

Solar Energy Technologies Program

DOE CSP R&D:

Component Award Overview

DOE HQ | April 28, 2010

Jesse Gary

CSP Team
Solar Energy Technologies Program
U.S. Department of Energy

DOE CSP R&D: Industry/University Awards

DOE CSP R&D: Components

Component Breakdown

- Collectors
 - Abengoa Development of a next-generation parabolic trough collector
 - Alcoa Parabolic trough system design
 - SkyFuel Commercial development of an advanced linear Fresnel
 - Solar Millennium Advanced high-temperature trough collector development
- Reflectors
 - 3M Cleanable and hardcoat coatings for silvered polymeric mirrors
 - Abengoa Development of an advanced polymeric reflector
 - PPG Industries High performance reflector panels
- Engines
 - Brayton Brayton solar power conversion system
 - Infinia 30-kW maintenance-free Stirling engine
- Receivers
 - PWR Solar power tower receiver development

Abengoa Solar

Development of a next-generation parabolic trough collector

Description

•The project aims to reduce the cost of collector technologies that could be deployed in the US in the 2010-2013 time frame (short-term), and employ innovative approaches to developing the next generation of lower-cost parabolic trough technologies (mid-term).

Innovative features

- •The Phoenix parabolic trough near-term advanced design
 - •Aluminum space frame design
 - Larger aperture width
 - •Fewer parts, improved manufacturing, quicker assembly and installation
- •Lower cost structure designs
 - •Steel space frame or torque tube
 - •Blue sky concepts
 - Reflective films

Progress

- •The Phoenix Gen2 has been integrated into Xcel Cameo Power Plant (Palisade, CO)
 - •Eight collectors, each 150 meters long
 - •The first CSP/coal integrated plant (would offset ~900 tons of coal/year)
- •The Phoenix Gen3 will be used in Abengoa's Solana project (Gila Bend, AZ)
 - •280MW CSP power plant (will be the largest solar power plant in the world)
 - •Set to break ground in 2011

Resources

•Total Project: \$14.0M •DOE Funds: \$7.2M •Cost Share: \$6.8M

Solar Millennium

Advanced high-temperature trough collector development

Description

•The project aims to develop an advanced geometry parabolic trough collector, the HelioTrough. The HelioTrough has three primary goals: higher performance, lower cost, and the potential to operate with a molten salt heat transfer fluid.

Innovative features

- •Heliotrough parabolic trough development
 - •Torque tube design
 - •Counterweights (making the torque tube the center of gravity)
 - •Larger aperture, receiver diameter, SCE length
 - •Fewer drives, foundations, wiring, etc.

Progress

- •A HelioTrough Demonstration Loop has been built at SEGS V (Kramer Junction, CA)
 - •Four collectors, each 190 meters long
 - •Included alignment jigs
 - Commissioned in December 2009
 - •Will incorporate molten salt into test loop
- •The HelioTrough will be used in Solar Millennium's upcoming US projects
 - •Amargosa 1 & 2: combined 484MW; Nye County, NV; 2011
 - •Blythe Solar Project: combined 1GW; Blythe, CA; 2013
 - •Ridgecrest Solar Project: 250MW; Ridgecrest, CA; 2013
 - •Palen Solar Project: combined 500MW; Desert Center, CA; 2013

Resources

•Total Project: \$5.9M •DOE Funds: \$3.3M •Cost Share: \$2.6M

PPG Industries

High performance reflector panels

Description

•The project aims to develop and commercialize large-area second-surface mirrors that are superior in value, in terms of cost and performance, to existing mirrors available on the market.

Innovative features

- •Low iron glass substrate
- •Thick silver layer reflective coating
- Encapsulation layers
 - Organic (for mechanical protection)
 - •Inorganic (for chemical protection)
- •Low-cost fabrication process

Progress

- •Production run of solar mirror glass in April 2010
 - •1,320 pieces, totaling ~133,500 ft²
 - •Produced for Compact Linear Fresnel Reflector (CLFR) solar system

Resources

•Total Project: \$3.6M •DOE Funds: \$2.2M •Cost Share: \$1.4M

Pratt & Whitney Rocketdyne

Solar power tower receiver development

Description

•The project aims to develop a molten salt central receiver through the design, fabrication, and testing of a sub-scale large receiver. Manufacturability of large-scale receivers and cost effectiveness will be validated.

Innovative features

- •Advanced, high-temperature tube materials
- •New tube-to-structure clip system
- •Higher performance insulation system
- •More efficient manufacturing and assembly processes

Progress

- •In the process of finalizing design details, analysis, and drawing creation
- •In the process of requesting and receiving quotes from vendors
- •Prototype receiver will be tested at Sandia facility
- •Central receiver will be incorporated into future Solar Reserve tower designs

Resources

Total Project: \$2.9MDOE Funds: \$1.9MCost Share: \$1.0M

Thank You

Jesse Gary

CSP Team
Solar Energy
Technologies Program
U.S. Department of Energy
jesse.gary@ee.doe.gov
www.solar.energy.gov