translational degrees of freedom, so the result is a net temperature increase.

2. Emission, the opposite of absorption, whereby a molecule whose internal degrees of

freedom have been excited through collision spontaneously emits a photon. If the

photon the leaves the gas without being absorbed, the result is a net cooling of the

gas.

3. Scattering, in which a photon and a molecule “bounce off” each other like billiard balls.

A form of scattering occurs when a photon is absorbed and immediately re-emitted

without having time to thermalize.

Most of the radiant energy in the atmosphere is contained in visible and infrared photons,

with wavelengths spanning the range 0.1–100 µm, energies in the range 10−18–10−21 J and



CHAPTER 5: ATMOSPHERIC RADIATION 99

linear momenta in the range 10−27–10−30 kg m s−1. By comparison, atmospheric molecules

have a typical kinetic energy ∼ 10−22 J and momentum ∼ 10−24 kg m s−1. Because photon

momenta are so much smaller than molecular momenta, scattering has very little effect on

molecular speeds; the main effect of scattering is to randomly change the direction of photons,

and thus to turn a parallel beam into a diffuse photon gas.

On the other hand, absorption can have a large effect on a molecule’s total energy. However,

to efficiently heat or cool a gas, radiation must be effective in exciting internal degrees of

freedom. Monatomic gases, which have no internal degrees of freedom other than electronic,

are difficult to heat and cool radiatively. Even if the gas’s molecules are polyatomic, the

rotation and vibration modes can only couple to the radiation field if the molecule has an

electric or magnetic dipole. The presence of positive and negative “poles” (either electric or

magnetic) allows radiation to “latch on” to the molecule and set it spinning or vibrating.

In order for absorption to actually heat a gas, collisions must occur before an absorbed

photon has time to be re-emitted. An excited molecular state has a “half life” for decay, i.e.

a typical time after which there is a 50% chance that a photon will be spontaneously emitted.

If the half-life is τ and the average time between collisions is τc, then efficient thermalization

requires τ/τc 	 1. This condition is true throughout most of the atmosphere.

5.3 Molecular absorption

Quantum mechanics plays an essential role in the absorption of photons by molecules. This

section studies the physics of the process in some more detail.
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5.3.1 Rotation

In classical mechanics, a particle of mass m moving in a straight line at speed v has momen-

tum mv and kinetic energy mv2/2. Analogously, a particle of mass m rotating around an

axis with angular velocity ω has angular momentum

L = Iω (5.4)

and rotational kinetic energy

Er =
1

2
Iω2 =

L2

2I
, (5.5)

where

I = mr2 (5.6)

is the moment of inertia and r is the distance between particle and axis. The moment of

inertia expresses the resistance of the particle to rotation; the greater the mass and the

farther from the axis, the greater the resistance.

An extended body such as a molecule actually has 3 moments of inertia, denoted I1, I2 and

I3, corresponding to rotation about 3 orthogonal axes passing through the center of mass.

For linear molecule like O2, two of these moments are identical and the third is 0, while an

asymmetric molecule like H2O has three distinct, nonzero moments. For an isolated atom,

all three moments are 0.

Rotation is a bound motion, meaning it occurs in a confined space, and in quantum mechanics

such motions are quantized (linear motion, which is unbound, is not quantized even in

quantum mechanics). Angular momentum can only take the discreet values

L =
h

2π

√
j(j + 1) j = 0, 1, 2, ... (5.7)

corresponding to the energies

Er =
h2

8πI
j(j + 1) j = 0, 1, 2, ... (5.8)

where j is the quantum number and I is any of the 3 moments of inertia of the molecule.
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Quantum mechanics also imposes restrictions on the transitions from one energy level to

another. The only transitions allowed are those obeying the selection rule ∆j = ±1, which

implies that in a single absorption event, rotational energy can only increase by

∆Er =
h2

4πI
(j + 1) (5.9)

where j is the quantum number of the initial state. Thus, only photons with frequencies

ν =
h

4πI
(j + 1) (5.10)

can be absorbed.

Exercise 5.3.1: Compute the typical wavelength of photons associated with rotational

transitions, given that atmospheric molecules have m ∼ 10 AMU = 10−26 kg and r ∼ 10

Å= 10−9 m, and that the typical atmospheric temperature is 300 K. Answer: first estimate

j by setting Er = kT , then use (5.10) to obtain λ = c/ν ∼ 100 µm

5.3.2 Vibration

A reasonable model for a molecule is a number of point masses connected by springs. Con-

sider first a diatomic molecule, which has a single spring. According to classical mechanics,

if the two atoms are pulled apart by a distance ∆x and released, they will oscillate at the

natural (or resonant) frequency

ν0 =
1

2π

√
K

m
, (5.11)

where K is the spring constant, and the total energy of the motion will be E = K∆x2/2.

In quantum mechanics, this bound motion is quantized so that the energy can only take the

values

En = hν0(n + 1/2) n = 0, 1, 2, 3, ... (5.12)

with the selection rule ∆n = ±1. Thus, in an absorption event,

∆E = hν0 (5.13)
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which means that only photons with frequency ν = ν0 can be absorbed. This is a nice

intuitive result: a quantum harmonic oscillator can only absorb photons at its resonant

frequency.

For more complicated polyatomic molecules, there will be correspondingly more independent

modes of oscillation. In general, a molecule with N atoms will have 3N − 5 modes if the

atoms are arranged in a straight line, and 3N − 6 modes if the atoms are not in a line. Each

mode will generally have a distinct resonant frequency and will be associated with a distinct

absorption frequency or wavelength. For atmospheric molecules, these are in the range 1–20

µm.

5.3.3 Roto-vibrational transitions

Nothing prevents vibrational and rotational transitions from occurring simultaneously; these

are called roto-vibrational transitions. The result is a cluster of absorption lines grouped

around the central vibration-only line.

5.3.4 Line broadening

A useful way to characterize absorption is through the mass absorption coefficient ka(ν),

which is proportional to the probability that a photon of frequency ν will be absorbed when

colliding with a molecule (a more precise definition will be given in Sec. 5.8 below). Until

now, we have been assuming that the only photons arbsobed are those with exactly the

energy (or frequency) required for an allowed transition, so we can write

ka = S δ(ν − ν0) (5.14)

where ν is the frequency of the incident photon, ν0 is the frequency at which absorption can

occur, S is called the line strength and δ is the Dirac delta function. A plot of this function

looks like a vertical line at ν = ν0, hence the term absorption line.
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In reality, absorption lines are not so sharp: they are broadened by various physical processes.

As a result,

ka = S f(ν − ν0) (5.15)

with ∫ ∞

0
f(ν − ν0) = 1, (5.16)

where f is a line shape of finite width whose precise form depends on the underlying broad-

ening process.

One process is Doppler broadening. An incoming photon of frequency ν0 (as measured by

a stationary observer) will be “seen” by a molecule moving at speed u to have a Doppler-

shifted frequency ν = ν0 + u/c (assuming u � c). Thus, a photon that is slightly de-tuned

with respect to the resonant frequency still has a chance of being absorbed, if the molecule

it encounters is moving at the right speed. The distribution of speeds follows the Maxwell-

Boltzmann distribution (Sec. 2.2), and it can be shown that this results in a Gaussian line

shape

f =
1

γD

√
π

e
−
(

ν−ν0
γD

)2

(5.17)

where

γD =
ν0

c

√
2kT

m
(5.18)

is the half-width at half height. Thus, the line will broaden as the gas warms.

A second process is pressure (or collisional) broadening. The issue here is that collisions

generally jolt a molecule out of whatever roto-vibrational state it happens to find itself in.

Thus the average time spent by a molecule in any given state is τc, the mean time between

collisions. By Heisenberg’s principle, this implies an uncertainty in the state’s energy of

∆E ∼ h

τc

. (5.19)

There will be a similar uncertainty in the energy difference between states, implying an

uncertainty in the frequency of absorbed photons

∆ν ∼ 1

τc
. (5.20)
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A more detailed calculation shows that the actual line shape in this case is Lorentzian:

f =
γL

π

1

(ν − ν0)2 + γ2
L

, (5.21)

with a width

γL =
1

2π τc
. (5.22)

The collision time τc can be related to the temperature and pressure of the gas using kinetic

theory. The collision time is given by

τc〈v〉σn = 1, (5.23)

where 〈v〉 is the mean speed of the molecules, σ is (roughly) the mean cross-section of a

molecule, and n is the number density. Using p = nkT and kT = m〈v2〉/3, we then have

γL ≈ σ

2π

√
3kT

m

p

kT
. (5.24)

Thus the line will broaden proportionally to the pressure.

Exercise 5.3.4: Explain why (5.23) is true, and derive (5.24).

Pressure broadening dominates in the lower atmosphere, where pressure is high, while

Doppler broadening dominates in the upper atmosphere. The crossover occurs where

γL

γD
∼ σλ0n ∼ σλ0

m
ρ0e

−z/H = 1 (5.25)

where λ0 = c/ν0, ρ0 is the surface air density and H is the scale height. Taking σ = 10−19 m2,

λ0 = 10 µm, m = 30 AMU and ρ0 = 1 kg m−3, we find

z ∼ 3H, (5.26)

so pressure broadening dominates over Doppler broadening throughout the bulk of the at-

mosphere.
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5.4 Scattering

We saw above that absorption is characterized by the single quantity ka, the absorption

coefficient. Two quantities are required to characterize scattering: the mass scattering co-

efficient ks, proportional to the probability that a photon will be scattered when meeting a

particle (see Sec. 5.8 for a more precise definition), and the scattering phase function P (θ),

which is the probability that the outgoing photon will be directed at an angle θ relative to

the direction of incidence.

Unlike molecular absorption, scattering in the atmosphere (including scattering by molecules)

can be adequately treated using only classical electromagnetism. In the early 20th century,

the German physicist Gustav Mie worked out a complete solution to Maxwell’s equations

for electromagnetic waves interacting with a homogeneous sphere. Cloud droplets and small

raindrops are essentially spheres, so Mie’s solution applies accurately. The theory also works

well for molecules—somewhat surprisingly, since molecules are neither homogeneous nor

spherical (“works well” means that the theory’s predictions agree well with experiment). On

the other hand, the theory works less well for ice particles and aerosols, which can have very

irregular shapes; there is no complete theory for scattering by such particles.

Mie’s solution gives explicit formulae for P (θ) and for the scattering efficiency Qs, an adi-

mensionalized scattering coefficient:

Qs =
m

πr2
ks, (5.27)

where m is the mass of the scattering particle and r its radius. The solutions depend on

only two adimensional parameters: the scattering parameter

x = 2π
r

λ
, (5.28)

where λ the wavelength, and the the relative refractive index

Nr =
Np

Ns
, (5.29)
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Figure 5.2: Regimes of atmospheric scattering. From Petty (2004).

where Np is the refractive index of the particle and Ns that of the surrounding medium

(recall that the refractive index measures the deviation of a light ray when passing from one

medium to another).

In the rest of this section, we discuss some features of Mie’s solutions (we will not look at

the mathematical theory, which is very complicated and not very enlightening). A summary

of the solutions’ behaviour is shown in Fig. 5.2, and a plot of Qs as a function of x is shown

in Fig. 5.3. A number of different scattering regimes arise. At very small x, Mie’s theory

predicts vanishing ks. In this regime, which is relevant to infrared radiation interacting

with molecules, there can be absorption but no scattering. At larger x we have Rayleigh

scattering, then full Mie scattering and finally geometric optics. We discuss each of these

below.
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Figure 5.3: Scattering efficiency Qs = m(πr2)−1ks for a sphere of refractive index 1.33 in air. From Petty

(2004).

Figure 5.4: Polar plot of the scattering phase function P (θ) for various values of the scattering parameter

x. In all cases the incoming photon is moving in horizontally from the left. The central dot represents the

scattering particle. From Petty (2004).

5.4.1 Rayleigh scattering

For x in the range 0.002–0.2 we are in the Rayleigh scattering regime. The name comes

from an earlier theory by Lord Rayleigh, which is a limiting case of the more general Mie
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theory. In this regime, which is relevant to visible radiation interacting with molecules and

for infrared radiation interacting with aerosols,

ks ∼
r3

λ4
, (5.30)

which implies that short wavelength (blue) light is scattered more strongly than long wave-

length (red) light. This wavelength dependence explains the blue colour of the clear sky

(when viewed at an angle away from the sun), and the red colour of sunsets (see also below).

The phase function has the form

P (θ) =
3

4
(1 + cos2 θ), (5.31)

a plot of which is shown for x = 0.1 in Fig. 5.4. The function has mirror symmetry around

the midpoint, which means that a photon has equal chances of being scattered forward or

backward.

5.4.2 Mie scattering

As x increases, beyond ∼ 0.2, Rayleigh theory becomes inaccurate and the full Mie theory

comes into force. At first, Qs continues to increase, reaching a very high peak somewhere

in the region x = 1—10. Particles in this regime have a very strong reddening effect, and

largely explain the very intense red observed in sunsets. Beyond the first peak, Qs drops

down steeply. This leads to blueing: if all atmospheric particles fell into this regime, sunsets

would look blue instead of red. Blueing does occur naturally, but it is very rare (“once in a

blue moon”).

At even greater values of x, the scattering efficiency settles around a value of 2 (see Fig. 5.3).

In this regime, relevant to both visible and infrared radiation interacting with cloud droplets,

the scattering efficiency does not change much with λ, which is why clouds look white.

Though the scattering efficiency is very high for clouds, the phase function (Fig. 5.4) is very

asymmetric, with a very strong forward peak. Thus, even on an overcast day, plenty of

sunlight still makes it to the ground. However, the light will have been scattered and is

diffuse—it casts no shadows.
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5.4.3 Geometric optics

Figure 5.5: Rainbow formation from the geometric optics point of view. From Petty (2004).

(a) (b) (c)

Figure 5.6: (a) Full moon seen through clouds, surrounded by corona or halo. (b) Fogbow (large white

bow) with glory at centre. Sun is behind observer. (c) Solar glory viewed from airplane.

At very high x, Mie theory converges with geometric optics, the macroscopic viewpoint

where light rays travel in straight lines are are refracted (bent) when the index of refraction

changes. This regime is applicable to visible radiation interacting with very large cloud
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droplets and rain. It is here that we find the most spectacular phenomena of atmospheric

optics: rainbows, fogbows, coronas, halos, glories, etc. From the geometric optics point of

view, rainbows can be understood by the refraction and internal reflection of light rays in a

spherical drop, as shown in Fig. 5.5. The rainbow is seen at the critical angle where the light

rays bunch up, and the spectral splitting is due to the fact that the critical angle depends

on the wavelength—it is less for longer wavelength, so red ends up as the outer circle of the

rainbow.

From the Mie theory point of view, rainbows arise as a peak in the scattering phase function

(see Fig. 5.4). The rather peaky structure of the phase function at high x also allows us to

rationalise other notable phenomena. Coronas and halos are the coloured rings seen around

bright objects viewed through a thin cloud (Fig. 5.6a); they are due to secondary peaks near

the main forward peak. Fogbows are similar to rainbows but caused by fog or cloud droplets;

the peak involved is quite broad (Fig. 5.4), so a sharp spectral splitting is not obtained and

fogbows look whitish (Fig. 5.6b). Finally, glories are coloured circles seen around a shadow

projected onto a cloud; they are due to sharp peaks very close to the backward scattering

peak.

5.5 Absorption by particles

In general, all particles are capable of absorbing as well as scattering. Besides Qs, Mie’s

solution also gives the absorption efficiency Qa, related to the absorption coefficient by

Qa =
m

πr2
ka. (5.32)

For molecules, Mie’s solution gives the wrong result since quantum mechanics is essential

for molecular absorption (Sec. 5.3), but it works well for macroscopic particles such as cloud

droplets. The role of absorption relative to scattering is measured by the single scatter albedo

ω =
ks

ka + ks
, (5.33)
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Figure 5.7: Single scatter albedo ω for water droplets of radius r over the visible and infrared ranges.

From Petty (2004).

which is the probability that a photon will be scattered rather than reflected upon interacting

with a particle—it can be thought of as the reflectivity of a single particle.

The single scatter albedo for a range of typical cloud drop radii is shown in Fig. 5.7. The

main point to take from this figure is that cloud drops scatter without absorption in the

visible range (where ω = 1), while absorption is very strong in the infrared: pure water is

transparent to visible but opaque to infrared radiation. As a result, clouds are very efficient

scatterers of solar radiation and very efficient absorbers of infrared.
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5.6 Energy flux in a gas of photons

Having dealt with the interaction of a single photon with a single particle, the rest of this

chapter studies the interaction between a gas of photons and a collection of atmospheric

particles. We are particularly interested in the energy transported by radiation. The conver-

gence of the energy flux determines the radiative heating/cooling rate, which links radiation

to atmospheric thermodynamics.

We begin in this section by defining some measures of the energy flux carried by a photon

gas:

Radiance or intensity is the energy crossing a unit area with normal n in unit time,

carried by photons of wavelength λ traveling parallel to n; it has units of W m−2 m−1

sr−1. We will denote intensity with the symbol I(λ,n).

Irradiance or flux is the energy crossing a unit area with normal n in unit time, carried by

photons of wavelength λ and summed over all directions of incidence in a hemisphere:

F (λ,n) =
∫

I(λ,n′)n · n′dn′ =
∫ 2π

ϕ=0

∫ π/2

θ=0
I(λ, θ, ϕ) cos θ sin θ dθ dϕ (5.34)

where n′ is the direction of incidence and θ, ϕ are respectively the zentih and azimuth

angles between n and n′. Irradiance has units W m−2 m−1.

Integrating over wavelength, we obtain the total flux F (n) (W m−2), the total energy

crossing unit area normal to n in unit time:

F (n) =
∫ ∞

0
F (λ,n) dλ. (5.35)

Note the distinction between radiance and irradiance: radiance is an intrinsic property of

the photon gas, while irradiance is the relevant quantity if we are interested in the flux of

energy through a pre-defined surface (e.g. the radiant energy absorbed at the ground).
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5.7 Black body radiation

Consider a box or cavity containing a molecular gas interacting with a gas of photons. The

sides of the box are perfectly reflecting, while the gas itself is perfectly absorbing—it has

an infinite number of absorption lines so it can absorb and emit photons with any desired

wavelength. Assume that the molecular gas is in equilibrium so that it has a Maxwell-

Boltzmann distribution. In this case, we also expect the photon gas to have a steady-state

radiance. German physicist Max Planck was the first to theoretically derive the form of this

radiance:

B =
2hc2

λ5

1

e
hc

kλT − 1
(5.36)

which is now called the Planck function. This equilibrium radiation field is known as cav-

ity radiation. Note the many similarities with the Maxwell-Boltzmann distribution: it is

isotropic, it depends only on the temperature T of the system, and it contains the exponent

hc/λkT , the ratio of photon energy to mean thermal energy, analogous to the exponent

mv2/2kT in the Maxwell-Boltzmann.

Imagine punching a small hole in one side of the cavity, small enough that any photon

entering the box from the outside will be unable to find its way out again before being

absorbed and thermalized. Such a hole is perfectly black, in the sense that it absorbs all

radiation falling upon it. That does not mean it cannot emit: some photons from the

equilibrium radiation field in the cavity will find their way out of the hole, and if we measure

their energy distribution we will find it to follow the Planck function.

This thought experiment motivates the definition of a black body as any object that is per-

fectly absorbing and is in thermodynamic equilibrium (i.e. has a uniform, constant temper-

ature). We will see below that all black bodies emit radiation following the Planck function.

Thus cavitiy radiation is also known as black body radiation.

As shown in Fig. 5.8, the dependence of the Planck function on temperature is very strong:

peak radiance changes by an order of magnitude over the range of temperatures experienced

in Earth’s atmosphere. Note also that the peak of the function moves to shorter wavelenghts



CHAPTER 5: ATMOSPHERIC RADIATION 114

1 10 30 100
wavelength (micron)

0

2

4

6

8

10

R
a
d

ia
n

ce

180 K
250 K
300 K

0.1 1 10 100
wavelength (micron)

0.00

0.05

0.10

0.15

0.20

0.25

N
O

R
M

A
L

IZ
E

D
 i

rr
a
d

ia
n

ce

300 K
6000 K

Figure 5.8: Left: Black body radiance B (W m−2 µm−1 sr−1) for three typical Earth-like temperatures.

Right: Black body irradiance πB for typical terrestrial and solar temperatures, normalized by λσT 4 so

that the structure of the two curves can be easily compared.

as temperature increases. When the temperature reaches ∼ 6000 K (roughly the temperature

of the solar surface) the peak is in the visible range. The right panel in Fig. 5.8 shows that

solar and terrestrial radiation occupy two distinct bands with very little overlap, which

allows a convenient separation of the atmospheric radiative transfer problem into 2 parts,

one dealing with absorption and scattering of solar or shortwave radiation, the other with

absorption and emission of terrestrial or longwave radiation.

Following (5.34), the irradiance emitted by a black body is∫ 2π

ϕ=0

∫ π/2

θ=0
B cos θ sin θ dθ dϕ = πB, (5.37)

and if we also integrate over λ we obtain Stefan’s law, which states that each squared metre

of a black body’s surface emits radiant energy at the rate

F = σT 4 (5.38)

where

σ =
2π5k4

15c2h3
(5.39)
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is the Stefan-Boltzmann constant, which has the value 5.67×10−8 W m−2 K−4.

5.8 Extinction and optical path

Consider a beam of photons all having the same wavelength and direction. Imagine we point

the beam perpendicularly at a slab of atmosphere. As the beam passes through the slab,

some of the photons will be absorbed and some scattered away from their initial direction.

Thus the intensity of the beam will diminish. The general term for attenuation through

either absorption, scattering or both together is extinction.

If the slab is very thin, then the total amount of extinction (i.e. the difference in intensity

between outgoing and incoming beams) turns out to be proportional to the amount of matter

in the slab and to the intensity itself:

dI = −Ikaρa ds − Iksρs ds (5.40)

where I is the radiance of the incoming beam, dI is the difference between incoming and

outgoing radiances, ka is the mass absorption coefficient (see Sec. 5.3.4), ρa is the mass

density of absorbers, ks is the mass scattering coefficient (Sec. 5.4), ρs is the mass density of

scatterers, and ds is the width of the slab. This linear relationship between extinction, mass

of absorbers/scatterers, and intensity is called the Beer-Lambert law.

The coefficients ka and ks (which have units m2 kg−1) can be defined as the constants of

proportionality in this law. They can also be defined as the probability that a photon will be

absorbed/scattered when it traverses a unit amount of mass which is uniformly distributed in

a tube of unit cross section.

If the same particles are doing the absorbing and scattering, ρa = ρs = ρ and (5.40) can be

written
d ln I

ds
= −keρ (5.41)
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where

ke = ka + ks (5.42)

is called the mass extinction coefficient. Defining the optical path

τ =
∫ s

0
keρ ds, (5.43)

Eq. (5.41) has the solution

I(s) = I(0) e−τ(s) (5.44)

where s measures distance along the path of the beam, with s = 0 at the point of entry.

Thus, radiance decays exponentially after entering an absorbing/scattering medium.

In general, the extinction coefficient will change with position: for instance, in regions where

pressure is higher, collisional line broadening will lead to greater ka. In those cases where ke

varies weakly over the path, then we can write

τ(s) = keu(s), (5.45)

where u(s) is the mass path—the mass of absorbers in a tube of length s and unit cross

section, coaxial with the beam.

5.9 Transmissivity and absorptivity

Consider again the beam of radiation incident on a slab of width s, as in the previous section.

The transmittance or transmissivity T of the slab is defined as the fraction of the incident

radiance that makes it through to the other side:

T =
I(s)

I(0)
= e−τ . (5.46)

The absorptance or absorptivity A is the fraction of the incident radiance that is absorbed

by the slab. If there is no scattering (ks = 0), we have

A = 1 − T = 1 − e−τ . (5.47)
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Note that in order to conserve energy, we must have 0 ≤ T ≤ 1 and 0 ≤ A ≤ 1.

By convention, a body is called optically thick if it has τ > 1, so that T < 1/e, and optically

thin if τ < 1.

5.10 Emissivity and Kirchhoff’s law

Any object with a non-zero temperature emits some amount of radiation. This is because

temperature implies an agitation of the molecules making up the object, which inevitably

leads to excitation of the electromagnetic field. The question is, how much radiation does it

emit, and how does the emitted radiance depend on temperature? At first sight, it might

seem like objects have a great deal of freedom to emit just as much radiation as they like;

the amount emitted will depend on the details of what the body is made of. This is not

altogether true: as we will see in this section, thermodynamics imposes some surprisingly

strong constraints.

The emittance or emissivity ε of a body at temperature T is defined as the ratio of the radiance

I emitted by the body to the radiance emitted by a black body at the same temperature:

ε =
I

B(T )
. (5.48)

Kirchhoff’s law states that absorptivity and emissivity are always equal:

ε = A. (5.49)

Note that this is valid for each wavelength. Kirchhoff’s law means that black body radiance

is the maximum radiance a body can emit at a given temperature. Also, any object that is

perfectly black (A = 1) must emit as a black body, independently of what the body is made

of.

Kirchhoff’s law is a consequence of the Second Law of thermodynamics. Consider an object

at temperature T1 exchanging radiation with a black body at temperature T2. The rate of
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Figure 5.9: Mass absorption coefficient for CO2 in the spectral interval containing the 15 µm (660 cm−1)

vibration-rotation band. The black band is an envelope of the variability due to individual absorption lines.

energy transfer from the object to the black body is εB(T1), while the transfer from black

body to object is AB(T2). The Second Law implies that this heat exchange must result in the

colder body warming at the expense of the warmer body. Once the bodies reach equilibrium,

the net flux must be zero, so εB(T1) = AB(T2), and the temperatures must be equal, so

B(T1) = B(T2); Kirchhoff’s law then follows. The validity at each wavelength can be shown

by repeating the argument, but this time inserting a filter between the two bodies which

only allows a given wavelength to pass. Closer examination shows this demonstration to have

hidden flaws, which means the Kirchhoff’s law can be violated under certain circumstances—

this does not imply a violation of the Second Law, only a limitation of the validity of

Kirchhoff’s law. In practice, such violations are rare. Kirchhoff’s law may be considered

valid for all processes of relevance to the atmosphere.
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5.11 Equivalent width and line saturation

Often we are interested in the total absorptivity integrated over a certain frequency range—

for instance, we may be interested in the total absorptance due to a particular spectral line,

or to a collection of lines grouped into an absorption band. The band-integrated absorptivity

is called the equivalent width

W =
∫ ν2

ν1

A dν =
∫ ν2

ν1

(1 − e−τ ) dν, (5.50)

where τ here is the absorption optical path, and the integral extends over an interval con-

taining the band in question. W is the width that an idealised, top hat-shaped absorption

band (with 100% absorptance in-band and 0 outside) would need to have in order to match

the total absorbptivity in the interval considered.

As an example, we will consider the equivalent width of the 15 µm vibration-rotation band of

CO2, shown in Fig. 5.9. This is a strong band close to the Planck function peak at terrestrial

temperatures, making CO2 an important player in Earth’s radiation budget. The band

consists of a large number of individual absorption lines, with line strengths decaying roughly

exponentially away from the peak at 15 µm. If we assume that the lines are broadened to

the point that they substantially blend into each other, forming a continuous spectrum, we

may approximately write

ka(ν) ≈ k0 e−
|ν−ν0|

γ (5.51)

where k0 is the peak value of ka, attained at ν0, and γ is the rate of decay. Neglecting any

spatial variability in ka, we then have

W =
∫ ν2

ν1

(
1 − e−τ0e−|ν−ν0|/γ

)
dν (5.52)

where τ0 = uk0, with u the mass path, and ν1, ν2 is a suitable interval symmetric about ν0.

This integral cannot be explicitly evaluated, but we can obtain an approximate solution.

Firstly, we rewrite (5.52) as

W = 2γ
∫ x1

0

(
1 − e−τ0e−|x|)

dx (5.53)
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for the values of τ0 indicated.

where we have set x = (ν − ν0)/γ. We consider two limiting cases:

Weak line If τ0 � 1, then we can expand the exponential to first order:

W ≈ 2γ
∫ x1

0
τ0e

−x dx ≈ 2γτ0, (5.54)

assuming e−x1 ≈ 0. In this limit, W is linear in the mass path u (recall τ0 = uk0):

doubling the CO2 concentration will double the total absorptivity of the band.

Strong line If τ0 	 1, then the absorptivity profile takes on a somewhat top-hat appear-

ance, as can be seen in Fig. 5.10: the centre of the band saturated (A ≈ 1), but further

out there is a sharp transition to small A. The “shoulder” is at ν ≈ ln(τ0). The part

of the integral falling outside the saturated centre gives only a small contribution to

the total, so

W ≈ 2γ
∫ ln(τ0)

0
dx = 2γ ln(τ0). (5.55)
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In this limit, W depends logarithmically on mass path. A doubling of CO2 increases

W by 2γ ln 2; to get the same increase again, we need to quadruple the concentration.

The transition from linear mass path dependence to slower dependence at high u is referred

to as line (or band) saturation. At the current concentration of CO2 in Earth’s atmosphere

(380 ppm), the 15 µm band is saturated (see exercise below), and the atmospheric greenhouse

effect depends only logarithmically on the concentration.

Exercise 5.11: Estimate the CO2 mass path (in kg m−2) encountered by a beam of radiation

travelling upwards from the surface to the top of the atmosphere. Using Fig. 5.9, estimate

τ0. Answer: mass path of CO2 is 380×10−6 (ps/g)(mCO2/md) ≈ 5.6 kg m−2, taking k0 ∼ 100

m2 kg−1, we have τ0 ∼ 600, far into the saturated regime.

5.12 The Schwarzschild equation

Consider again a parallel beam of radiance I incident perpendicularly on a slab of thickness

ds. The radiance exiting perpendicular to the slab will have a contribution from the incident

beam (attenuated by absorption and scattering), and in general there will also be a contri-

bution by emission from the slab. Also, photons within the slab may be scattered into the

direction of the beam and give an extra contribution to the exiting radiance.

Taking these contributions into account, the Beer-Lambert law (5.40) generalizes to the

Schwarzschild equation

dI = −Ikeρds + Jkeρds (5.56)

where J is the source function. When scattering is involved, the source function is com-

plicated, involving an integral over all directions wich can scatter into the outgoing beam.

Things are simpler if only emission contributes to the source function. In this case, ke = ka

and kaρds = dτ is the absorptivity of the slab. Using Kirchhoff’s law, this is also the
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emissivity of the slab, so J = B (the Planck function) and Schwarzschild’s equation becomes

dI

dτ
= −I + B. (5.57)

Multiplying by eτ and integrating over τ , we find

I(s) = I(0)e−τ +
∫ τ

0
B e−(τ−τ ′)dτ ′. (5.58)

The first term is the attenuated contribution from the incident beam; the second term is a

sum over contributions emitted by thin layers between 0 and s, each attenuated according

to its distance from s. Note that temperature, and therefore B, may vary along the path.

5.13 Plane parallel approximation

Given the temperature structure, the Schwarzschild equation gives us the radiance every-

where in the atmosphere. But it is the irradiance that determines the energy flux entering

or leaving atmospheric parcels and provides the link with thermodynamics and dynamics.

Irradiance involves an integral over directions which can be tricky to deal with. To simplify

matters, it is common to make the plane parallel approximation, which consists in neglect-

ing horizontal variations in temperature and density, as if the atmosphere were made up

of horizontal slabs each of uniform temperature. This approximation works because of the

small aspect ratio of the atmospheric temperature and pressure: the atmosphere has a depth

scale of ∼10 km, but appreciable horizontal temperature and pressure changes only occur

over scales ∼100–1000 km. Numerical atmosphere models typically have a horizontal grid

spacing ∼100 km, and temperature is assumed uniform within each grid box. For reasons

that will be clear later (Sec. 5.15), the radiance reaching a certain point P comes mostly

from a neighbourhood 1 optical path away from P (shown by the dashed line in Fig. 5.11).

Earth’s atmosphere is fairly opaque in the infrared: the optical path over 1 scale height is

about 1. Thus, radiation reaching P comes from points no further than about 10 km away,

which means horizontal fluctuations can be ignored while vertical variations cannot be ig-

nored. However, the approximation becomes questionable in the presence of clouds, where
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the absorption and scattering coefficients can change by an order of magnitude over 0.1–1

km.

Taking z as the vertical axis, θ as the zenith angle and µ = cos θ (see Fig. 5.11), the optical

depth in the plane parallel approximation is written

τ(s) = τ(z, µ) =
∫ z

0
ka(z)ρ(z)

dz

µ
=

τ(z)

µ
(5.59)

where τ(z) is the optical thickness: the optical path measured vertically upwards from the

surface to z. Furthermore, the solution to the Schwarzschild equation, (5.58), can be written

I(z) = Bse
−τ(z)/µ +

∫ z

0
B

d

dz′
e−[τ(z)−τ(z′)]/µdz′ (5.60)

where we have assumed that the surface emits black body radiation Bs.

5.14 Two-stream approximation

Now consider the irradiance F ↑(z) flowing upward across some level z:

F ↑(z) =
∫ 2π

ϕ=0

∫ π/2

θ=0
I(z) cos θ sin θ dθ dϕ = 2π

∫ 1

0
I(z)µdµ. (5.61)
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Figure 5.12: Comparison of numerically computed angular average transmissivity 〈e−τ/µ〉 with the

diffusivity factor approximation e−1.66τ .

Substituting (5.60) into this expression yields

F ↑ = πBs〈e−τ/µ〉 +
∫ z

0
πB

d

dz′
〈e−(τ−τ ′)/µ〉dz′, (5.62)

where

〈e−τ/µ〉 = 2
∫ 1

0
e−τ/µµdµ. (5.63)

is the cosine-weighted average transmissivity. This integral cannot be done analytically. The

traditional way forward is to use the approximation introduced by Elsasser (1942):

2
∫ 1

0
e−τ/µµdµ ≈ e−1.66τ (5.64)

where the 1.66 coefficient is called the diffusivity factor. As shown in Fig. 5.12, the approx-

imation is particularly good for τ < 1.

If we re-define the symbol τ to include the diffusivity factor, then the upward irradiance

becomes

F ↑ = πBse
−τ +

∫ z

0
πB

d

dz′
e−(τ−τ ′)dz′, (5.65)

and the downward irradiance

F ↓ =
∫ ∞

z
πB

d

dz′
e−(τ ′−τ)dz′. (5.66)
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These fluxes are solutions to the two-stream radiative transfer equations

dF ↑

dτ
= −F ↑ + πB (5.67)

dF ↓

dτ
= F ↓ − πB (5.68)

Remember that the optical thickness τ in (5.65)–(5.68) includes the 1.66 diffusivity factor.

5.15 Effective emission level

Let’s consider now the radiation emitted by Earth to space. If the atmosphere is optically

thick, radiation emitted by the surface will mostly be absorbed within the atmosphere. Thus,

the radiation emitted to space will mostly originate at some level above the surface; the aim

of this section is to determine that level.

In the plane-parallel diffuse approximation (5.65), the upward irradiance at the top of the

atmosphere, also known as the outgoing longwave radiation (OLR), takes the form

F ↑
∞ = πBse

−τ∞ +
∫ ∞

0
πB W (z) dz (5.69)

where τ∞ is the total optical depth of the atmosphere and we define the weighting function

W (z) =
d

dz
e−(τ∞−τ(z)) =

dτ

dz
e−(τ∞−τ(z)) = ρaka e−(τ∞−τ(z)), (5.70)

where ρa is the density of absorbers. The weighting function determines how much each

layer of the atmosphere contributes to the total outgoing radiation.

Now let’s assume that (i) the atmosphere has a constant scale height, so that density varies

as ρ = ρse
−z/H ; (ii) the absorbers are well mixed, so that the specific density q = ρa/ρ is

uniform; (iii) pressure broadening does not play a big role, so ka does not vary with height.

With these assumptions,

τ = qka

∫ z

0
ρdz = τ∞(1 − e−z/H) = τ∞

(
1 − p

ps

)
(5.71)
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Figure 5.13: The weighting function W for τ∞ = 5.

where in this case

τ∞ = Hqρska =
qpska

g
= u∞ka (5.72)

with u∞ the total mass path of absorbers, and

W (z) =
τ∞
H

e−(τ∞e−z/H)e−z/H . (5.73)

The salient feature of W (z) is that it is strongly peaked, so there is a specific level (or

neighbourhood) that contributes the major part of the outgoing radiation. This is called the

effective emission level or Chapman layer. Physically, the effective emission level corresponds

to the optimal trade-off between high density (which gives high emissivity) and little overlying

atmosphere to permit the emitted radiation to escape. The location of the emission level is

given by
dW

dz
=

W

H
(τ∞e−z/H − 1) =

W

H
(τ∞ − τ − 1) = 0 (5.74)

which means that the emission level is at

τ = τ∞ − 1. (5.75)

Thus most of the outgoing radiation comes from a level 1 optical thickness unit below the top

of the atmosphere (warning: in many texts, optical path is defined to be 0 at the top of the
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Figure 5.14: Whole-atmosphere clear-sky absorptivity compared with Planck functions at temperatures

indicated. From Petty (2004).

atmosphere instead of at the surface as here; in those texts, the emission level is at optical

thickness 1). Using (5.71), the height of the emission level is

ze = H ln τ∞ (5.76)

and the corresponding pressure level is

pe =
ps

τ∞
. (5.77)

5.16 Absorption and emission spectra of Earth’s atmo-

sphere

5.16.1 Absorption spectrum

The absorptivity spectrum by passage through the entire depth of atmosphere (without

clouds) is shown in Fig. 5.15. Overall, the atmosphere is completely opaque in the ultraviolet
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Figure 5.15: Breakdown of whole-atmosphere clear-sky absorptivity by contributing species. From

Andrews (2000).

(λ < 0.3µm), and in the infrared (> 4µm), aside from a spectral window in the range 8–14

µm. The intermediate region, containing the visible, is much more transparent. Ultraviolet

opaqueness is due to continuum absorption by ozone in the stratosphere. In the infrared,

absorption is due to various species, as shown in Fig. 5.15.

The chief infrared absorbers, in decreasing order of importance, are

1. H2O (water vapour), which absorbs all radiation in the ranges 5–8 µm and > 20 µm.

The region of weak absorption (8–17 mum) is called the water vapour window.

2. CO2 (carbon dioxide), absorbing all radiation between 14 and 16 µm. Note that this

band falls in the water vapour window, which gives is particular importance.
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Black body spectrum ~ 5800 K

Figure 5.16: Spectra of solar radiation at the top of the atmosphere (yellow) and at the ground (red)

under clear-sky conditions.

3. O3 (ozone), better known as an absorber of ultraviolet (not shown in the figure), but

also active in the infrared at about 10 µm, again falling in the water vapour window.

4. N2O (nitrous oxide) and CH4 (methane) both have bands centered around 8 µm, near

the shorwave end of the water vapour window. The absorption coefficient for these

bands is high, but the mass path is small and so the absorptivity is not high. However,

because these bands are unsaturated, their absorptivity is very sensitive to increasing

mass path (see Sec. 5.11): adding an extra molecule of N2O or methane has a much

greater effect than adding an extra molecule of CO2.
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5.16.2 Absorption of solar radiation

The yellow area in Fig. 5.16 shows the spectrum of solar irradiance arriving at the top of the

atmosphere. It follows a black body spectrum quite closely. A sunbeam loses about 20% of

its power (under clear-sky conditions) on its way to the ground. Much of this is a continuum

loss due to Rayleigh scattering: note the greater reduction at shorter wavelengths. There is

also strong absorption in some bands, specially in the ultraviolet (ozone) and near infrared

(water vapour). Solar radiation does heat the atmosphere directly, but most of its energy is

deposited at the ground.

5.16.3 Emission spectrum

Earth emits as much infrared radiant energy to space as it receives in the form of solar

radiation. The spectrum of outgoing longwave radiation, as observed by satellites in orbit

around Earth, is shown in Fig. 5.17. Overlain are black body spectra at various temperature.

In the jargon of remote sensing, the brightness temperature TB is defined as the temperature a

black body would need to have in order to emit the observed irradiance at a given wavelength

TB =
hc

kλ ln
(

2πhc2

λ5I(λ)
+ 1

) . (5.78)

Physically, the brightness temperature is roughly the temperature at the effective emission

level. The height of the emission level increases with optical depth. On Earth, the emission

level is mostly within the troposphere, where temperature decreases with height. Thus, the

greater the optical depth, the lower the brightness temperature.

In Fig. 5.17a, the maximum TB of about 330 K (57◦C) is in the water vapour window between

10 and 13 µm; this can be take to be the temperature of the surface. The 15 µm CO2 band

has the minimum temperature (∼215 K or −70◦C), which can be taken as the tropopause

temperature (note how, at the very centre of the band, where optical depth is greatest, the

brightness temperature is actually somewhat higher: this is because the emission level is in
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Figure 5.17: OLR spectrum observed over (a) the Sahara and (b) the Antarctic ice sheet, overlayed by

black body spectra at the temperatures indicated. From Petty (2004).

the stratosphere, which is warmer). The very opaque water vapour bands at wavelengths

> 20 µm and < 8 µm emit at an intermediate temperature. The difference bewteen the

CO2 and H2O brightness temperatures is because water vapour is not well mixed: specific

humidity decreases exponentially with height, so the emission level is lower than for CO2.

Fig. 5.17b presents a very different picture. Over the Antarctic ice sheet there is typically

a strong temperature inversion near the surface, and the surface is actually colder than the

tropopause. Because of the very low temperatures, the atmosphere is also very dry, so there
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is very little water vapour absorption. As a result, the brightness temperature corresponds

to the surface value of 180 K through most of the spectrum. The 15 µm CO2 band, and also

the 10 µm ozone band, show greater temperatures. The maximum brightness temperature

of 220 K is the center of the CO2 band and comes from the stratosphere.

5.17 The greenhouse effect

If the Earth had no atmosphere, what would be its surface temperature? This classic cal-

culation goes as follows. Assume that the Earth is warmed to a uniform temperature Te by

the absorbed insolation, and emits infrared radiation with emissivity 1. In steady state, the

energy absorbed matches the energy emitted, so

πR2
ES0(1 − α) = 4πR2

EσT 4
e (5.79)

where S0 is the solar irradiance arriving on Earth—the so-called solar constant, though there

are small varations over time—which has a value of S0 = 1367 W m−2; α is the albedo, taken

to be 0.3, RE = 6.37 × 106 m is Earth’s radius, and σ is the Stefan-Boltzmann constant.

Using these values

Te =

(
S0(1 − α)

4σ

)1/4

≈ 255 K. (5.80)

Te is known as the effective emission temperature. It is determined solely by the insolation

and the planetary albedo. On Earth, Te is much colder than the observed global-mean

surface temperature of 15◦C or 288 K. The difference must be due to the atmosphere. The

warming effect of the atmosphere, known as the greenhouse effect, is best understood as

follows. The atmosphere is opaque in the infrared, which means that the mean emission

level is lifted off the ground. The mean temperature at the emission level (i.e. the mean

brightness temperature) must be Te in order for emission to match absorbed insolation. But

the atmosphere has a positive lapse rate, and so the temperature at the ground must be

greater than Te.
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In general, an atmosphere must satisfy 2 conditions in order to provide a greenhouse effect:

it must absorb radiation radiation in the spectral range associated with black body radiation

at temperature Te, and it must have a positive lapse rate. An atmosphere with a negative

lapse rate (temperature increasing with height) will have a surface temperature colder than

Te. This in known as the anti-greenhouse effect, and actually occurs on Earth in the polar

regions during winter, as evidenced by Fig. 5.17b.

5.18 Radiative transfer in clouds

Until now, we have considered radiative transfer with absorption and emission but neglect-

ing scattering, which is appropriate for transfer of longwave radiation through atmospheric

molecules. Scattering cannot be neglected in clouds, however. Transfer of solar radiation

through clouds invoves scattering and absorption, but not emission. An intuitive picture

of such transfer is given in Fig. 5.18, which shows the fate of an initially parallel beam of

photons striking a cloud from above. When the single scatter albedo ω is small, absorption

dominates over scattering: a few photons are deviated from their path, but mostly the beam

is attenuated without scattering. As ω increases, more and more photons are scattered,

creating a secondary, diffuse radiation stream. Some of the diffuse photons manage to find

their way back up to the top of the cloud: the fraction of photons for which this happens is

called the cloud albedo. Some of the diffuse photons exit through the bottom of the cloud,

together with the remnants of the parallel beam.

Motivated by this qualitative picture, we formulate a heuristic model for radiative transfer

within a cloud. The setup is shown in Fig. 5.19. A parallel beam of sunlight with irradiance

Fi is incident on the cloud from above. We assume the cloud has ω = 1, i.e. it scatters but

does not absorb solar radiation. The optical depth is given by

τ =
∫ z

0
ρcksdz (5.81)

where ρc is the mass density of cloud condensate, also known as the cloud water content,

and for convenience we take the z axis pointing downward. As the beam enters the cloud,
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Figure 5.18: Fate of a parallel beam of photons incident from above on a cloud of optical thickness 10, for

various values of single scatter albedo ω. Jagged lines are paths of individual photons. From Petty (2004).

scattering occurs in both the forward an backward direction, setting up two diffuse streams

of radiation, F ↑ and F ↓, in the up and down directions respectively (these may be thought of

as averages of the jagged paths in Fig. 5.18 over the respective hemispheres). Both streams

are assumed isotropic in their respective hemispheres, but we assume asymmetry between

forward and backward scattering: the probability of backward scattering, denoted by b, will

generally be different from the probability of forward scattering 1 − b. The diffuse streams

exit through the top and bottom of the cloud with irradiances Fr and Ft respectively. We

define the reflectivity or albedo as

R =
Fr

Fi
(5.82)

and the diffuse transmissivity as

T =
Ft

Fi
(5.83)
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Figure 5.19: Schematic representation of radiative fluxes within a cloud. Black and gray arrows show

beam and diffuse radiation respectively. Curved arrows indicate the flux lost by backward scattering (beam

radiation loses intensity by both backward and forward scattering).

With these assumptions, the radiative transfer equations take the form

dF ↓
b

dτ
= −F ↓

b (5.84)

dF ↓

dτ
= (1 − b)F ↓

b − b(F ↓ − F ↑) (5.85)

dF ↑

dτ
= −bF ↓

b − b(F ↓ − F ↑) (5.86)

where F ↓
b is the beam irradiance within the cloud. Choosing τ = 0 at the top of the cloud

and τ = τc at the bottom, the boundary conditions are

F ↓
b = Fi, F ↓ = 0, F ↑ = Fr = RFi at τ = 0 (5.87)

F ↓ = Ft = T Fi, F ↑ = 0 at τ = τc. (5.88)

This model can be derived as the plane-parallel, two-stream approximation to the radiative

transfer equations in the case of scattering with no absorption. We will not go into the

details except to note that the backward scattering probability b can be expressed as

b =
1 − g

2
(5.89)
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where

g =
1

2

∫ 1

−1
P (µ)µdµ (5.90)

is called the asymmetry parameter (here, P is the phase function, µ = cos θ and θ is the

zenith angle between the directions of incoming and outgoing photons). Note that if the

scattering is isotropic, P = 1, g = 0 and f = 1/2 (equal probabilities of forward and

backward scatering).

To solve the model, we first note that for the beam radiation decays exponentially within

the cloud:

F ↓
b (τ) = Fie

−τ . (5.91)

Subtracting (5.88) from (5.87) we find

d

dτ

(
F ↓ − F ↑) = Fie

−τ (5.92)

which on integration, using the top boundary condition, yields

F ↓ − F ↑ =
(
1 −R− e−τ

)
Fi. (5.93)

Substituting into (5.87) and (5.88) then gives

F ↓(τ) =
[
1 − e−τ − b(1 −R)τ

]
Fi (5.94)

F ↑(τ) = [R− b(1 −R)τ ] Fi. (5.95)

To complete the solution, we need expressions for T and R in terms of the total optical

depth τc. Conservation of energy requires

T + R + e−τc = 1, (5.96)

and evaluating (5.94),(5.95) at τ = τc gives

R =
bτc

1 + bτc

(5.97)

T =
1 − (1 + bτc)e

−τc

1 + bτc
. (5.98)
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Figure 5.20: Beam irradiance F ↓
b and diffuse irradiance F ↓ (normalized by the incident irradiance Fi) as

a function of optical depth τ . The backscatter fraction b = 0.075, corresponding to asymmetry parameter

g = 0.85, a reasonable value for 10 µm cloud droplets.

Finally, substituting in (5.94),(5.95) gives

F ↓ =

[
1 + b(τc − τ) − (1 + bτc)e

−τ

1 + bτc

]
Fi (5.99)

F ↑ =

[
b(τc − τ)

1 + bτc

]
Fi. (5.100)

These solutions are plotted in Fig. 5.20. Note that for τc > 1, the transmitted irradiance

will be mostly diffuse, and the light will cast no shadows. As τc → ∞, T → 0 and R → 1:

a very thick cloud will be perfectly reflective.

How optically thick is a typical cloud? Following (5.27), the mass scattering coefficient for

a droplet of radius r is

ks =
πr2

ρl4πr3/3
Qs (5.101)

where ρl is the density of liquid water and Qs is the scattering efficiency. Given visible

wavelengths of about 0.5 µm and typical cloud droplet sizes about 10 µm, the scattering

parameter is abot 60, so we are deep in the Mie regime where Qs ≈ 2. This gives ks ≈ 150

m2 kg−1. The typical cloud water content of stratocumuus clouds is 0.5 g/kg, and the
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asymmetry parameter is never too far from 0.85, implying b ≈ 0.075. With these values, the

optical depth of a 400 m thick cloud deck will be about 30, giving an albedo of about 0.7. If

the cloud is horizontally continuous, it will be pretty gloomy under this cloud.

5.19 Remote sensing

5.19.1 Meteorological satellites

5.19.2 Infrared temperature sounders

5.19.3 Microwave sounders

5.19.4 Rain radar

Radar, which is short for radio detection and ranging, works on a simple and well known

principle: send out a short pulse of radiation, and carefully measure the time t taken for the

light to bounce off an object and back to an antenna coaxial with the emitter. Then the

distance d to the object is

d =
ct

2
(5.102)

where c is the speed of light.

In meteorology, radar is used to detect precipitation. This requires a careful choice of wave-

lenght: we want the radiation to pass unattenuated through clear air, aerosols and clouds,

but backscatter strongly from raindrops. Recall from Sec. 5.4 that the strength of scattering

is controlled by the parameter x = 2πr/λ. There is negligible scattering for x < 10−3. Cloud

droplets and aerosols have radii r < 100 µm, while precipitation has r > 1000µm. Thus, the

wavelength should be chosen so that r ∼ 100 µm makes x ∼ 10−3, which implies λ ∼ 10 cm,
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in the microwave range.

Most meteorological radars in Europe use λ = 5 cm, the so-called C-band. This works fine

in light and medium rain, but there is strong attenuation in strong rain so it is not suitable

for severe weather. Since severe weather is much more frequent in North America, the US

NEXRAD network uses the 10 cm S-band instead, which does not suffer attenuation but

requires a larger antenna and is considerably more expensive.

Apart from showing where rain is, radar can also be used to estimate how much it is raining.

This is done by measuring the intensity of the backscattered radiation. In general, a shaft

of precipitation will contain drops of a range of sizes, each giving a distinct contribution to

the backscattering. The total radiance backscattered by a slab of atmosphere of thickness

ds is

dIb = I
(∫ ∞

0
P (π) n(r) m(r) ks dr

)
ds = I P (π)

(∫ ∞

0
n(r) 2πr2 Qs dr

)
ds (5.103)

where P (π) is the value of the phase function for backward scattering (θ = π), n(r)dr is the

number density of drops with radius r, m(r) is the corresponding drop mass, ks is the mass

scattering coefficient and Qs is the scattering efficiency. Since we are in the Rayleigh regime

(Sec. 5.4.1), P (π) = 3/2 and Qs ∼ x4, so

dIb ∼ Zds (5.104)

where

Z =
∫ ∞

0
n(r)r6dr (5.105)

is called the reflectivity factor.

Equation 5.104 shows that the backscattered intensity increases with both drop number

density and with mean drop size. This is somewhat unfortunate, since it means that mea-

surements of backscattered intensity are ambiguous: a high density of small drops may have

the same Z as a smaller density of large drops. To remove the ambiguity, we need informa-

tion about the size distribution n(r). In a classic paper, Marshall and Palmer (1948) found

empirically that

n(r) = N0 e−Λr (5.106)
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where N0 and Λ are constants. Substituting into (5.105),

Z = N0

∫ ∞

0
r6e−Λrdr = N0 Λ−7

∫ ∞

0
z6e−zdz = 6! N0 Λ−7. (5.107)

We need to relate this to the rainfall rate R, defined as the mass of precipitation water falling

on unit area in unit time. Using the by-now familiar argument that a flux is the product of

a number density by a velocity, we find

R =
∫ ∞

0
vt(r)n(r)m(r)dr (5.108)

where n is the particle size distribution as above, m is the mass of a particle and vt is the

terminal fall speed of precipitation. For precipitation-sized particles, the terminal fall speed

can be expressed as:

vt(r) = c rd, (5.109)

where c is a constant and the exponent d depends on the type of precipitation. Using (5.106),

we have

R =
∫ ∞

0
crdr3N0e

−Λrdr = C Λ−4−d, (5.110)

where all constants have been consolidated in C. Combining this with (5.107), we obtain

Z = aRb (5.111)

where a is a constant and b = 7/(4 + d). For spherical drops, d is about 1/2 and b = 14/9 =

1.56. This compares well with the empirical Marshall-Palmer relation

Z = 200 R1.6 (5.112)

where Z has units of mm6 m−3 and R has units of mm hour−1. This relation is quite

accurate for moderate stratiform precipitation (i.e. the precipitation resulting from frontal

lifting rather than moist convective instability). However, snowflakes have d ≈ 0, giving

b ≈ 2. Also, the value of a is found to depend sensitively on the type of precipitation. In

practice, it is necessary to first guess the type of precipitation being detected, and then use

the appropriate empirically-derived coefficients in (5.111) to estimate the rain rate from Z.

This introduces considerable uncertainty in the rain rate estimates.
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The atmospheric boundary layer

6.1 Scale separation and Reynolds averaging

Near the Earth’s surface, atmospheric motion in generally turbulent, meaning it is unsteady,

erratic and full of eddies of various sizes. This happens for two main reasons: one is that

air in direct contact with the ground is slowed to a halt (a no slip boundary condition),

introducing strong vertical shear (gradient) in the wind profile and resulting in dynamical

instability which generates eddying motion; the other is that the surface may be warmer

than overlying air, leading to static instability and consequent turbulent overturning.

Turbulent motion is too erratic and complex to describe in detail, either mathematically or

numerically, and a central goal of turbulence theory is to express the mean effect of the

turbulence on slow, large-scale components of the motion. Mathematically, if U(x, t) is the

velocity field at a certain point and time, we write

U(x, t) = 〈U〉 + u′(x, t) ≡ u + u′ (6.1)

where u ≡ U represents a Reynolds average—a spatial average over some neighbourhood

of x and a time average over some interval centered on t. u′ is the fast-varying, zero-mean

141
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part left over after averaging. This procedure assumes some sort of scale separation, i.e. it

assumes that the physical processes controlling the evolution of u are different from, and

occur of typical space-time scales much larger than, those controlling u′, so that the two

can be studied separately. Typically, u is taken to represent synoptic-scale phenomena, with

time scales of several days, while u′ represents turbulent/convective phenomena with spatial

scales of up to a few km and time scales of minutes or hours.

Applying decomposition (6.1) to all atmospheric variables, substituting into the equations

of motion, and applying 〈·〉 to the equations, we obtain the Reynolds-averaged equations of

motion:

∂u

∂t
= −1

ρ

∂p

∂x
+ fv − ∂〈u′w′〉

∂z
(6.2)

∂v

∂t
= −1

ρ

∂p

∂y
− fu − ∂〈v′w′〉

∂z
(6.3)

∂θ

∂t
= J − ∂〈θ′w′〉

∂z
(6.4)

where J is the diabatic heating and f is the Coriolis parameter. Several assumptions have

been made to obtain the equations in this simple form: the Boussinesq approximation (es-

sentially, density is taken to be constant constant), the hydrostatic approximation, and the

assumption that the turbulence is horizontally homogeneous, so that horizontal derivatives

of turbulence quantities drop out. Defining the geostrophic wind

fvg =
1

ρ

∂p

∂x
(6.5)

fug = −1

ρ

∂p

∂y
(6.6)

and assuming steady state, the equations become

0 = f(v − vg) −
∂〈u′w′〉

∂z
(6.7)

0 = −f(u − ug) −
∂〈v′w′〉

∂z
(6.8)

0 = J − ∂〈θ′w′〉
∂z

. (6.9)
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The end result of Reynolds averaging is a set of equations for the slow components in which

second-order averaged turbulence terms appear. A term such as

ρ〈u′w′〉 (6.10)

has units of stress (N m−2) and can be interpreted as a flux of u momentum; it is called a

Reynolds stress or eddy stress. The term

−∂〈u′w′〉
∂z

(6.11)

is the convergence of the eddy stress; it specifies the rate at which u momentum transported

vertically by turbulence accumulates at each level, thereby accelerating the flow at that level.

6.2 Closure, mixing length and flux-gradient relations

The key point in the previous section is that, because the equations of motion are non-linear,

the Reynolds-averaged equations describing the evolution of the slow components contain

contributions from the turbulence. If we could somehow express the turbulent contributions

as functions of the slow variables, then Eqs. (6.2)–(6.4) would form a closed set, which could

be solved to obtain the spatial structure and time evolution of the slow variables. This is

the problem of turbulence closure.

Turbulence closure remains as one of the great unsolved problems in the physical sciences.

Though a fully rigorous mathematical solution is not known, considerable progress can be

made using physical intuition supported by experiment. A key notion, developed by Prandtl

in the 1920s, is that of turbulent mixing length. The idea is to extend the classical kinetic-

theory notion of transport by gas molecules to transport by macroscopic fluid elements.

Between collisions, a gas molecule carries with it a fixed amount of momentum and energy;

when it collides, it exchanges momentum and energy with surrounding molecules. Anal-

ogously, a fluid parcel carries with it a fixed quantity of momentum and energy until it

“collides”, i.e. mixes with other parcels in the environment. Let us denote by � the mixing
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length—the mean distance travelled by a fluid element without mixing, analogous to the

mean free path of kinetic theory. Now supposing, for example, that u has non-zero vertical

shear, the typical turbulent u fluctuation will be

u′ ∼ −�
∂u

∂z
. (6.12)

If w is the typical turbulent vertical velocity, the vertical momentum flux is

〈u′w′〉 ∼ −w�
∂u

∂z
. (6.13)

This reasoning can be extended to turbulent transport of any quantity which is conserved

by the motion, leading to the flux-gradient relations

〈u′w′〉 = −Km
∂u

∂z
(6.14)

〈v′w′〉 = −Km
∂v

∂z
(6.15)

〈θ′w′〉 = −Kh
∂θ

∂z
(6.16)

where Km, Kh are called the edddy diffusivities for momentum and heat respectively, and the

minus sign indicates that the flux is directed down the mean gradient. Note that K ∼ w�,

but � can be different for momentum and heat transport. We have just obtained the simplest

example of a turbulence closure, which goes under the name of K closure or K theory.

6.3 The Ekman layer

Now let us use K closure in the steady state equations of motion (6.7), (6.8). We will assume,

heuristically, that Km is constant. Then

f(v − vg) = −Km
∂2u

∂z2
(6.17)

f(u − ug) = Km
∂2v

∂z2
(6.18)
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Figure 6.1: The Ekman spiral.

Let us also assume that the geostrophic wind is constant in the vertical (i.e. barotropic),

and align the x and y axes such that vg = 0. It can then be shown that the solution to

(6.17),(6.18) is

u = ug

(
1 − e−γz cos γz

)
(6.19)

v = ug e−γz sin γz (6.20)

where

γ =

√
f

2Km
(6.21)

(this assumes we are in the northern hemisphere, so f > 0). This solution is the famous

Ekman spiral, originally derived by Swedish oceanographer Ekman in 1905.

The Ekman spiral, shown in Fig. 6.1, starts from zero at the ground (as it should, given the

no-slip boundary condition), and converges to the geostrophic wind for z > π/γ. In between,

the wind is to the left of the geostrophic wind, i.e. it points towards low pressure. This cross-

isobaric flow leads to mass convergence towards the centre of a low-pressure system (i.e. a

cyclone). To conserve mass, boundary-layer convergence is balanced by ascent through the

boundary-layer top and divergence in the free atmosphere. The overall effect is called Ekman

pumping. Through the “ice skater effect”, divergence above the surface low tends to weaken

the cyclonic vorticity and is an important damping mechanism for cyclones.
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6.4 The surface layer

Ekman’s solution fails near the surface, where the vertical shear is strong and the turbulent

fluxes are strong enough that the Coriolis force can be neglected. This surface layer is

typically ∼100 m deep. The surface layer is thin enough that the eddy momentum flux does

not deviate substantially from its surface value 〈u′w′〉0. Let us define the friction velocity

u2
	 = 〈u′w′〉0, (6.22)

which is a characteristic turbulent velocity scale within the surface layer. Let us also assume

that the layer is thin enough that the mixing length is limited by the distance z above the

ground, so that

� = kz (6.23)

where k is von Kármán’s constant, which has an experimentally determined value of about

0.4. The flux-gradient relation is then

∂u

∂z
=

u	

kz
(6.24)

which can be integrated to yield

u =
u	

k
ln
(

z

z0

)
. (6.25)

The height z0, called the roughness length, enters as a constant of integration; it is the

nominal height at which the large-scale wind matches the no-slip boundary condition u = 0.

The roughness length must be empirically determined; it is found to vary from a few mm

above smooth water to several cm above grassy fields, to several meters over forests or urban

areas. Because of the logarithmic dependence, the surface layer is often called the log layer.

6.5 Static stability and Monin-Obukhov similarity

We have until now implicitly assumed that the atmosphere is neutrally stratified, so that

kinetic energy derived from shear instability of the large-scale flow is entirely converted to
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eddy kinetic energy, and successively lost to friction. However, we expect static stability to

play a crucial role in turbulence. Under statically unstable conditions (e.g. when there is

strong solar warming of the surface), there will be an extra source of kinetic energy for the

turbulence, and the turbulent fluxes should be correspondingly stronger. When the mean

flow is stable (e.g. due to nighttime cooling of the surface), air parcels will have to do work

to move up or down, so turbulence will be weaker (another way of putting it is that some of

the kinetic energy derived from shear instability will be converted to potential energy of the

mean stratification).

The role of static stability can be quantified through the flux Richardson number

Rf =
g〈θ′w′〉/θ

〈u′w′〉 ∂u/∂z
(6.26)

where g is gravitational acceleration. It can be shown that the denominator is the rate of

turbulent kinetic energy generation by shear instability (the shear production term), while

the numerator is the rate of energy generation by static instability (the buoyancy production

term). Assuming down-gradient momentum flux, the shear production term is always neg-

ative. When the ambient profile is statically stable, 〈θ′w′〉 < 0 (downward heat flux) and

Rf > 0, while unstable conditions imply Rf < 0. For neutral stability there is no heat flux

and Rf = 0.

If |Rf | � 1, then shear production dominates buoyancy (whatever the sign of the static

stability), and we are close to the neutral case where the results of Sec. 6.4 apply. Substituting

(6.24) into (6.26), we find

Rf =
kg〈θ′w′〉/θ

u3
	

z (|Rf | � 1). (6.27)

This means that |Rf | will increase with height. This will continue until |Rf | ≈ 1, where

shear and buoyancy production are comparable. Above this level, buoyancy will dominate

and (6.27) will not be valid. The transition from shear-dominated to buoyancy-dominated

turbulence occurs at a height

L =
u3

	

kg〈θ′w′〉/θ (6.28)
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known as the Monin-Obukhov length.

How does static stability affect the wind profile? The answer is provided by Monin-Obukhov

similarity theory, which is a generalization of (6.24):

kz

u	

∂u

∂z
= Φm(ζ) (6.29)

where

ζ = z/L (6.30)

is height adimensionalised by the Monin-Obukhov length, and Φm is an unknown function

that must be inferred empirically. Eq. (6.30) cannot be mathematically derived from the

equations of motion; it should be seen as a judicious guess. It is well supported by observa-

tions.
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Appendix

7.1 What is e?

e = 2.71828182845904523536... is a magic number known as Euler’s number (or in some

countries Napier’s number). For our purposes, its key property is that

d

dx
ex = ex. (7.1)

To prove this, and appreciate the magic of e, we first need some discussion of logarithms.

Given two numbers x and a, we can always find X such that

x = aX .

X is then called the logarithm in base a of x, and we write

X = loga x.

Note that x = aloga x. An elementary property of logarithms is that, since xy = aXaY =

aX+Y , then

loga(xy) = loga x + loga y.

149
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Also, since b = aloga b and a = blogb a, we have

loga b =
1

logb a
.

Now let’s look at the derivative of an exponential. Using the definition of derivative:

d

dx
ax = lim

h→0

ax+h − ax

h
(7.2)

= ax lim
h→0

ah − 1

h
. (7.3)

Now since loga 1 = 0, we can choose to write h = loga(1 + H), and substituting in (7.2) we

get:

d

dx
ax = ax lim

H→0

aloga(1+H) − 1

loga(1 + H)
. (7.4)

= ax lim
H→0

H

loga(1 + H)
(7.5)

= ax lim
H→0

1

loga [(1 + H)1/H ]
(7.6)

= ax 1

loga [limH→0(1 + H)1/H ]
. (7.7)

The limit that appears in the last line is undefined, but can be shown to converge to a finite

value; that value is precisely e:

e = lim
H→0

(1 + H)1/H . (7.8)

We thus have
d

dx
ax = ax 1

loga e
= ax ln a (7.9)

where we have introduced the special symbol ln for logarithms in base e, which are called

natural logarithms. Finally, setting a = e,

d

dx
ex = ex. (7.10)

Thus, e is the unique number for which the derivative of the exponential leaves the exponential

exactly unchanged, with no extra factor.
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A further important result is that
d

dx
ln x =

1

x
, (7.11)

which can be shown as follows:

d

dx
x = 1 (7.12)

=
d

dx
eln x (7.13)

= eln x d

dx
ln x (7.14)

= x
d

dx
ln x, (7.15)

(7.16)

which means that (7.11) must be true.
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