

Energy and Water are ... Interdependent

Water for Energy

and

Energy for Water

Energy and power production require water:

Thermoelectric cooling

Hydropower

 Energy minerals extraction/mining

 Fuel Production (fossil fuels, H₂, biofuels)

Emission control

Water production, processing, distribution, and end-use require energy:

- Pumping
- Conveyance and Transport
- Treatment
- Use conditioning
- Surface and Ground water

Water Withdrawal Trends by Sector

[USGS, 2004]

Water Consumption by Sector

U.S. Freshwater Consumption, 100 Bgal/day

Energy accounts for 27 percent of non-agricultural fresh water consumption

Growing Limitations on Fresh Surface and Ground Water Availability

(Based on USGS WSP-2250 1984 and Alley 2007)

Year

 Many major ground water aquifers seeing reductions in water quality and yield

- Little increase in surface water storage capacity since 1980
- Concerns over climate impacts on surface water supplies

Growing Use of Non-traditional Water Resources

Power Requirements For Treating

(From EPA 2004, Water Reuse 2007, Mickley 2003)

(Einfeld 2007)

- Desal growing at 10% per year, waste water reuse at 15% per year
- Reuse not accounted for in USGS assessments
- Non-traditional water use is energy intensive

Most State Water Managers Expect Shortages Over The Next Decade Under Average Conditions

Source: GAO 2003

Water challenges are nationwide

The U.S. will need 50% more electricity by 2035

Growth in Thermoelectric Power Generation

- Most growth in water stressed regions
- Most new plants expected to use evaporative cooling

Water Demands for Future Electric Power Development

billion gallons per day

- Water demands could almost triple from 1995 consumption for projected mix of plants and cooling
 Carbon emission requirements will
- Carbon emission requirements will increase water consumption by an additional 1-2 Bgal/day

Water Use and Consumption for Electric Power Generation

Plant-type	Cooling Process	Water Use Intensity (gal/MWh _e)		
		Steam Condensing		Other Uses
		Withdrawal	Consumption	Consumption
Eggil/higmaga stoom tuuhina	Open-loop 20,000–50,000 ~200-300	15.26		
Fossil/ biomass steam turbine	Closed-loop	300–900	300–714	15-36
Nuclear steam turbine	Open-loop	25,000–60,000	~400	- 36
	Closed-loop	800-1,100	~720	
Natural Gas Combined- Cycle	Open-loop	7,500–20,000	100	10-20
	Closed-loop	230	408	
Integrated Gasification Combined-Cycle	Closed-loop	360-540	200-510	130
Carbon sequestration for fossil energy generation	~25% increase in water withdrawal and consumption			
Geothermal Steam	Closed-loop	2190	1640-1750	50
Concentrating Solar	Closed-loop	850-1125	750-920	10-53
Wind and Solar Photovoltaic	N/A	0	0	1

The U.S. will need 33% more Transportation Fuels by 2030

- Fuel use will increase despite gains in efficiency
- Current initiatives for domestic alternatives like oil shale and biofuels
- Major hydrogen use will be post 2030

Emerging Water Demands for Alternative Fuels Development

Irrigation of even small percentage of biofuel acreage will increase water consumption by an additional 5 Bgal/day

Water Demand/Impact of Transportation Fuels

Fuel Type and Process Conventional Oil & Gas Oil Refining	Relationship to Water Quantity	Relationship to Water Quality	Average gal water consumed
Oil Refining			per gal fuel
NG extraction/Processing	Water needed to extract and refine; Water produced from extraction	Produced water generated from extraction; Wastewater generated from processing;	1 - 2.5 0.2
Biofuels Grain Ethanol Processing	Water needed for growing feedstock and for fuel processing;	Wastewater generated from processing; Agricultural irrigation runoff and infiltration contaminated with fertilizer, herbicide, and pesticide compounds	3 - 7
Corn Irrigation for EtOH			~ 980* ~ 2
Biodiesel Processing Soy Irrigation for Biodiesel			~ 2 ~ 6500*
Lignocellulosic Ethanol and other synthesized Biomass to Liquid (BTL) fuels	Water for processing; Energy crop impacts on hydrologic flows	Wastewater generated; Water quality benefits of perennial energy crops	~ 2 - 6 ^{‡§} ~ 2 - 6 ^{‡§}
Oil Shale - In situ retort	Water needed to Extract / Refine	Wastewater generated; In-situ impact uncertain; Surface leachate runoff	1.2 - 2.3
- Ex situ retort Oil Sands	Water needed to Extract / Refine	Wastewater generated; Leachate runoff	2.1 - 5.2 2 - 6.9
Synthetic Fuels - Coal to Liquid (CTL)	Water needed for synthesis and/or	Wastewater generated from coal mining and CTL processing	0.9 - 2.7
Hydrogen RE Electrolysis Hydrogen (NG Reforming)	steam reforming of natural gas (NG)		~ 3 [‡]

[†] Ranges of water use per unit energy largely based on data taken from the Energy-Water Report to Congress (DOE, 2007)

[‡] Estimates based on unvalidated projections for commercial processing; [§] Assuming rain-fed biomass feedstock production

^{*} Conservative estimates of water use intensity for irrigated feedstock production based on per-acre crop water demand and fuel yield

Projected Ethanol Production by Feedstock

Ethanol Production Growth and Feedstock Irrigation Issues

- Irrigated corn requires 2000-4000 gal/bushel
- Move to cellulosic ethanol will move production south and east
- Amount of irrigation needed for fuel reliability of dedicated energy crops is uncertain
- Concerns over ethanol production plant impacts on groundwater quality and availability

Ref: Schnoor, ACS, 2008

Biomass and Water Use Impacts Will be Regional

Oil Shale development will be regional and impact water availability and quality

- Reserves are in areas of limited water resources
- Water needed for retorting, steam flushing, and cooling up to 2-5 gallons per gallon of fuel
- Concerns over in situ
 migration of retort byproducts and impact on
 ground water quality

QUESTIONS

