

Fast Reactor Development for a Sustainable Nuclear Energy Supply in China

For the International Conference on Fast Reactors and Related Fuel Cycles- Challenges and Opportunities (FR09) December 7~11, 2009, Kyoto, Japan

XU MI

China Institute of Atomic Energy

2009-11-20

Contents

- **1. Introduction**
- 2. The Strategy Study of China FBR Development
- **3. Status of China Experimental Fast Reactor**
- 4. Status of China Demonstration Fast Reactor
- **5. Fast Reactor Fuel Cycle Consideration**
- 6. Summary

1 Introduction

Recent years the national economy development and the primary energy production increasing have a rather quick speed in China. Their average annual increasing rates are about 10% for more than ten years.

Nuclear Energy is a new member of the energy resource family in China, but only sharing less than 2% by now.

Status of NPPs in China Mainland

Site	Capacity/Type	Grid Date	Load factor (%)								
Site			2000	2001	2002	2003	2004	2005	2006	2007	2008
Qinshan I	300MW/PWR	1991.12.15	77.2	94.1	66.9	88.6	99.8	86.72	91.44	81.62	96 . 39
Daya Bay -1	900MW/PWR	1993.08.31	85.2	84.9	89.6	89.6	87.2	99.79	80.31	90.85	99.60
-2	900MW/PWR	1994.02.07	84.9	89.1	81.6	84.5	73.6	79.44	99.68	88.29	86.39
Qinshan II -1	600MW/PWR	2002.02.01			74.9	81.0	82.2	92.76	55.20	65.69	87.38
-2	600MW/PWR	2004.03.11						85.19	90.30	90.70	86.48
Lingao -1	984MW/PWR	2002.04.05			92.0	76.8	87.76	82.69	89.16	82.65	90.79
-2	984MW/PWR	2002.12.15				85.0	79.9	90.57	91.89	87.31	84.56
Qinshan III -1	700MW/PHWR	2002.11.10				90.2	77.3	84.05	98.2 0	88.35	93.48
-2	700MW/PHWR	2003.06.12				90.4	94.0	81.05	88.70	99.8 7	89.34
Tianwan -1	1000MW/PWR	2006.06								65.59	74.43
-2	1000MW/PWR	2006.12								78.76	85.50
Total	8.6GWe										

The average load factor over 67 unit ·years is 85.8%.

Under the sketch of National Mid-Long Term Science and Technology Development Program (2006~2020) issued by The State Council ,the Government has decided in 2006 to develop continuously nuclear power with a target of 40 GWe in operation and other 18GWe under construction in 2020. The higher capacity targets are under discussion.

Right now: 19 units with ~ 20GWe under construction. 7 units with ~7GWe under preparing for construction.

Envisaged NPP Sites in Future

From Mr. Pan Ziqiang's PPT on 2007 Chinese Nuclear Society Annual Meeting

The future capacity scale of PWR will depend on Uranium available internal and external. Uncertainty is obviously unavoidable.

2. The Strategy Study of China FBR Development Envisaged Primary Energy Production in China for 2050

	1991 E	2005-2007 Envisaged			
V -rowers	Exploitable	Standard Coal	Total Requirement	Standard Coal	Total Requirement
Energy	In 2050	Equivalent (billion tsce)	(billion tsce)	Equivalent (billion tsce)	(billion tsce)
Oil	$0.1 \times 10^{9} t$	0.47		0.5	
Gas	$1500 \times 10^{9} \mathrm{m}^{3}$	0.45		0.3	
Hydraulic	260~370GWe	0.65		0.6	
Coal	3.4×10 ⁹ t	2.50		2.5	
Nuclear	240GWe	0.60		0.6	
Others		0.30		0.5	
Total		4.5	4.5	5.0	5.0

For such huge capacity 240 GWe NPPs it is impossible to use only PWRs due to the Uranium resources technically and economically exploited are limited in China or in the world.

And also considering:

(1) to decrease the quantity of MA and LLFP to be geologically buried, and
(2) to decrease the emission of green-house gas.
The basic strategy of PWR-FBR matched closed
fuel cycle is under execution step by step.

Suggested China FBR Development Strategy

	Reactor	Power(MWe)	Design Beginning	Commissioning
1	CEFR	20	1990	2010
2	CDFR	600~900	2007	2018~2020
	CCFR	n×800~900	2015	2030
3	CDFBR	1000~1500	2018	2028
	CCFBR	1000~1500	2020	2030~2032

Technical Continuity of Chinese FBRs

	CEFR	CDFR	CDFBR	CCFR
Power MWe	20	600~900	1000~1500	n×600~900
Coolant	Na	Na	Na	Na
Туре	Pool	Pool	Pool	Pool
	UO ₂	MOX		MOX+Ac
Fuel	MOX	Metal	Metal	Metal+Ac
Cladding	Cr-Ni	Cr-Ni, ODS	Cr-Ni, ODS	Cr-Ni, ODS
Core Outlet Temp. °C	530	550~500	500	550~500
Linear Power W/cm	430	450	450	450

Burn-up MWd/kg	60~100	100~120	120~150	120	
Fuel Handling	DRPs	DRPs	DRPs	DRPs SMHM	
ruel nanuning	SMHM	SMHM	SMHM		
	IVPS	IVPS	IVPS	IVPS	
Spent Fuel Storage	WPSS	WPSS	WPSS	WPSS	
	ASDS	ASDS+PSDS	ASDS+PSDS	ASDS+PSDS	
Safety	PDHRS	PDHRS	PDHRS	PDHRS	

DRPs: Double Rotating Plugs

SMHM: Straight Moving Handling Machine

IVPS: In-Vessel Primary Storage

WPSS: Water pool Secondary Storage

ASDS: Active Shut-Down System

PSDS: Passive Shut-Down System

PDHRS: Passive Decay Heat Removal System

MA Transmutation Strategy

Electric Capacity Development Envisaged In China

National electricity and FBR annual increasing rate

Three Strategy Targets:

• 2030 600~900 MWe FBR deployment and operation to support PWR reaching power capacity expected .

2050 nuclear capacity will reach 240 GWe or more, sharing around 16% at that year.
2050~2100 Nuclear will in large scale replace fossil fuel.

3. Status of China Experimental Fast Reactor In the framework of the National '863' High-Tech Program the China Experimental Fast Reactor has been executed since 1990.

CEFR timetable	
Conceptual Design	1990~1992.7
Consultation with Russian FBR Assoc	ciation and
Optimization	1993
Technical Co-Design with R-FBR-A	1994~1995
FBR R&D cooperation with France	1995~Now
Preliminary Design	1996~1997
Ordering Components	1997~2004
Detail Design	1998~2003

Preliminary Safety Analysis Report Review1998.5~2000.5Architecture Construction (first pot of concrete) started
2000.52000.5Reactor Building construction2001.3~2002.8Installation2004~2007Pre- Operation Testing2006~NowSodium Loading Systems2009.5

CEFR Introduction

Neutron Source S.A. (1)
Fuel S.A. (81)
Safety S.A. (3)
Regulation S.A. (2)
Compensation S.A. (3)
Steel Shielding S.A.-III (37)
Steel Shielding S.A.-III (132)
Steel Shielding S.A.-IV (167)
Boron Shielding S.A. (230)
Spent Fuel S.A. (56)

The core of CEFR

CEFR Fuel Subassembly

CEFR Reactor Block

CEFR Main Heat Transfer System

CEFR Main Design Parameters

Parameter	Unit	Parameters
Thermal Power	MW	65
Electric Power, net	MW	20
Reactor Core		
Height	cm	45.0
Diameter Equivalent	cm	60.0
Fuel/First Loading		(Pu, U) O ₂ / UO ₂
Pu, total	kg	150.3
Pu-239	kg	97.7
U-235 (enrichment)	kg	42.6 (19.6%) / 236.7(64.4%)
Linear Power max.	W/cm	430

Parameter	Unit	Preliminary design
Neutron Flux	n/cm ² ·s	3.7×10 ¹⁵
Bum-up, target max.	MWd/t	100000
Bum-up, first load max.	MWd/t	60000
Inlet Temp. of the Core	°C	360
Outlet Temp. of the Core	°C	530
Diameter of Main Vessel (outside)	m	8.010
Primary Circuit		
Number of Loops		2
Quantity of Sodium	t	260
Flow Rate, total	t/h	1328.4

Parameter	Unit	Preliminary design
Number of IHX per loop		2
Secondary Circuit		
Number of loops		2
Quantity of Sodium	t	48.2
Flow Rate	t/h	986.4
Tertiary Circuit		
Steam Temperature	°C	480
Steam Pressure	MPa	14
Flow Rate	t/h	96.2
Plant Life	a	30

Recent Status of CEFR:

• Installation is completed.

• Pre- operation- cooled and hot testing of more than 98% systems has been completed .

• 336.6t nuclear grade sodium has been transported and filled into reactor block and secondary circuit, purified to about 2 ppm. Their hot testing before fuel loading is finished.

• Now the license by NNSA for physical start-up has been issued in 29th, September, but physical start- up was delayed dut to a public letter.

And planned originally that it will incorporated to the grid with 40% full power in June, 2010, may be need 3 months delay.

Summary on CEFR Safety Characteristics

1) Temperature reactivity effect $(250-360^{\circ}\text{C})$ $-0.62 \beta_{eff}$ Power reactivity effect $(360^{\circ}\text{C} \ 0\% - 100\% \text{ power})$ $-0.55 \beta_{eff}$ Sodium void reactivity effect (all fuel and upper) $-3.9 \beta_{eff}$

2) Passive decay heat removal system
Passive siphon effect destruct for primary sodium purification
system out of reactor vessel.
Passive reactor pressure protection
Passive large sodium leakage receiver

3) Under BDBA accident as ULOF, ULOHS or UTOP (one Regulation Subassembly drawn off) no sodium boiling, no cladding failure and no fuel molten. 4) For BDBA edge accident: no any electricity supply, shut- down system damaged, decay heat removal system not worked, and no any interference to it for 45 minutes. Max. sodium temperature is 890°C less than boiling temperature 920°C at the situ pressure, for only \sim 15 sec. Max. cladding temperature: 920°C and no fuel molten.

5) The safety analysis reviewed by CNNSA give the results: CEFR design has met the safety targets of effective dose equivalent much lower than the National Environment Regulation at site boundary 153m.

	CEFR	Regulation
Normal operation	0.05 mSv/a	0.25 mSv/a
DBA	0.5 mSv/accident	5 mSv/accident
BDBA	5 mSv/accident	100 mSv/accident

PRA: core molten probability 4×10^{-7} /reactor.a no requiring site response at any accident,

CEFR Reactor Building Completion Ceremony (2002.08.15)

Nuclear Grade Sodium Receiving System

Reactor block and Main Vessel under Installation

Evaporator Moving to Reactor Building (2005.03)

Sodium Purification plant (2005.10)

Core Reflector Subassembly moving to the core (2008.02.26)

Small rataling plug under installation (2003.03.22)

Turbine under installation (2005.07.21)

CEFR Outside view (2007.10.10)

National Grid comes to the site (2007.01.28)

R&D Activities on CEFR

2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018

Pre-Operation Testing, Pre-Operation(V&V of Computer Codes ...(Evaluation of Safety Criteria and Standards ...

Safety Study (CEFR type Safety Performance...

Trial- Fabrication of CEFR Key Components and testing (As Spare Components of CEFR)

Irradiation of 316Ti, 316, 304, B₄C and C with B used in CEFR block

MOX testing pins and S. A. irradiation

Irradiation of MOX with MA

4. China Demonstration Fast Reactor After pre-conceptual design for 600MWe CPFR core It was started to pre- conceptual design for a 800 MWe CDFR. The general design demands: (1) the safety properties should reach the recommendation for SFR design by **IAEA-TECDOC-1083;** (2) the reliability should meet commercial nuclear power plants target; and (3) the economy should be accepted.

Design Boundary Condition for CDFR

	unit	value
Power	MWe	800
Fuel		PuO ₂ -UO ₂
Outlet Temp. of Primary Na	C	550
Linear Power	W/cm	450
Breeding Ratio		~1.1
Burn-up, Target max.	MWd/kgH	120
First Loading, max.	MWd/kgH	100
Mean Length of Reactor Run	d	300
Seismic Intensity, Design	MSK-64	7
Safety Requirements		
Reactor core Molten Probability		<10 ⁻⁶ /a
Dose Limit at the Site Boundary Not Requiring Short-		<10 ⁻⁷ /a
term of Site Response		
Frequency of Loss of Shut-down Function		
Frequency of Loss of Decay Heat Removal Function		<10 ⁻⁷ /a
Load Factor	%	>80
Reactor Life	a	40

5. Fast Reactor Fuel Cycle Consideration Overall Target

• Uranium resources should be sufficiently utilized including by-products Pu and MA

• The volume of high radioactive wastes to be geologically buried should be as less as possible

The target fuel cycle for FBR is in-site, metal fuel closed cycle. MOX fuel closed cycle only as transit and standby for Fast Breeders or Burner reactors.

6. Summary

China needs a huge nuclear power capacity in future. Her first phase of nuclear energy application is rather quick for development with PWRs from now, the second phase, i.e. fast reactor development is still at its experimental stage. China has taken part in the INPRO ,GIF and GNEP, and is willing to have more cooperation with IAEA and other countries to share each other the experiences, and to speed up the national nuclear power development.