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Project Abstract - Executive summary 
 
Initial Project objectives 

• Compare recent observed climate changes to variability associated with modes of 
climate features using up to date knowledge on the role of key large-scale modes of 
variability gathered as part of project 1.1.1 

• Attribute the recent changes to possible external forcing with a focus on cold season 
rainfall decline in the south and warm season rainfall decline in the north and 
increased heat waves. 

 
Proposed methodology 

• Benefit from the review of the existing scientific literature on the climate of south-
east Australia and the analysis of the importance of various large-scale modes of 
variability to focus on the most likely contributor to observed rainfall decline. 

• Compare recent observed climate change to variability associated with the Southern 
Annular Mode (SAM) and evaluate the likelihood that the SAM has contributed to 
the observed rainfall decline directly or through the influence on local MSLP. 

• Investigate the causes of the changes of MSLP surrounding southern Australia and its 
role in relation to the rainfall decline in south-east Australia. 

• Investigate the role of MSLP changes in explaining recent heat wave using as a case 
study the April 2005 Murray-Darling Basin wide heat wave. 

 
Summary of the findings 

• The autumn rainfall decline (60% of the total rainfall decline) in south-east Australia 
(SEA) is a combination of autumn to early winter in the south and summer to autumn 
in the north. In the south, the decline started in the early 1990s but is only apparent 
since 2000 in the north. The two areas can be broadly separated by the location of the 
Sub-Tropical Ridge (STR). 

• In the south-western part of eastern Australia (SWEA), the Southern Annular Mode 
(SAM) has a negative impact on rainfall during a six month period from May to 
October, which is when most of the total rainfall is encountered. In autumn as a 
whole, the SAM influence on rainfall in SEA cancels out and is negligible overall. 
The modes of variability generated in tropical oceans (ENSO and IOD) are also 
unlikely to have contributed to the rainfall decline as if anything, their influence on 
the local rainfall is rather small and diminishing during the last the two decades. 

• The SAM index has been trending upward. There is a positive trend in the 1980s and 
1990s across summer and autumn but it does not translate into a rainfall decline. 
Arguably, the trend extends to early winter (May to July) when the series is extended 
back in time to the 1960s and 1970s; this trend could have resulted in a rainfall 
decline of about 5% in those decades, but did not. 

•  The SAM rainfall relationship is mostly felt through the local MSLP. The main 
control of MSLP over southern Australia is the intensity and location of the STR. The 
intensity of the STR has been trending upward since the 1970s and that can be 
translated into a sizeable rainfall decline (about 70% of the observed decline in 
autumn to early winter: from March to July, which in itself represents 71% of the 
total decline) using the correlation between the STR intensity and rainfall in SEA. 

• The intensity of the STR also peaked in the 1940s at the time of the previous dry 
decade in the south-east. By and large during the 20th century, the long-term evolution 
of the intensity of the STR follows the curve of the global temperature of the planet. 
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This relationship gives a high likelihood that the current rainfall deficit is linked to 
the global warming of the planet, through the intensification of the STR. 

• On the northern side of the STR, the rainfall relates well to a north-south MSLP 
gradient along the east coast (the Gayndah-Deniliquin Index or GDI). This index 
suggests a combination of long-term trends and decadal variability as the most likely 
explanation for the current rainfall deficit.  

• Weather patterns do not explain the heat wave observed in April 2005, while the long 
term lower tropospheric warming trend appears as an important contribution. 
However, it does not appear to be the only explanation. 

 
 
 

Technical details 
 
Flow-on effects from project 1.1.1 
 
 The specifics of the rainfall decline across the south-east of Australia in the last 10 
years were described in Murphy and Timbal (2007) as part of the Project 1.1.1. Key results 
emerging from this in-depth analysis is that although the rainfall decline is not unprecedented 
in the historical record, its consequences on the ground are, in particular in term of water 
resources. By comparing a series of numbers (Table 1, in appendix 1) between the current 
dry decade (since 1997) and the driest decade on record (1936 to 1945), three reasons for this 
“amplification” were proposed: 

 
(1) About 60% of the rainfall decline is concentrated in autumn (71% in the five month 

period from March to July); this precedes the largest run-off during the year. During the 
previous dry decade the autumn decline was less than one third of the total rainfall 
decline.  

(2) The year to year variability (measured by the standard deviation in each period) has been 
lower during this decade than the previous dry decade. This result, underlining the 
absence of any year markedly in excess of the long-term average, is likely to have 
exacerbated the impact on river systems and reservoirs.  

(3) The on-going warming is likely to have increase the evaporation and reduce the amount 
of water available for run-off. The current decade occurred with maximum day-time 
temperatures about 0.7 ºC higher. This is a very significant warming (about 1.5 times the 
standard deviation over the long-term means). 

 
The focus on autumn is somewhat misleading and a better understanding of the regional 
pattern of the decline across SEA is captured by projecting on the annual cycle of the total 
rainfall. In the southern part of SEA, most of the rainfall occurs during the cold months from 
the autumn break to spring. There the largest decline (in absolute term) is in late autumn to 
early winter as rainfall in early autumn is negligible. On the contrary, in the northern part of 
SEA where more rainfall falls during the warmer month, the decline is most noticeable in 
summer to autumn (C. Rakich and P. Wiles, personal communication). A convenient way to 
separate between the two regions is to use the location of the Sub-Tropical Ridge (STR). The 
STR has a marked annual cycle; during autumn it vary rapidly between a mean summer 
position of 38ºS and a mean winter location of 31ºS and sits around 35ºS (Drosdowsky, 
2005).  
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Also as part of Project 1.1.1, the current state of the science regarding the climate of SEA 
was reviewed (Murphy and Timbal, 2007) and preliminary analyses of the importance of 
several large-scale modes of variability were conducted (Timbal and Murphy, 2007). It 
showed than in that particular time of the year, there is very little influence from remote 
large-scale modes of variability on the local rainfall whereas most of the rainfall decline 
could be related directly to regional MSLP trends.  
 
All the findings listed above and coming from the first project of the SEACI were used to 
help focus this project. Rainfall trends were studied separately between the South-West of 
Eastern Australia (SWEA) and a large area on the other side of the STR. The focus on 
autumn was tuned to early winter in SWEA and warm season rainfall further north. Amongst 
the large-scale mode of variability, only the role of the SAM was investigated further as it 
appears that the strength of the teleconnections between tropical SSTs in both the Pacific 
(linked to ENSO) and the Indian Ocean (linked to IOD) and the rainfall in SEA is relatively 
weak overall. They tend to vary with time and in the case of the SWEA have been declining 
in the last 20 years (Timbal et al., 2008b). This finding suggests that the rainfall decline in 
most of the SEA (at least in the southern winter-rainfall dominated area) is unlikely to be 
explained by the time-evolution of these tropical modes of variability as, if anything, their 
influence on the local rainfall is rather small and diminishing in last the two decades. It was 
also noted that in the SWEA the on-going rainfall trend is consistent with future projections 
(Timbal and Jones, 2007).  

 
 
Past trends in the Southern Annular Mode and their role on rainfall and 
MSLP  
  
 The Southern Annular Mode (SAM) describes a naturally occurring oscillation of 
pressure between the mid-latitudes of the southern hemisphere and the southern polar region.  
The high-phase of SAM is characterised by higher than normal pressure over the southern 
mid-latitudes and lower than normal pressure over Antarctica. Conversely, the low-phase of 
SAM is characterised by lower than normal pressure over the mid-latitudes and higher than 
normal pressures over the pole.  
 
The importance of the Southern Annular Mode (SAM) on Australian temperature and rainfall 
has been documented (Hendon et al., 2007). Subsequently, the same analysis was redone 
across the SEACI domain using high resolution gridded rainfall (Fig. 1 in appendix 2).  It 
reveals that rainfall on and south of the Great Dividing Range across Victoria is more related 
to SAM than previously thought. This could be an important result as this mountainous area 
is a high rainfall area and is important to generate run-off for most of the Eastern part of 
Victoria. Comparison of the monthly and seasonal interactions shows that the SAM-rainfall 
relationship is much more robust on seasonal timescales. Month to month relations are less 
statistically reliable due to the small number of days in each phase and do not confirm a 
possible role in SAM to explain the month to month variability in rainfall decline: large in 
April, May and July but not in June (Murphy and Timbal, 2007).  
 
The seasonal relationship calculated by Hendon et al. (2007) was adapted to match the key 
seasons for SWEA: early winter (May-Jun-July), where observed rainfall has declined and 
SAM index is trending upward, and late winter (August-September-October), where rainfall 
has not declined and SAM is not trending upward. It was found that a rainfall decline of 5% 
in MJJ could be attributed to the SAM trend using the Marshall (2003) SAM index from 
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1959 onward (this is well below the observed decline in this region of about 11% at this time 
of the year (Timbal et al., 2008a). In ASO, there is hardly any rainfall decline attributable to 
SAM (below 1%) since the index has hardly any trend since 1959. Taken at face value, these 
estimates indicate that almost 50% of the total decline in rainfall could be attributable to the 
SAM increase. However closer inspection of the timing of SAM changes, and rainfall 
changes, indicate that the relationship is perhaps more complex.  While the SAM increased 
during the 1960s and 1970s, the rainfall decline has occurred only since the mid-1990s.  
 
The work of Hendon et al. (2007) was adapted for MSLP. It shows that, for all seasons, 
increasing SAM is associated with increasing pressure above SEA, with the largest signal in 
the observations occurring in MJJ. Using the Marshall SAM index, the observed trend on 
SAM index can be translated into a MSLP rise of 0.5 hPa in the vicinity of SEA. This is a 
significant amount up to one third of the observed MSLP increase in MJJ. Even higher 
number were obtained using NCEP based SAM index but the result in this case are more 
doubtful as the NCEP SMA index is questionable prior to 1979. As for rainfall, there is a 
timing issue as most of the MSLP increase above the eastern part of Australia has happen 
since the 1970s (Timbal et al., 2008a).  
 
 
Future trends in the SAM and their role on rainfall and MSLP  
 
 Climate models are very consistent in predicting that global warming will lead to a 
more permanent high-phase of the Southern Annular Mode. Models are also very consistent 
in projecting a winter-time rainfall reduction affecting southern Australia, including the 
SWEA.  Hendon el al. (2007) analysis was adapted and applied to a series of climate 
simulations with the CSIRO Mk3.5 global climate model: a 2000-year long control 
simulation (i.e. no external forcings such as greenhouse gas increases) used to obtain 
statistical significance of the results under ‘natural’ climate variability, a simulation of the 
20th century with all known external natural and anthropogenic forcings and a projection for 
the 21st century forced with anthropogenic forcings according to the SRES A2 emission 
scenario.  
 
Figure 2, in the appendix, provide a global perspective for the contribution of SAM to 
rainfall in the Southern Hemisphere from the CSIRO model.  This is the pattern of rainfall 
changes one would expect from an increasingly positive SAM index.  The model appears to 
perform very well since the results are consistent with the observations across Australia, in 
particular the rainfall reductions in the south-east of the continent, as well as the south west.  
This change is most likely associated with increases in local pressure, and a southerly shift in 
the storm systems that bring wintertime rainfall to these regions.  
 
Trends in the SAM are analysed for various 30-year periods from all CSIRO simulations and 
compared to the observations (Table 2).  In order for all the SAM indices to be comparable 
we used MSLP based index as it is the case with the Marshall index.  This is because surface 
pressure is a variable that is more easily obtainable from climate model simulations.  The 
SAM index estimated from NCEP reanalysis of surface pressure shows larger positive 
changes in winter and spring than the Marshall index.  In comparison the CSIRO model 
underestimates the observed trends during the 20th century. The future projected trends for 
the 21st century are very comparable to the modelled trends for the 20th century.  
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Than the model SAM signal is translated into a rainfall signal using Hendon et al. (2007) to 
project SAM related rainfall and pressure changes in a future, warmer world and to compare 
these estimates to the total rainfall and pressure projections in the future climate scenario.  
The rainfall changes for the south-east of the continent expected from future changes in SAM 
using the CSIRO model are quite sizeable for both 30-year periods: 2031-2060 and 2061-
2090 relative to pre-industrial climate (Table 3.1).  The underlying SAM-rainfall relationship 
for south east Australia is calculated from the model by considering multiple 30 year samples 
from the 2000 year control simulation.  Similarly uncertainty in the underlying SAM-rainfall 
relationship is calculated from the distribution of 30 year samples. The SAM related rainfall 
change accounts for around 60% (2031-2060) and 30% (2061-2090) of the total predicted 
trend in MJJ rainfall in the CSIRO climate change projections. 
 
Similarly, the SAM-pressure signal accounts for between 60% and 95% of future MJJ and 
JJA pressure changes (Table 3.2).  For the periods 2031-2060 and 2061-2090, for autumn 
and winter months, the SAM related changes in pressure account for a much higher 
proportion of total pressure changes in the CSIRO climate projections when compared to 
rainfall. A caveat to this result is that SAM related changes account for much more of the 
total pressure changes in the model compared to the observed for the 20th century. 
 
In general, the SAM-pressure correlations are more robust than those for rainfall. This result 
perhaps reflects the fact that rainfall has a much higher level of variability or climate noise 
compared with pressure.  In particular the signal to noise ratio of the SAM-pressure 
relationship in the long control simulation is much higher than that for the SAM-rainfall 
relationship.  Changes in pressure associated with SAM may therefore be a more robust way 
to characterise future SAM related climate change for southern Australia. 
 
It is plan to continue this analysis by applying it to a selection of IPCC-AR4 climate models 
in order to compare with these results based on the CSIRO model and investigate the 
consistency amongst models of this triangular relationship: SAM index, MSLP and rainfall 
above the SEA. 
 
 
The role of the sub-tropical ridge on south-east Australian rainfall 
 
 The role of the STR on SWEA revealed that up to 80% of the MJJ rainfall decline 
could be related to the strengthening of the ridge since the 1970s (Timbal et al., 2008b). It is 
worth noting that the timing of the increase of the STR intensity corresponds better to the 
rainfall decline that the SAM related rainfall decline mentioned earlier (in the 1960s and 
1970s). It is worth noting that during that earlier period the STR intensity was relatively low 
compare to the previous dry decades of the 1940s and 1950s and that might have compensate 
the expected SAM related decline.  
 
We have extended the analysis of the role of STR across the entire SEA region and across the 
months for which the rainfall decline is largest: from March to July. Across SEA, rainfall in 
March-April-May-June-July has decreased from a mean of 262 mm.year-1 from 1950 to 1980 
to a mean of 201 mm.year-1 since 1997 (a 23% decline which account for 71% of the total 
rainfall decline). Although, the relationship between MSLP and rainfall is strongest in winter, 
it remains significant in autumn and overall quite high over the entire MAMJJ period (Table 
4). Correlations with the STR intensity are higher than with direct MSLP and in MAMJJ 
explain up to 35% of the inter-annual variability (Fig. 3). 
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The long-term evolution of the intensity of the STR in MAMJJ was compared to the average 
surface temperature of the globe (data from the Climatic Research Unit, University of East 
Anglia, UK). For both variables, 21-year running annual means were calculated (Fig. 4) 
centred on the 20th century (to have a mean of zero on the graph) and using different Y-axes 
(on the left for the STR and on the right for global temperature). The long-term co-evolution 
of both variables is remarkable. The previous high values of the STR correspond to the 1940s 
to 1950s when the global temperature reaches a maximum before decreasing until the 1960s 
and then rising again after the 1970s as does the global temperature. Using the slope of the 
relationship (-35 mm.hPa-1) it is possible to translate the intensification of the STR from the 
low values between 1950 and 1980 to the record high since 1997 into a rainfall signal 
equivalent to 43mm.year-1. This amounts to 70% of the observed decline. This amount is 
comparable, albeit lower than the similar role of the STR for the MJJ rainfall decline in 
SWEA where the same calculation indicated that up to 80% of the observed decline could be 
linked to the STR intensification (Timbal et al., 2008b). It shows that although, the role of 
STR intensification is strongest in the south-west of the SEACI domain, where winter rainfall 
dominates it can be felt across the entire domain. 
 
 
North of the sub-tropical ridge: the role of MSLP gradient on rainfall 
 
 In complement to diagnosing the role of the STR on rainfall and of the role of the 
SAM, south of the STR, a further analysis has been conducted on the relationship between 
rainfall in the northern part of the SEA and large-scale forcing using a newly developed 
MSLP index: the Gayndah-Deniliquin Index or GDI (Rakich et al., 2007). This index 
represents the variability in the trade wind flow over eastern Australia bringing moisture 
inland from the surrounding Tasman Sea and relates particularly well with warm season 
(summer and autumn) rainfall (correlation of 0.76) in NSW (Fig. 5). This index exhibits large 
decadal variability corresponding to abrupt changes in rainfall over vast areas of the eastern 
Australian continent where warm season rainfall dominates.  
 
An analysis of the relative contributions of each pole of the index (Fig. 6) reveals that until 
1946, the MSLP variations at the two locations were roughly synchronized, leading to a 
relatively stable GDI. In contrast, during the late 1940s and early 1950s, a strong rise in 
Deniliquin MSLP combined with a fall in MSLP at Gayndah resulted in a rapid rise in the 
GDI at the time when most of SEA started to experience its wettest 30-years period on 
record. Since the 1970s, MSLP at the northern pole (Gayndah) has been rising, slowly 
regaining levels seen prior to 1947. The recent sharp decline in the GDI has resulted from 
this continued rise of summer MSLP at Gayndah, combined with a sudden decline of 
summer MSLP at Deniliquin since 2000 at a time where the protracted drought which was 
already well underway in SWEA started to extend to the rest of Eastern Australia 
 
The GDI was found to be complimentary to the ENSO in summer and autumn, when the 
south-easterly trade winds affect eastern Australia and the SOI-rainfall relationship is at its 
weakest.  Of interest, it was found that the relationship between the GDI and the SOI was 
asymmetric as is the ENSO-rainfall relationship: an asymmetry between positive and 
negative phases (see Power et al., 2006 in the case of ENSO) which as a consequence 
generates a inter-decadal variability of the strength of the relationship during El Niño 
dominated and La Niña dominated epochs (see Power et al., 1999 in the case of ENSO). 
Similarly the GDI-rainfall exhibits multi-decadal variability in the strength of the 
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relationship. That suggests that although complimentary, the relationship between the GDI 
and warm season rainfall over eastern Australia is not independent of ENSO. 
 
 
Can the heat wave of April 2005 be attributed to global warming? 
 
 It is usually acknowledged that it is difficult to attribute a single extreme event to 
climate change; on the other hand, it is possible, if the frequency of particular extreme events 
is observed to increase, to attempt to attribute such increases. In the case of hot temperature 
and heat waves, a number of records have been established in the last decade or so and there 
has been some attempt to attribute this increase to on-going global warming. In this study, we 
have decided to investigate a single extreme event (rather than the frequency of occurrence) 
with large and severe impacts: the heat waves of April 2005. On a national scale, April 2005 
saw the most extreme temperature anomalies ever recorded for Australia (NCC, 2005).  The 
Australian mean temperature was 2.58°C above the 1961-90 average, nearly 1°C above the 
previous April record (1.73°C in 2002), and well above the largest anomaly previously 
recorded for any month (2.32°C in June 1996). Averaged across the Murray-Darling Basin, 
the anomaly was spectacular: 4°C (almost 1.5°C above the previous record in 2002).  
 
The Bureau of Meteorology Statistical Downscaling Model (SDM) has been used to examine 
the role of day-to-day meteorological conditions in producing the extreme temperatures 
across the MDB. The large-scale mean sea level pressure (MSLP) and temperature at 850 
hPa (T850) have been used to see whether the heat waves can be explained by natural 
variability in the atmospheric circulation or whether global warming is a major contributor. 
The model takes analogues from a “pool” of MSLP and/or T850 fields from 1958-2004 to 
reproduce the situation in April 2005. 
 
First the ability of the SDM to reproduce the observed temperature inter-annual variability 
and trend over the entire 1958 to 2004 period was evaluated. The T850 predictor was able to 
reproduce much of the year-to-year variations in stations surface maximum temperatures and 
had more skill that the MSLP predictor. This skill generally improved when the two 
predictors were used together. It was found that changes in MSLP patterns in April should 
have resulted in cooling temperature trend at MDB stations, whereas the T850 patterns 
produced no trend when averaged across MDB stations. However, combining both large-
scale circulation and temperature produces a positive, but weaker than observed, temperature 
trend. This result is difficult to interpret; it suggests that part of the surface temperature trend 
across the basin can be accounted for by changes in synoptic situations combined with 
warmer air aloft, thus emphasising the importance of mid-tropospheric warming to explain 
the surface trends. However, the absence of trend when MSLP is used as a single predictor 
clearly demonstrates that the on-going warming across the basin cannot be explained by 
changes in synoptic situations.  
 
Then the SDM was applied in a cross-validated mode to try to reproduce the heat wave of 
April 2005. The T850 patterns reproduce about half of the observed hot anomaly in April 2005 
across the MDB while MSLP reproduces very weak and generally negative anomalies 
(Figure 7). When the two predictors are combined, the anomalies are in most cases smaller. 
The results show that the April 2005 heat wave cannot be accounted for by anomalous 
synoptic situation (i.e. it was not due to a series of anomalous meteorological situations). On 
the contrary the warming of the troposphere appears critical and explains about half of 
observed surface heat wave. 
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Project Milestone Reporting Table 
 

To be completed prior to commencing the 
project 

Completed at each Milestone date 

Milestone 
description1 

 (up to 33% of 
project 
activity) 

Performanc
e indicators2 

 

Com
pleti
on 
date3 

 

Budge
t4 for 
Milest
one 
($) 

Progress5 
(1- 3 dot points) 

Recom
mended 
changes 
to 
workpla
n6 

1. Review 
literature on 
SEA climate 
variability 

Review 
prepared 

01/ 
10/ 
2006 

15 k A review (Murphy and Timbal) has 
been completed. It has accepted by the 
International Journal of Climatology 
subject to revision. 

None 

2.Document 
Australian 
rainfall and 
temperature 
variations 
associated with 
the SAM 

Scientific 
paper 
prepared  

01/ 
01/ 
2007 

15 k A scientific paper (Hendon et al.) on a 
broad Australian perspective is in 
press (Journal of Climate). 

Some additional calculations using 
high resolution gridded data have been 
performed for SEA. 

None 

3. Assess other 
modes of 
variability and 
their role in 
climate change 
in SE 

4 pages 
report 
prepared 

01/ 
07/ 
2007 

25 k A report has been prepared.  

A more extensive scientific article 
focusing on the similarities between 
rainfall decline in SEACI and IOCI 
and including results form this 
milestone is currently underway 
(Timbal et al., 2 parts article)  

None 

4. Study recent 
record heat 
waves across 
south-eastern 
states  

Scientific 
paper 
prepared 

01/ 
07/ 

2007 

25 k Results were presented at the AMOS 
meeting. 

The importance of circulation changes 
in recent heat waves has bee analysed. 

A scientific paper is being prepared 
(Murphy, Timbal and Jones). 

None 
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Appendix: 1: Tables 
 
 
 

1997-2006 1936-1945 1961-1990 Period 
vs. 

Variables Mean Std Mean Std Mean Std 

      Total Rain (mm) 511 90 494 106 595 120 

  Autumn Rain (mm) 98 32 116 36 149 51 

                Tmax (ºC) 20.4 0.27 19.7 0.47 19.9 0.48 

 Murray Inflow (GL) 4872 2722 5855 4406 9437 5541 

 
Table 1: Mean and standard deviation for total rainfall, autumn rainfall, annual temperature 
and Murray River modelled inflow for three period: 1997-2006, 1936-1945 and 1961-1990.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2: Trend in SAM expressed as units of standard deviation from Observations and for 
future climate model projections. The trends are expressed as 30 Year trends using 11 year 
low pass filtered data.  Projections indicate a tendency toward a high-phase in the months 
May through to August. 
 
 
 
 
 
 
 
 
 
 
 
 

Season 
Observed 

1971-2006 

CSIRO GCM 

1971-2000 

CSIRO GCM 

2001-2030 

DJF 0.81 0.61 -0.11 

MAM 1.92 -0.06 0.13 

MJJ 1.71 0.41 0.79 
JJA 1.51 0.74 1.03 

SON 0.20 0.22 0.00 
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2031-2060 2061-2090 

 SAM-Forced 

Rainfall Trend 

% of total 

projected rainfall 

trend 

SAM-Forced 

Rainfall Trend 

% of total 

projected rainfall 

trend 
DJF 0.91 -4.39 0.89 -3.35 

MAM 2.15 -21.89 2.36 -12.12 

MJJ -7.47 62.67 -9.45 30.89 

JJA -6.43 38.28 -9.25 28.61 

ASO 0.06 -1.16 0.21 -0.62 
SON 1.17 -51.99 3.17 -10.23 

 
Table 3.1: Future projected changes in rainfall (mm) due to changes in the Southern 
Annular Mode under global warming (SRESA2) emissions scenario. The GCM SAM-Forced 
rainfall amounts represent the implied change in rainfall due to future SAM. 
 
 
 
 

2031-2060 2061-2090 

 SAM-Forced 

Pressure Trend 

% of total 

projected 

Pressure trend 

SAM-Forced 

Pressure Trend 

% of total 

projected 

Pressure trend 
DJF 

4.48 31.97 4.38 -10.69 
MAM 

40.26 71.90 44.21 42.51 
MJJ 

115.00 68.86 145.55 65.27 
JJA 

96.00 94.12 138.00 91.39 
ASO 19.42 -176.51 64.22 91.74 
SON 

15.48 110.55 41.88 62.51 
 
Table 3.2: Future projected changes in pressure (hPa) due to changes in the Southern 
Annular Mode under global warming (SRESA2) emissions scenario. The GCM SAM-Forced 
rainfall amounts represent the implied change in rainfall due to future SAM. 
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SEA rainfall 
 

MAM MAMJJ MJJ 

MSLP -0.29 -0.53 -0.68 

STR-I -0.42 -0.59 -0.70 

 
Table 4: Pearson correlation between MSLP or the intensity of the sub-tropical ridge (STR-
I) and the rainfall averaged across the SEA region for several period: autumn, March to Jul 
and early winter (May to July). The bold correlation is used to infer a rainfall reduction 
linked to the STR intensification across SEA. 
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Appendix: 2: Figures 
 
 
 
 

 
 
 
Figure 1: Composite daily rainfall (contours and shading) and 850 hPa winds (maximum 
vector shown in lower left corner of each panel) for high minus low polarity of the SAM 
index for MJJ (left) and ASO (right), using daily data (1979 to 2004). Significant differences 
at the 90% level are shaded. The number of days in the high and low index polarity of the 
SAM is listed in each panel. 
 
 
 
 
 



Authors: Bertrand Timbal  (Bureau of Meteorology)  

Confidential Page 16 14/03/2008 

 

 
Figure 2: Mean Composite Rainfall difference for seasonal (MJJ) SAM high-low phase 
events. Negative values indicate a net rainfall reduction for that region associated with high-
phase SAM.  South west Western Australia and south eastern Australia are regions 
associated with reduced rainfall during high phase SAM. 
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MAMJJ Rainfall vs STR intensity
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Figure 3: Five-year moving averages of both the warm season (Oct-Mar) NSW state-wide 
average rainfall (solid line) and the summer GDI (dashed line).  
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Figure 4: Five-year moving averages of both the warm season (Oct-Mar) NSW state-wide 
average rainfall (solid line) and the summer GDI (dashed line).  
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Figure 5: Five-year moving averages of both the warm season (Oct-Mar) NSW state-wide 
average rainfall (solid line) and the summer GDI (dashed line).   

 
Figure 6: Five-year moving averages of summer (DJF) MSLP at Gayndah, QLD (red line) 
and Deniliquin, NSW (blue line) showing periods of rapid pressure gradient amplification 
(e.g. late-1940s and late-1960s) and rapid pressure gradient attenuation (e.g. mid-1960s and 
2000-2006).   

Deniliquin             
Gayndah    
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Tmax anomalies for April 2005
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Figure 7: Mean maximum temperature anomalies for April 2005 observed and as simulated 
by downscaling model with MSLP, T850 and MSLP/T850 as predictors. 
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Abstract 
Statistical downscaling allows us to bridge the gap between the coarse spatial scales of GCMs 
and the regional and local scales where climate impacts are experienced and analysed. Within 
SEACI, the Nonhomogeneous Hidden Markov Model (NHMM) statistical downscaling 
model will be used in a range of projects investigating the historical relationships between 
regional rainfall and synoptic scale circulation, assessing the ability of GCMs to reproduce 
key atmospheric processes at the synoptic scale, and using GCM projections to produce 
regional precipitation projections suitable for use in impacts assessment (such as hydrological 
models). Confidence in NHMM performance for current and future climates is founded on 
obtaining parsimonious NHMMs through rigorous calibration and assessment, as undertaken 
here. The selected NHMMs are shown to perform well, reproducing key properties of 
observed multi-site daily rainfall, and thus providing a physically realistic linkage between 
atmospheric processes at the synoptic scale and regional rainfall patterns.  
 
Significant research highlights, breakthroughs and snapshots 

• NHMMs were successfully fitted (1986 – 2005) and validated (1958 – 1984) for a 30 
station network for summer (November-March) and winter (April-October). 

• The selected models simulate the full range of natural climate variability experienced 
during the 1958 to 2005 period. 

• The selected models produce physically consistent and plausible weather state (i.e. 
multi-site rainfall occurrence) patterns. 

 
Statement of results, their interpretation, and practical significance against each 
objective 
 
Objective 1: Calibrate Nonhomogeneous Hidden Markov Models (NHMMs) for the south-
east Murray Darling Basin (MDB).  

 
The statistical downscaling technique employed relates multi-site, daily rainfall patterns to 
synoptic-scale atmospheric predictors (Hughes et al. 1999; Charles et al. 1999). The model 
(nonhomogeneous hidden Markov model, NHMM) selects a small set of atmospheric 
predictors that relate to a discrete set of “weather states” associated with particular multi-site 
daily precipitation occurrence patterns (e.g., wet everywhere, wet in the north and dry in the 
south, etc.). The sequence of daily transitions from state to state is a function of the selected 
atmospheric predictors. Characteristics of these states are examined by constructing 
composite plots of their precipitation occurrence patterns and associated atmospheric 
predictor fields.  
 
NHMMs were successfully fitted and validated for a 30 station network, shown in Figure 1 
and Table 1. Fitting was on an approximately half year basis, with summer defined as 
November-March and winter as April-October. This season demarcation was selected based 
on the relationship between atmospheric predictors and multi-site rainfall as determined in the 
precursor Project 1.3.3 ‘Atmospheric Predictor Selection for Statistical Downscaling’.  
 
The fitting period used was 1986 to 2005, with the earlier 1958 to 1984 data reserved for out-
of-sample validation. It was not possible to investigate earlier periods due to the unavailability 
of sufficient quality atmospheric data prior to 1958. The daily rainfall data for the selected 30 
station network is of very high quality for the fitting period, as previously determined in 
Project 1.3.2 ‘Station Networks and Data for Statistical Downscaling’. However, for the 
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earlier validation period data quality degrades for some stations due to missing periods of 
record or an increased incidence of untagged accumulations. This may bias the validation of 
the NHMM performance for this period.  

 
Objective 2: Determine the performance of the selected NHMMs in terms of reproduction of 
key statistics of daily multi-site rainfall occurrence and amounts. 
 
The selected downscaling models produce physically consistent and plausible weather state 
patterns. The summer model has 6 weather states (see Figure 2) and 3 predictors: mean sea 
level pressure (MSLP), 700 hPa dew-point temperature depression (DTd), and East – West 
500 hPa geopotential height (GPH) gradient. The winter model has 5 weather states (see 
Figure 3) and 4 predictors: North – South MSLP gradient, 700 hPa and 850 hPa DTd, and 
North – South 700 hPa GPH gradient. Brief descriptions of these weather states and their 
mean frequencies are presented in Tables 3 and 5, for summer and winter respectively. The 
probabilities of the daily transitions between weather states are presented in Tables 4 and 6, 
for summer and winter respectively.  
 
Figures 5 to 7 (for Summer) and 8 to 10 (for Winter) evaluate the reproduction of mean 
seasonal precipitation probabilities, log-odds ratios (measures the correlation in binary series, 
i.e. daily rainfall occurrence as ‘1’ wet or ‘0’ dry, for all station pairs), and Spearman rank 
correlations for calibration and validation periods. These confirm that the calibrated NHMMs 
can reproduce, in turn, the correct frequency of wet days, inter-site correlations in rainfall 
occurrence, and inter-site correlation in rainfall amounts. For the out-of-sample validation 
period, there is evidence of increased bias however the previously noted degradation in 
observed precipitation quality for this period may mean that the observed statistics are biased.  
 
At-site spell lengths and amounts distributions were also well reproduced for the validation 
period (not shown for reasons of space, available on request). Overall the selected models 
appear to perform well across the full range of natural climate variability experienced during 
the 1958 to 2005 period.  

 
Objective 3: Identifying deficiencies requiring further research and development. 
 
One area of relatively deficient performance is poor reproduction of long dry spells in 
summer for some stations (not shown for reasons of space, available on request). Other 
NHMM parameterisations will be investigated in the subsequent Project 1.3.5 ‘Further 
development of statistical downscaling methodology’ to determine whether these limitations 
can be improved upon.  

 
Summary of methods and modifications (with reasons) 

• A network of 30 high quality rainfall stations was selected, encompassing the majority 
of the catchments of the south-east MDB. This station network is not definitive, as 
future research and client needs can modify the extent of the network. This initial 
calibration will provide a baseline to which any future NHMMs that use different 
(potentially lower quality) rainfall station networks can be compared to.  

• NHMMs have been calibrated for the selected station network for two seasons 
(‘summer’ November to March and ‘winter’ April to October).  

• For each season, a unique NHMM (in terms of number of weather states and 
atmospheric predictor set used) has been selected based on calibration criteria. 
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• The performance of these selected NHMMs has been quantified, by assessing 
reproduction of key statistics of daily multi-site rainfall occurrence and amounts, for 
calibration and validation periods.  

 
Summary of links to other projects 
Project 1.4.3 ‘Comparison of Observed and Reanalyses Downscaled Synoptics and 
Precipitation’ will use the NHMMs selected here to investigate the weather state time-series 
properties and relate these to the time-series of the atmospheric predictors and observed 
seasonal rainfall. The ability to reproduce observed properties will provide confidence in 
using these downscaling models to produce climate change projections in Project 2.1.3 ‘Drive 
Statistical Downscaling Models with GCM Predictor Sets’. Evaluation of the downscaled 
rainfall simulations suitability for use in hydrological models will be a key component of 
these next stage projects. 
 
Publications arising from this project 
None to date. 
 
Acknowledgement 
The NHMM was originally developed by Professor Jim Hughes, University of Washington, 
Seattle, USA. His assistance is gratefully acknowledged. 
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Project Milestone Reporting Table 
 

To be completed prior to commencing the project Completed at each Milestone 
date 

Milestone 
description1 

(brief) 
(up to 33% of 
project 
activity) 

Performance 
indicators2 

(1- 3 dot 
points) 

Completion 
date3 
xx/xx/xxxx 

Budget4 for 
Milestone 
($) (SEACI 
contributio
n) 

Progress5 
(1- 3 dot 
points) 

Recommended 
changes to 
workplan6 
(1- 3 dot 
points) 

1. Develop 

calibration data 

sets 

30 station 

network selected 

Seasons for 

NHMM 

calibration 

selected 

NHMM input 

files created 

1/3/2007 10 Completed None 

2. Calibrate 

NHMMs 

NHMMs 

calibrated 

Occurrence 

NHMMs 

selected 

Amounts models 

calibrated 

1/5/2007 15 Completed None 

3. Assess 

calibrated 

NHMMs 

Occurrence and 

amounts 

statistics 

assessed for 

calibration 

period 

Assessment 

repeated for 

validation period 

Report on final 

model selection 

(4-6 pages) 

30/6/2007 15 Completed. This 

report is the 

report on final 

model selection.  

None 
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Table 1. Stations shown in Figure 1. 
Number BoM No. BoM Name Latitude 

(oS) 
Longitude 
(oE) 

1 49048 BALRANALD (TILLARA)    -34.64 143.05 
2 70014 CANBERRA AIRPORT    -35.3 149.2 
3 70028 YASS (DERRINGULLEN)    -34.74 148.89 
4 70054 COOMA (KIAORA)     -36.2 149.06 
5 72019 HOLBROOK (GLENFALLOCH)    -35.66 147.56 
6 72023 HUME RESERVOIR     -36.1 147.03 
7 72150 WAGGA WAGGA AMO     -35.16 147.46 
8 73007 BURRINJUCK DAM     -35 148.6 
9 73051 MURRINGO (WINDERMERE)    -34.21 148.55 
10 74008 GRONG GRONG (BEREMBED)    -34.86 146.82 
11 74025 BURRUMBUTTOCK (HOLYROOD)   -35.85 146.78 
12 74087 URANA (NOWRANIE)    -35.33 146.03 
13 75012 WAKOOL (CALIMO)     -35.42 144.6 
14 75049 MAUDE (NAP NAP)     -34.45 144.17 
15 75054 CONARGO (PUCKAWIDGEE)    -35.28 145.21 
16 75067 CARRATHOOL (UARDRY)    -34.47 145.3 
17 76044 NYAH      -35.18 143.37 
18 77001 QUAMBATOOK (BARRAPORT NORTH)   -35.98 143.65 
19 80044 PATHO WEST     -36 144.42 
20 80053 TANDARRA     -36.43 144.25 
21 81019 NAGAMBIE (GOULBURN WEIR)   -36.72 145.17 
22 82002 BENALLA (SHADFORTH STREET)   -36.55 145.97 
23 82018 UPLANDS (GIBBO RIVER PARK)   -36.77 147.69 
24 82127 PEECHELBA EAST     -36.14 146.25 
25 83010 EUROBIN      -36.64 146.86 
26 83038 TAWONGA      -36.66 147.13 
27 88011 CAMPBELLTOWN     -37.22 143.96 
28 88042 MALMSBURY RESERVOIR    -37.2 144.37 
29 88060 KINGLAKE WEST (WALLABY CREEK)  -37.45 145.21 
30 88131 NARBETHONG     -37.5 145.68 
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Table 2. Selected atmospheric predictor sets. 

Atmospheric predictor NCEP/NCAR Reanalysis Grids  

(refer to Figure 2) 

Summer  

MSLP  
700

dDT  

East – West  500GPH

 

 

(B2+B3+B4+C2+C3+C4)/6 

(C2+C3+C4+D2+D3+D4)/6 

(C3+C4+D3+D4)-(E3+E4+F3+F4)/4 

 

Winter  

North – South MSLP  
700

dDT  
850

dDT  

North–South  700GPH

 

 

(A5+B5+C5+D5)-( A4+B4+C4+D4)/4 

(B2+B3+B4+C2+C3+C4+D2+D3+D4)/9 

(A3+A4+B3+B4+C3+C4)/6 

(A5+B5+C5)-( A4+B4+C4)/4 

 

 
  
Table 3. Summary of Summer weather state patterns 
State 
No. %Freq. 

Description 

1 58 Rainfall: dry everywhere 
Synoptics: high pressure centred over SE Australia; warm, dry continental 
airflow 
 

2 5 Rainfall: wet only in the most southerly stations 
Synoptics: high moving into the Australian Bight; southerly moist maritime 
airflow 
 

3 6 Rainfall: wet everywhere 
Synoptics: low trough over SE Australia; southerly moist maritime airflow 
 

4 15 Rainfall: wet in the northeast  
Synoptics: weak low trough over SE Australia. 
 

5 11 Rainfall: moderately wet everywhere 
Synoptics: low trough over SE Australia; southerly moist maritime airflow 
 

6 5 Rainfall: north (dry) to south (wet) rainfall gradient 
Synoptics: moderate low trough over SE Australia; southerly moist maritime 
airflow 
 

 

  29



SEACI End of Project Reports June 2007 
 

Table 4. Weather state TPM# for Summer NHMM. 
 1 2 3 4 5 6 
1 0.76 0.04 0.02 0.09 0.04 0.04 
2 0.48 0.22 0.03 0.06 0.11 0.10 
3 0.15 0.03 0.25 0.20 0.33 0.04 
4 0.46 0.02 0.04 0.34 0.11 0.04 
5 0.26 0.04 0.16 0.24 0.26 0.05 
6 0.20 0.06 0.16 0.11 0.24 0.22 
# Transition Probability Matrix. * e.g., 4% probability of being state 2 today if previous day was state 1. 
 
Table 5. Summary of Winter weather state patterns 
State 
No. %Freq. 

Description 

1 48 Rainfall: dry everywhere 
Synoptics: high pressure centred over region; dry continental air 
 

2 12 Rainfall: wet everywhere 
Synoptics: low pressure trough; moist southerly maritime airflow 
 

3 10 Rainfall: moderately wet everywhere 
Synoptics: weak low pressure trough; moist system over region 
 

4 18 Rainfall: wet in the south predominantly  
Synoptics: weak low pressure trough; moist southerly maritime airflow 
 

5 12 Rainfall: wet everywhere, moderate in northwest 
Synoptics: low pressure trough further east than in State 2; moist southerly 
maritime airflow 
 

 
Table 6. Weather state TPM# for Winter NHMM. 
 1 2 3 4 5 
1 0.72 0.04 0.07 0.13 0.04 
2 0.09 0.27 0.13 0.21 0.30 
3 0.30 0.22 0.31 0.11 0.07 
4 0.36 0.12 0.06 0.30 0.15 
5 0.22 0.17 0.05 0.29 0.27 
# Transition Probability Matrix. * e.g., 22% probability of being state 2 today if previous day was state 3. 
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Figure 1. Location of 30 stations in Table 1. 

 
 

  
Figure 2. Reanalysis atmospheric data grid, showing coordinates (A to F, 1 to 5) used in Table 2. (outline of 

Murrumbidgee shown for reference). 
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Figure 3: Weather states of the summer NHMM: precipitation occurrence probabilities, diameters of circles 
proportional to probability of a wet-day with the largest circle 1.0; composite MSLP (hPa); 700 hPa DTd (K); 

500 hPa GPH (m). 
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Figure 4: Weather states of the winter NHMM: precipitation occurrence probabilities, diameters of circles 

proportional to probability of a wet-day with the largest circle 1.0; composite MSLP (hPa); 700 hPa DTd (K); 
850 hPa DTd (K); 700 hPa GPH (m). 
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Figure 5: Summer NHMM precipitation probabilities (a) fitting period verification and (b) out-of-sample 

validation. 
 

 
Figure 6: Summer NHMM log-odds ratios (a) fitting period verification and (b) out-of-sample validation. 

 

 
Figure 7: Summer NHMM amounts Spearman rank correlation (a) fitting period verification and (b) out-of-

sample validation. 
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Figure 8: Winter NHMM precipitation probabilities (a) fitting period verification and (b) out-of-sample 

validation. 
 

 
Figure 9: Winter NHMM log-odds ratios (a) fitting period verification and (b) out-of-sample validation. 

 

 
Figure 10: Winter NHMM amounts Spearman rank correlation (a) fitting period verification and (b) out-of-

sample validation. 
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Abstract 
Reanalysis datasets are global atmospheric datasets created by assimilating observed weather 
data using state-of-the-art coupled GCMs. There are two datasets commonly used, one created 
by the National Centers of Environmental Prediction (NCEP) and the National Center for 
Atmospheric Research (NCAR) in the USA termed ‘NCEP/NCAR Reanalysis’ (Kalnay et al. 
1996) and one created by the European Centre for Medium Range Weather Forecasting in 
Europe termed ‘ERA40’ (Uppala et al. 2005). There has been significant international 
research effort in quality controlling, assessing and comparing these datasets. The 
NCEP/NCAR Reanalysis dataset is used for statistical downscaling model calibration in 
SEACI Project 1.3.4. Here, the ERA40 fields over the SEACI region are extracted for the 
variables required to produce the predictor series used in the statistical downscaling models. 
Comparison of the spatial and temporal properties of the NCEP/NCAR and ERA40 predictor 
series shows a high degree of agreement. Reanalyses predictors thus provide a baseline for 
atmospheric conditions over the SEACI region that will be compared to predictors from 
CSIRO climate model historical runs in subsequent SEACI Projects.  
 
Significant research highlights, breakthroughs and snapshots 
Overall, it is evident that the two Reanalyses produce predictor series with a high degree of 
similarity. As well as giving confidence in the use of both these datasets to understand 
historical SEACI region atmospheric-rainfall linkages, this also provides a baseline to which 
historically forced climate model predictor series will be evaluated against.  
 
The extracted ERA40 fields have been used to produce NHMM input predictor sets for the 
calibrated NHMMs selected in Project 1.3.4. Project 1.4.3 ‘Comparison of Observed and 
Reanalyses Downscaled Synoptics and Precipitation’ will statistically downscale these 
ERA40 predictor series and compare downscaled weather state and rainfall to those obtained 
by downscaling the NCEP/NCAR reanalysis predictor series previously extracted.  
 
Statement of results, their interpretation, and practical significance against each 
objective 
 
Objective 1: Extract atmospheric predictors required by statistical downscaling models from 
available Reanalyses archives (e.g., ERA40). 
 
ERA40 fields for the 6 by 5 grid over the SEACI region (see Project 1.3.4 Report Figure 2) 
were extracted for 1958 to 2001 (44 years). The fields investigated where selected based on 
their use in statistical downscaling model calibration in Project 1.3.4. 

 
Objective 2: Compare NCEP/NCAR and ERA40 predictors used by statistical 
downscaling models. 
 
The distributions and monthly anomalies of the daily NCEP/NCAR and ERA40 Reanalyses 
fields were compared. Odd numbered Figures 1 to 11 show the monthly ERA40 anomalies 
(relative to NCEP/NCAR) of the daily atmospheric predictors used. These show monthly 
differences between the ERA40 and NCEP/NCAR Reanalyses across the region. They are 
used here for qualitative comparison, to see where the two reanalyses products deviate. 
Correspondingly, the quantile-quantile plots comparing the distributions of the daily predictor 
series are shown in even numbered Figures 2 to 12. These plot the percentiles of the 
cumulative distributions of the two series against each other. A plot with all points on the one-
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to-one line indicates that the two datasets have the same distribution. A ‘U’ shaped plot means 
that one dataset’s distribution is skewed relative to the other, whereas a ‘S’ shape means that 
one dataset’s distribution has longer tails than the other. The sea level pressure (SLP) and 
geopotential height (GPH) fields are very similar between the two reanalysis datasets. The 
moisture related variables, dew-point temperature depression (DTd) at the 700 and 850 hPa 
levels, are also similar with the exception that higher values (indicating drier air) are not as 
frequent in the ERA40 dataset. It is not possible to say which reanalysis dataset, 
NCEP/NCAR or ERA40, is the more realistic. It is more a case of assessing the effect of these 
deviations on statistically downscaled rainfall series, which will be undertaken in Project 
1.4.3.  
 
Summary of methods and modifications (with reasons) 

• Codes for extracting ERA40 atmospheric fields for the variables (predictors) required 
for statistical downscaling over south-eastern Australia been be developed and tested.  

• The extracted ERA40 fields have been compared to the NCEP/NCAR fields. A spatial 
and temporal multi-variate intercomparison has been undertaken for the predictors 
over south-eastern Australia that shows good agreement between NCEP/NCAR and 
ERA40. 

 
Summary of links to other projects 
The extraction and assessment of ERA40 statistical downscaling predictors undertaken in this 
project is a precursor to Project 1.4.3 Comparison of Observed and Reanalyses Downscaled 
Synoptics and Precipitation where the NCEP/NCAR and ERA40 downscaled weather state 
series will be assessed and compared to observed rainfall trends. Also, the results of this 
Project will be used in assessing GCM performance in the subsequent Project 1.5.2 
‘Extraction of Predictors from Coupled Climate Model Historical Runs’. 
 
Publications arising from this project 
None to date. 
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Project Milestone Reporting Table 

 

To be completed prior to commencing the project Completed at each Milestone 
date 

Milestone 
description1 

(brief) 
(up to 33% of 
project 
activity) 

Performance 
indicators2 

(1- 3 dot 
points) 

Completion 
date3 
xx/xx/xxxx 

Budget4 for 
Milestone 
($) (SEACI 
contributio
n) 

Progress5 
(1- 3 dot 
points) 

Recommended 
changes to 
workplan6 
(1- 3 dot 
points) 

1. Develop and 
test codes to 
extract required 
predictors from 
ERA40 

Codes working. 

Fields extracted 
over south-east 
Australian 
region. 

1/5/2007 10K Completed. None. 

2. Compare 

ERA40 

extracted fields 

to previously 

extracted 

NCEP/NCAR 

fields 

Fields compared. 

Report on 

comparison (3-5 

pages).  

30/6/2007 5 Completed. This 

report is the 

report on 

comparison of 

NNR and 

ERA40 predictor 

fields.  

None. 

3. Extract 

ERA40 fields 

for south-east 

Australian 

region in format 

required for 

NHMM 

NHMM input 

files created. 

30/6/2007 5 Completed. None. 
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Figure 1. Monthly anomalies of ERA40 SLP (hPa), relative to NCEP/NCAR, for the 6 by 5 

grid over south east Australia. 
 

 
Figure 2. Distribution of daily NCEP/NCAR versus ERA40 SLP (hPa) for the 6 by 5 grid 

over south east Australia. 
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Figure 3. Monthly anomalies of ERA40 North-South SLP gradient (hPa), relative to 

NCEP/NCAR, for the 6 by 5 grid over south east Australia. 
 

 
Figure 4. Distribution of daily NCEP/NCAR versus ERA40 North-South SLP gradient (hPa) 

for the 6 by 5 grid over south east Australia. 
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Figure 5. Monthly anomalies of ERA40 DTd700 (oC), relative to NCEP/NCAR, for the 6 by 5 

grid over south east Australia. 
 

 
Figure 6. Distribution of daily NCEP/NCAR versus ERA40 DTd700 (oC) for the 6 by 5 grid 

over south east Australia. 
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Figure 7. Monthly anomalies of ERA40 DTd850 (oC), relative to NCEP/NCAR, for the 6 by 5 

grid over south east Australia. 
 

 
Figure 8. Distribution of daily NCEP/NCAR versus ERA40 DTd850 (oC) for the 6 by 5 grid 

over south east Australia. 
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Figure 9. Monthly anomalies of ERA40 East-West GPH500 gradient (m), relative to 

NCEP/NCAR, for the 6 by 5 grid over south east Australia. 
 

 
Figure 10. Distribution of daily NCEP/NCAR versus ERA40 East-West GPH500 gradient 

(m) for the 6 by 5 grid over south east Australia. 
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Figure 11. Monthly anomalies of ERA40 North-South GPH700 gradient (m), relative to 

NCEP/NCAR, for the 6 by 5 grid over south east Australia. 
 

 
Figure 12. Distribution of daily NCEP/NCAR versus ERA40 North-South GPH700 gradient 

(m) for the 6 by 5 grid over south east Australia. 
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Abstract 
In response to stakeholder demands for both less uncertain regional climate change 
predictions and probabilistic information, new methods have been developed for 
synthesizing the results from numerous climate model experiments. This report 
describes a new method for generating probability density functions for scaled 
warming and net warming for points over south-east Australia. The method allows for 
weighting of different model results and has been demonstrated using the results from 
four models. In addition, a method for weighting different model results has also been 
developed and this is demonstrated using the results for rainfall for the Murray 
Darling Basin region from 22 models. Project 2.2.3b will demonstrate the results of 
the application of these new methods to the key regions. 
 
Significant research highlights, breakthroughs and snapshots 

• A trial set of probability distributions for DJF temperature change at a grid 
point in the vicinity of the MDB indicates a mean net warming of about 
+4.0oC at 2100.  

 
• Results also indicate that severe weighting, based on model performance 

criteria, can result in a significantly different mean response for MDB rainfall 
than that based on equal weighting of all model results. Preliminary results 
indicate the mean response is much drier. 

 
• There is now an increasing recognition amongst the research community of 

the importance of careful assessment of climate model simulations before their 
results are used in impacts studies. This was refelected in feedback from a 
Climate and Hydrology Symposium recently held in Canberra where some of 
this work was reported. 

 
Statement of results, their interpretation, and practical significance against each 
objective 

Objective 1: To develop new methods for projections for the MDB and the 
CMA regions of Victoria using a multi-model weighted approach.  

The technique for developing probability distributions is sufficiently general to be 
extended to a larger set of model results and other variables. It will be used to produce 
a new set of Australia-wide set of projections based on the IPCC Fourth Assessment 
Report model results. 

 
Objective 2:  

To provide information in response to stakeholder feedback which indicate a 
preference for probabilities. 

The results indicate that estimates for the 5% and 95% confidence thresholds for DJF 
arming at 2100 are about +2.8 oC and +3.2 oC respectively.  
They also indicate a potentially significant shift in derived probabilities for rainfall 
projections. These appear to be much less uncertain than previously shown. This will 
be further examined as part of Project 2.3.b. 
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1. Background 
 
Projections at regional scales tend to be accompanied by relatively large uncertainties 
due to differences in model formulations, resolution, and simulated responses 
combined with differences in possible future emission scenarios (CSIRO, 2006; 
Whetton et al, 2005). Model developments, including improved physical 
parameterizations and the use of higher spatial resolutions, plus more simulations (i.e. 
the creation of multi-model ensembles) can potentially improve the reliability of 
regional scale results but it is apparent they will always be accompanied by some 
level of uncertainty. 
 
Recently,  regional rainfall projections produced by Whetton et al. (2005), CSIRO 
(2006) and Suppiah et al. (2007) used methods similar to those described Giorgi and 
Mearns (2002) in which a range of model results are sorted according to how well 
they represent features of the present day climate, but the projections simply 
presented as ranges of (equally likely) outcomes. Even so, the ranges remained 
relatively wide, particularly for south-eastern Australia (SEA), and there was not a 
great deal of difference between these and the previous projections based on fewer 
models and less stringent criteria (CSIRO, 2001). Stakeholders would like to see 
uncertainty minimized if possible and/or to have it quantified in a more useful fashion 
(i.e. generally in the form of probabilities or, more specifically, probability density 
functions (PDFs)). This is evident from key messages which emerged from a recent 
survey of focus groups (“2007 climate change projections for Australia: stakeholder 
feedback”): 

• Generally, stakeholders are interested in the best case scenario, the worst case 
scenario, the most likely scenario and business as usual 

• Likelihood is an important factor, so including probabilities is essential 
• Stakeholders want to be able to compare 2007 projections with 2001 

projections and with observations 
• Stakeholders want regional information 

 
For the Third Assessment Report (IPCC, 2001) there were 15 sets of model results 
available for preparing projections but 23 sets of results were available for the Fourth 
Assessment Report (AR4) (IPCC, 2007).  
 
In this report we describe and demonstrate a method for generating probabilistic 
information. 
This approach forms the basis of the new CSIRO/BoM climate change projections to 
be released later this year (Watterson, 2007). In addition we also describe and 
demonstrate a method for weighting the various model results. Appendices 1 and 2 
contain further details of these methods. 
 
2. Generating probabilistic climate change projections 
 
The main aim is to provide a confidence weighting throughout the range of change 
considered plausible, basing this on the data from simulations by a number of current 
climate models. For most quantities this means, in effect, a ‘probability density 
function’ (PDF) for the change variable. Several recent studies have provided such 
results based on various approaches and assumptions, often of considerable 
complexity. A new, relatively simple method, has been applied to the results from 

  48



  

four models to produce surface warming projections for a point over south east 
Australia.  
 
A number of methods for generating a PDF for scaled warming are illustrated in Fig. 
1.  Allowing for statistical uncertainty, the true value for each model (from multiple 
runs) is assumed to be from a simple normal PDF centred on the sample value. The 
uncertainty is determined from that appropriate to differences of two 30-y means, 
assuming these follow from the interannual standard deviation (SD) field, then scaled. 
The weighted sum of the four individual distributions is the ‘Sum’ PDF in Fig 1. 
(Weights used here are described in Appendix 1.) The normal distribution fitted to 
this Sum curve is also shown (as Normal). The beta distribution fit to the Sum curve 
is also shown. The ‘Uniform’ distribution is between the smallest and largest of the 
four change ratios. The final curve ‘Narrow’ is a normal fit to Sum, but with the SD 
reduced by the square root of the ‘effective number of models’. This distribution 
would be appropriate if one considered the various model results to be a sample from 
a normal distribution centred on the ‘true’ change.  
 

 
 
Figure. 1. Probability distribution functions for the warming ratio (local to global 
average warming) at a point over southeast Australia.  
 
The warming ratio needs to be combined with the actual global mean warming (with 
its associated uncertainty) to produce a net change. The assumption is made that the 
scaled local change and the global warming are considered two independent variables. 
The joint distribution function is simply the product of the two PDFs. Statistics of the 
net local change can be determined numerically from this joint function. 
 
For the A1B scenario in 2100, a value global average warming of around 3 K (or °C) 
is suggested by  models. If, for simplicity it is assumed to be exactly 3K (i.e. SD=0.0 
K), then the joint PDF for the local warming has the same shape as the scaled 
warming PDF. If the global warming is uncertain with SD=1 K, then the net warming 
PDFs for the central point are shown in Figure 2. The differences are surprisingly 
small. The Uniform and Narrow cases give a slightly narrower net warming.  
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Figure 2. Probability distribution function for net warming at the point calculated 
from the five warming ratio PDFs and assuming the SD for global warming is 1K. 

 
An intermediate case (SD=0.2 K) produces the net warming curves for the central 
point shown in Fig. 3. The PDFs more closely reflect the differences in Fig. 1. 
 

 
 
Figure 3. Probability distribution function for net warming at the point calculated 
from the five warming ratio PDFs and assuming the SD for global warming is 0.2 K. 
 
3. Selecting climate change results based on model performance 
 
Here we describe an assessment of models rainfall results for the Murray Darling 
Basin (MDB) region. This technique can be used to restrict the number of models 
contributing to the calculated PDFs described above. 
 
23 AR4 model results (based on the A1B emissions scenario) were assessed. Several 
approaches were taken to determine the best models performing models with regard to 
Australia wide annual and seasonal rainfall. A set of best model results were selected 
as those with above median spatial correlation coefficients and those with below 
median root mean square errors. In addition to assessing the seasonal mean values, the 
models were also assessed in terms of their ability to reproduce the seasonal cycle of 
rainfall at several key locations, including the MDB. Finally, the results from the 
coarse resolution models were excluded since previous studies have highlighted the 
importance of horizontal resolution and the representation of topography as crucial to 
model rainfall. 
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The details of the full assessment are not shown here but, it is apparent that some 
simulations are clearly inferior, failing to adequately reproduce either the broad 
spatial patterns or the quantitative amounts. Of the 22 models, 7 were assessed to 
provide the best simulations of present day rainfall: 
(GFDL-Cm2.0, ECHAM5, GISS-AOM, UKMO-HADcm3, MIROC3.2 (hires), 
GFDL-CM2.1 and UKMO-HADgem1).  
 
Annual and seasonal percentage changes in rainfall for the period 2071-2100 relative 
to 1971-2000 based on the results using the A1B emissions scenarios (a mid-range 
scenario) were calculated for each model. These values are shown in Table 1. 
 
Table 1. List of 22 model results for the projected percentage change in rainfall (2071 
to 2100) vs (1971-2000). The top 7 selected models are highlighted.  

 Percentage change in rainfall 
 Model  Annual  Seasonal 

    DJF MAM JJA SON 
 CSIRO-Mk3  -11.322 4.466 -15.344 -21.270 -30.431
 GFDL-CM2.0  -12.410 28.991 3.562 -24.669 -34.333
 MRI-CGCM2.3.2  -10.466 -23.397 -21.245 -23.397 -5.572
 ECHAM5/MPI  -13.484 -5.725 15.261 -31.692 -32.450
 GISS-ER  5.210 20.388 1.922 -17.495 -1.846
 FGOALS-G1.0  -4.575 -3.917 -10.238 -5.016 -1.659
 MIROC3.2(medres)  20.688 48.390 41.733 -11.238 -0.223
 ECHO-G  22.783 59.088 22.942 -16.677 1.451
 CCSM3  7.205 12.315 7.876 -10.856 15.790
 GISS-AOM  -20.329 -28.843 19.923 -26.280 -29.721
 UKMO-Hadcm3  -14.435 -7.082 6.650 -10.674 -40.274
 GISS-EH  18.648 23.904 19.404 13.046 13.502
 INM-cm3.0  -6.851 7.147 3.022 -19.065 -17.389
 MIROC3.2(hires)  -6.016 5.458 6.496 -13.575 -25.254
 CGCM3.1(t47)  11.343 6.238 14.308 15.988 8.202
 GFDL2.1  -19.963 -1.245 -23.409 -46.104 -12.085
 CGCM3.1(t63)  18.705 34.496 14.570 11.931 11.583
 BCCR-BCM2  10.103 12.732 37.770 -12.632 5.467
 CNRM-CM3  -7.372 7.360 18.003 -36.970 -35.549
 IPSL-CM4  -33.637 -19.862 -31.908 -34.185 -52.639
 UKMO-HADGEM1  -18.704 8.374 -28.881 -35.057 -30.272
 PCM  -5.919 -7.968 -9.864 11.399 -16.497

 
22-model average -3.2 8.2 4.2 -16 -14 

22-model range -33 to +23 -24 to +59 -31 to +42 
-46 to 
+16 

-53 to 
+16 

Best 7 average -15 -0.01 -0.06 -27 -29 
Best 7 range -20 to -6 -29 to +8 -29 to +20 -46 to -11 -40 to -12 

 
The important result from this assessment is that the average changes from the best 7 
models are more negative than the 22-model averages. Furthermore, this is not purely 
an artifact of the different sample sizes. T-statistics indicate that the best-7 sample 
results for rainfall and changes are significantly different to those of the remaining 15 
models. For example, the chances that the 7-model average percentage change in 
annual rainfall (-15%) comes from the same population as the remaining 15 models is 
close to .001. In other words, the 7-best models form a distinctly different sub-set to 

  51



  

the other models. This is what we would expect if a poor simulation of present day 
climate is associated with an unreliable prediction of future climate. 
 
These results need to be confirmed and recast into probabilities but it is apparent that 
the application of this new method paints a somewhat more pessimistic outlook for 
rainfall over the MDB into the future than previously indicated. We expect that it will 
be possible (Project 2.2.3b) to refine the projections for this region to better satisfy 
stakeholder expectations. 
 
4. Summary 
 

• Five different types of scaled warming PDF have been considered. Support for 
using each of these could be argued, although the uniform distribution, with no 
weighting of models is clearly outdated. The three other methods of fitting the 
spread of individual model results produce rather similar net warmings. 

 
• A careful analysis of the performance of IPCC climate models at reproducing 

features of Australian rainfall has been undertaken. The results suggest that 7 
(of the 23 assessed) should be accorded relatively high weightings when 
preparing PDFs. 

 
The project objectives have been met and these findings will be used to generate 
the probabilistic information as described under Project 2.2.3b 
 

Summary of methods and modifications (with reasons) 
No modifications 
 
Summary of links to other projects 
The techniques that have been developed can now be applied to results for 
temperature and rainfall for the MDB and CMA regions as deliverables for Project 
2.2.3b. 
 
Recommendations for changes to work plan from your original table 
Nil 
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Project Milestone Reporting Table 

Develop 

improved 

regional 

projection 

techniques 

Report 

produced. 

30/6/07 70 Techniques for 

deriving probability 

functions at grid points 

over the regions of 

interest have been 

developed. 

 

The effect of model 

weighting on the mean 

response has been 

demonstrated to be 

significant and an 

important component 

in deriving the 

probability functions. 

None 
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Appendix 1 
Probabilistic Climate Change Projections for South East Australia: 
Surface Warming Examples 
 
Ian G. Watterson 
 
 
1. Introduction 
 
We wish to provide improved methods of projecting climate change for Australia, 
building on the previous Climate Impact Group (CIG) approach described by Whetton 
et al. (2005). The main aim is to provide a confidence weighting throughout the range 
of change considered plausible, basing this on the data from simulations by a number 
of current climate models. For most quantities this means, in effect, a ‘probability 
density function’ (PDF) for the change variable. Several recent studies have provided 
such results based on various approaches and assumptions, often of considerable 
complexity. A new, relatively simple method, extending that of the CIG, was outlined 
in my previous note (Watterson, 2006). This is applied to a more realistic case here, to 
produce surface warming projections over south east Australia (specifically, the 
domain depicted in Figure 1). The models used and a simple estimation of weighting 
of them is presented in section 2. (I am able to make use of results prepared for both 
the SEACI and ACCSP modelling projects here.) Patterns of change (scaled by global 
mean warming) are considered in Section 3, and probabilistic scaled warming is 
presented, determined using five approaches. The distributions for net warming under 
three idealised global mean warming distributions are calculated and presented in 
Section 4. 
 
2. GCM simulations of climate and climate change for South East Australia  
 
In support of the 2007 Fourth Assessment Report on climate change by the IPCC, a 
major climate simulation project has been organised by the World Climate Research 
Program. Some 17 modelling centres from 9 countries have performed simulations of 
the period 1870-2100 and beyond, using their current climate models. The 
experiments include prescribed greenhouse gas (GHG) and aerosol changes based on 
observations to 2000, then following one of three SRES scenarios to 2100, with 
constant forcing thereafter. Data from some 22 models are currently being considered 
for the new CSIRO projections. This report considers only four individual models, but 
briefly compares these to the ‘multi-model mean’ (courtesy Julie Arblaster). The 
models are listed in Table 1. Preliminary data from the new version of CSIRO’s 
current model ‘Mk3.5’ are included here. Results from HadGem and GFDL are 
courtesy of Janice Bathols and Ian Macadam. 
 
Averages for both the full year and the four seasons over the period 1961-1990 have 
been formed for a number of quantities, including surface air temperature, 
precipitation and sea-level pressure. These are presented in my upcoming report for 
SEACI. A simple skill assessment of these quantities is shown in Fig. 2. All four 
models simulate both the area mean and local values quite well, in comparison to the 
0.25° gridded observational data for temperature and precipitation from the Bureau of 
Meteorology. Data from ERA reanalyses are used as the observational fields for SLP. 
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Interestingly, the multi-model mean compares slightly better than the individual 
models, except that HadGem just beats it in two quantities. The ERA rainfall field 
suffers from well-known problems and scores no better than the models. Some bias 
may exist from using the averages of daily max and min temperatures as the 
observational field.  
 
Consideration of an appropriate weighting of models is not the topic of this note. 
Ideally, this could be based on the (hypothetical) ability of models to simulate the 
local climate change in a particular field, scaled (or normalised) by the global mean 
warming. For illustration, we consider here the mean of the seasonal averages in Fig. 
2, averaged over the three quantities, as a weight. Dividing by the sum of the four 
results gives the numbers in Table 1. This rather uniform set of weights will be used 
for all grid points in the example presented shortly. 
 
Table 1. Models considered in the study, the weight assigned to them and the global 
mean warming to 2100 under A1B. 
 
Model Name Origin Weight Warming (K) 
Mark 3.0 CSIRO Atmospheric Research  0.234 2.21  
Mark 3.5 CSIRO Atmospheric Research 0.239 3.43 
HadGem UK Meteorological Office 0.273 3.53 
GFDL 2.1 Geophys. Fluid. Dyn. Lab., USA 0.254 2.76 
MMM Multi-Model Mean   2.89 
 
In the multi-model means, the ‘Murray Darling Basin’ regional annual mean change 
in temperature divided by the global mean is between 1.105 and 1.158 for all SRES 
scenarios and time periods. Thus, there appears to be little systematic bias in using 
scaled patterns over the region (see also Watterson, 2005).  
 
Changes from 1976 to 2100 have been determined by linear interpolation between the 
1961-90 and 2071-2100 averages. Global mean warmings for this span under the A1B 
scenario from the models are given in Table 1. (Note that there is no account of 
control model drift in these values, which would boost the Mk3.0 result to one close 
to the MMM result.) Maps of the scaled change of temperature for summer (DJF), 
interpolated to a common 1° grid, are shown in Fig. 1.  
 
The individual model results are determined from land points only (1a to 1d). As 
described by Watterson et al. (2006) simulations at 0.5° by CCAM show that a sharp 
drop in warming occurs at coasts, on going from land to ocean. It would seem wise to 
avoid linear interpolation between land and ocean points as a means of producing 
values near the real coastline. To assist in producing interpolated values nearer the 
coast, the model fields are first interpolated to a double grid, using extrapolation to the 
edges of coastal land squares. The final 1° grid fields are plotted using cell colouring. 
In fact, the HadGem and (apparently) GFDL models allow squares with fractional 
surface types. The relatively low values on points that extend beyond the true coast 
are a result of this. Averaging over the four models (with weights) avoids these values 
if points with less than four model results are omitted (compare the 1e and 1f maps). 
A weighted average of results simply interpolated from the full grid is in 1g. The 
difference over land is rather small in this case, due to the relatively high resolution of 
the models (2° or better). The simple average over all 22 models, 1h, produces less 
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abrupt land-sea contrast, partly due to differing and often coarser model grids and 
coastlines. 
 
3. Distributions for scaled change 
 
In the previous note, a number of methods for generating a PDF for scaled change of 
a certain quantity at a single point were described. These are illustrated in Fig. 3, 
using data for warming at the central point of the map, 142°E and 31°S. Allowing for 
statistical uncertainty, the true value for each model (from multiple runs) is assumed 
to be from a simple normal PDF centred on the sample value. The uncertainty is 
determined from that appropriate to differences of two 30-y means, assuming these 
follow from the interannual standard deviation field, then scaled. The available SD 
field from Mk3.0 is used for all models here, with the result scaled by 3K. The four 
sample change ratios here are 1.23, 1.42, 1.02 and 1.55. The common uncertainty SD 
is 0.11. The weighted sum of the four individual distributions is the ‘Sum’ PDF in Fig 
1. The normal distribution fitted to this Sum curve is also shown (as Normal). The 
range of ratio values allowed here extends from the point where the corresponding 
cumulative distribution (CDF) is 0.001 to the point where it is 0.999. 1000 values are 
used to provide close representation of all the curves. These will differ for each grid 
point –there being no need for them to be common here. 
 
The beta distribution fit to the Sum curve is also shown. Here the end points (two of 
the four parameters) give the 0.01 and 0.99 values of the CDF of Sum. The steep sides 
of Sum here lead to sharply dropping sides of Beta. The Uniform distribution is 
between the smallest and largest of the four change ratios. The choice of second 
smallest and largest (which would be unwise for four values) would match the 
original CIG approach.  
 
The final curve ‘Narrow’ is a normal fit to Sum, but with the SD reduced by the 
square root of the ‘effective N’. This is the number of models, with allowance for 
uneven weighting, being the inverse of the sum of the squared weights. This 
distribution would be appropriate if one considered the various model results to be a 
sample from a normal distribution centred on the ‘true’ change. It would represent a 
plausible distribution for the ‘true’ value, whose uncertainty will be smaller the more 
models are used, as in standard statistical theory. 
 
A range of statistics from each of these distributions can be determined. The means 
match that from the original model results -except in the Uniform case. The SDs vary 
somewhat, being smallest for Narrow, of course. Percentiles can be readily 
determined from the CDFs.  
 
Applying the methods to every grid point with four model (land) values produces a 
map of means that matches 1f (even Uniform is very close). Plotted in Fig. 4 are the 
10, 50 and 90 percentiles from all five cases. As anticipated from Fig. 3 the 10 to 90 
range is usually smaller for Uniform and Narrow than for the other three. 
 
4. Net warming for 2100 
 
As in the CIG method, the patterns of scaled warming need to be combined with a 
global mean warming distribution to produce a net change. As described in the 

  57



  

previous note, the assumption is made that the scaled local change ‘x’ and the global 
warming ‘T’ are considered two independent variables. The joint distribution function 
is simply the product of the two PDFs. Statistics of the net local change can be 
determined numerically from this joint function. 
 
Consider first the trivial case, where one proposes that the global warming has 
reached a single specific amount. For the A1B scenario in 2100, a value around 3 K is 
suggested by the models (Table 1). Suppose for simplicity it is exactly 3K. Then the 
joint PDF for the local warming is only trivially different from the scaled warming 
PDF, and all the statistics correspond to those from section 3, with a factor of 3 K. For 
instance, the maps in Fig. 4 apply to the net case, but with the scale amplified to range 
from 1.2 K to 6 K. 
 
An idealised PDF that better reflects the uncertainty in global warming in this case, 
which I used previously, is illustrated in Fig. 5 –the SD=1K case. It is necessary to 
discretise this normal distribution, and 100 T points seem adequate. Now if the local 
warming ratio is a single value, say 1, the joint distribution is again simple. The net 
warming distribution is the same of the global result in Fig. 5. 
 
For the more general case additional calculations are needed. Two methods were used 
previously. One is a straight forward evaluation of the joint function at each x and T 
step. This gives 100000 values of probability, each corresponding to a net warming P 
simply given by xT. Ordering these by P allows a simple conversion to a CDF as a 
function of P. The second method makes use of the simple form for P, and the 
separate nature of the joint function. This appears to be computationally more 
efficient by a factor of about 10.  
 
The net warming PDFs for the central point, determined for the SD=1 global warming 
case and each scaled case, are shown in Fig. 6. The differences are surprisingly small. 
The Uniform and Narrow cases give a slightly narrower net warming. Performing the 
calculation at every grid point leads to the maps shown in Fig. 7. Again, there is very 
little difference across the five for the 10, 50 and 90 percentiles shown. 
 
The similarity across the five cases is due to the scaled warming PDFs being all 
relatively narrow, in comparison with the global warming one. A case intermediate 
between the SD=1 case and the single T case above is for the SD = 0.2 curve shown 
in Fig. 5. This produces the net warming curves for the central point shown in Fig. 8. 
The PDFs more closely reflect the differences in Fig. 3. 
 
5. Summary 
 
This note applies the method previously described for generating PDFs for scaled 
warming and net warming to points over SE Australia. The range of possible results at 
each point is evident from the maps of 10 and 90 percentile statistics that are 
generated. The choice of the four models and their weighting used here is only for 
example purposes.  
 
As previously, five different types of scaled warming PDF are considered. Support for 
using each of these could be argued, although the uniform distribution, with no 
weighting of models is clearly outdated. The three other methods of fitting the spread 
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of individual model results produce rather similar net warmings, in practice. The Beta 
case has the advantage of allowing a non-zero skewness and a finite range using only 
four parameters. Given the popularity of Bayesian methods, which (as I understand it) 
lead to narrowing ranges as the number of models increases, the Narrow case should 
also be considered. Fortunately, evaluation of all five cases, even for multiple T 
scenarios, seems quite feasible. Application of the method to a larger set of models 
and other variables is recommended.  
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Fig. 1. Change in mean surface air temperature over SEA land divided by global 
annual mean change for DJF, between years 1976 and 2100, under the A1B scenario, 
from (a) Mk3.0, (b) Mk3.5, (c) HadGEM, (d) GFDL2.1, (e) weighted mean of one to 
four models, (f) weighted mean of all four models, (g) weighted mean of four models 
from land and sea values, and (h) AR4 multi-model mean. 
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Fig. 2 Histogram representing skill of four models and the MMM in reproducing 
observational climatological means using data from SEA land for quantities surface 
air temperature (Ta), precipitation (P) and sea-level pressure (SLP). Bars up from 0 
are the M score, bars down from 1 are the M score representing the mean bias over 
SEA. Both are averaged over the DJF and JJA results. A + or – symbol is shown 
when the mean bias is of the same sign in both seasons. An additional observational 
result from ERA40 (1958-2001) is also considered. For SLP, the M score for ERA is 
unity, as ERA is used as the observed. All data were interpolated to the common 
BOM grid, and land points in the plotted domain used. 
 
 

 
 
Fig. 3. Probability distribution function for the warming ratio at point 142°E, 31°S 
calculated from the four models, using five methods, as in key. 
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Fig. 4. Maps of percentiles of the warming ratio from all distributions (top to bottom) 
Sum, Normal, Beta, Uniform, and Narrow: Left column 10%, Middle column 50% 
and right column 90%. 
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Fig. 5. Idealised distribution of global mean warming, based on the normal 
distribution with 3 K and SD 1 K or 0.2 K. 
 
 
 

  
Fig. 6. Probability distribution function for net warming at point 142°E, 31°S 
calculated from the five ratio PDFs (as in the key) and the SD 1K global warming 
PDF. 
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Fig. 7. Maps of percentiles of net warming from all distributions (top to bottom) Sum, 
Normal, Beta, Uniform, and Narrow: Left column 10%, Middle column 50% and 
right column 90%. 
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Fig. 8. Probability distribution function for the net warming at point 142°E, 31°S 
calculated from the five ratio PDFs (as in the key) and the SD 0.2 K global warming 
PDF. 
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Appendix 2 
Selecting climate change results based on model performance 
Ian Smith and Elise Chandler 
 
It can be argued that weighting models is not ideal since it implies that the results 
from better performing models can be diluted when combined with the results of 
poorer performing models. Chandler (2007) provides a preliminary analysis of 
projections by deliberately ignoring all but the best performing models over the 
Australian region. Here we describe some further results based on this technique as 
applied to the MDB region. 
 
Since rainfall is one of the most difficult variables to simulate accurately, we argue 
that a reliable projection of rainfall must be accompanied by a reasonable simulation 
of present day rainfall. An assumption here is that a model must, by definition, 
accurately simulate a number of variables (moisture content, temperatures, winds, 
pressure etc.) correctly if it is to simulate rainfall correctly. Secondly, we also argue 
that , because Australia is a continent encompassing a wide range of climate regimes, 
that a regional projection is more likely to be reliable if the model can capture the 
variability in space over the wider Australian region. Thirdly, we also argue that, in 
addition to accurately simulating the means and spatial variability, the ability to 
simulate the seasonal cycle also provides an important performance measure. 
 
23 AR4 model results (based on the A1B emissions scenario) were assessed. Several 
approaches were taken to determine the best models performing models. The first of 
these involved using threshold values for the correlation coefficient and RMSE. 
Following Suppiah et al. (2004), a threshold value of 0.7 chosen as the minimum 
value for the spatial correlation coefficient. A set of best model results were then 
selected as those with above median correlation coefficients and those with below 
median RMS errors. In addition to assessing the seasonal mean values, the models 
were also assessed in terms of their ability to reproduce the seasonal cycle of rainfall 
at several key locations, including the MDB. Finally, the results from the coarse 
resolution models were excluded since previous studies have highlighted the 
importance of horizontal resolution and the representation of topography as crucial to 
model rainfall. 

 
The details of the full assessment are not shown here but, it is apparent that some 
simulations are clearly inferior, failing to adequately reproduce either the broad 
spatial patterns or the quantitative amounts. In particular, the models IPSL-cm4, 
BCCR-BCM2, GISS-EH, GISS-AOM, and FGOALS-G1.0 performed poorly in 
regions of high rainfall (not shown). At the shorter seasonal timescale, spring and 
autumn were the seasons most difficult to simulate and this proved to highlight the 
better performing models.  
 
Of the 23 models, 7 were assessed to provide the best simulations of present day 
rainfall: 
GFDL-Cm2.0 
ECHAM5 
GISS-AOM 
UKMO-HADcm3 
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MIROC3.2 (hires) 
GFDL-CM2.1 and  
UKMO-HADgem1.  
 
Annual and seasonal percentage changes in rainfall for the region shown in Figure 1 
for the period 2071-2100 relative to 1971-2000 based on the results using the A1B 
emissions scenarios (a mid-range scenario) were calculated for each model. These 
were then divided by the same model’s estimate of global temperature increase over 
this period to arrive at a percentage change per degree of global warming. These 
values are shown in Table 1. 
 
.  

 
 

Figure 1. Map showing grid points used to define the Murray-Darling river basin. 
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Table 1. List of 23 model results for the projected percentage change in rainfall (per 
degree of global warming) over the MDB region. The top 7 selected models are 
highlighted. The 22-model average shown excludes the results for BCCR-BCM2. 
 

 Percentage change in rainfall 
 Model  Annual  Seasonal 

    DJF MAM JJA SON 
1 CSIRO-Mk3  -11.322 4.466 -15.344 -21.270 -30.431
2 GFDL-CM2.0  -12.410 28.991 3.562 -24.669 -34.333
3 MRI-CGCM2.3.2  -10.466 -23.397 -21.245 -23.397 -5.572
4 ECHAM5/MPI  -13.484 -5.725 15.261 -31.692 -32.450
5 GISS-ER  5.210 20.388 1.922 -17.495 -1.846
7 FGOALS-G1.0  -4.575 -3.917 -10.238 -5.016 -1.659
8 MIROC3.2(medres)  20.688 48.390 41.733 -11.238 -0.223
9 ECHO-G  22.783 59.088 22.942 -16.677 1.451

10 CCSM3  7.205 12.315 7.876 -10.856 15.790
11 GISS-AOM  -20.329 -28.843 19.923 -26.280 -29.721
12 UKMO-Hadcm3  -14.435 -7.082 6.650 -10.674 -40.274
13 GISS-EH  18.648 23.904 19.404 13.046 13.502
14 INM-cm3.0  -6.851 7.147 3.022 -19.065 -17.389
15 MIROC3.2(hires)  -6.016 5.458 6.496 -13.575 -25.254
16 CGCM3.1(t47)  11.343 6.238 14.308 15.988 8.202
17 GFDL2.1  -19.963 -1.245 -23.409 -46.104 -12.085
18 CGCM3.1(t63)  18.705 34.496 14.570 11.931 11.583
19 BCCR-BCM2  10.103 12.732 37.770 -12.632 5.467
20 CNRM-CM3  -7.372 7.360 18.003 -36.970 -35.549
21 IPSL-CM4  -33.637 -19.862 -31.908 -34.185 -52.639
22 UKMO-HADGEM1  -18.704 8.374 -28.881 -35.057 -30.272
23 PCM  -5.919 -7.968 -9.864 11.399 -16.497

 
22-model average -3.2 8.2 4.2 -16 -14 
22-model range -33 to +23 -24 to +59 -31 to +42 -46 to +16 -53 to +16 
Best 7 average -15 -0.01 -0.06 -27 -29 
Best 7 range -20 to -6 -29 to +8 -29 to +20 -46 to -11 -40 to -12 

 
The important result from this assessment is that the average changes from the best 7 
models are more negative than the 22-model averages. Furthermore, this is not purely 
an artefact of the different sample sizes. T-statistics indicate that the best-7 sample 
results for rainfall and changes are significantly different to those of the remaining 15 
models. For example, the chances that the 7-model average percentage change in 
annual rainfall (-15%) comes from the same population as the remaining 15 models is 
close to .001. In other words, the 7-best models form a distinctly different sub-set to 
the other models. This is what we would expect if a poor simulation of present day 
climate is associated with an unreliable prediction of future climate. 
 
These results need to be confirmed and recast into probabilities but it is apparent that 
the application of this new method paints a somewhat more pessimistic outlook for 
rainfall over the MDB into the future than previously indicated. We expect that it will 
be possible (Project 2.2.3b) to refine the projections for this region to better satisfy 
stakeholder expectations. 
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Project Abstract 
The Predictive Ocean Atmosphere Model for Australia (POAMA) is a state-of-the-art 
seasonal forecast system based on a coupled ocean/atmosphere model. POAMA was 
developed by the Bureau of Meteorology Research Centre and CSIRO Marine 
Research, with support from the Climate Variability in Agriculture Program, a 
consortium of rural research and development corporations managed by Land and 
Water Australia.  

POAMA is used in real- time by the Bureau to produce an eight-month forecast every 
day (current forecasts and system information available at http://poama.bom.gov.au). 
One of the special features of POAMA is that it uses the very latest observations from 
global ocean and atmosphere observing systems, right up to the previous day. The 
work described here will lead to a detailed assessment of the predictive skill of the 
POAMA system for south-eastern Australia in simulation and forecast modes, and 
improved understanding of the key mechanisms and processes that lead to climate 
variability in the GRDC region.  

Project objectives  

• Determine the ability of the Bureau’s climate/seasonal prediction models to 
simulate climate variability in south eastern Australia 

• Determine potential predictability of climate variability, especially rainfall and 
surface temperature, in south eastern Australia  

Methodology  

• Assessment of the simulation skill of POAMA  

• Assessment of the potential predictability of the primary modes of climate 
variability that drive rainfall and temperature in south-eastern Australia by 
using an ensemble of atmospheric climate model runs (the atmospheric 
component of POAMA) forced with climatological and observed sea surface 
temperature variations for the period 1981-2005 

• Identification and assessment of the primary modes of climate variability that 
drive rainfall and temperature in south-eastern Australia using a extended run 
of the coupled climate version of POAMA and operational hindcasts from 
POAMA 

Summary of the findings 
• Analysis of an ensemble of simulations using the atmospheric model of 

POAMA forced by observed sea surface temperature (SST) variations for the 
period 1982-2002 indicates the upper limit of predictability for SE Australian 
rainfall is about 30%. Rainfall is most predictable in autumn-spring. This level 
of predictability is in line with estimates of observed predictability based on 
correlations with El Niño indices such as the Nino3 SST index or the Southern 
Oscillation Index. 

• A portion of winter-spring rainfall predictability in the SE stems from sea 
surface temperature variations in the tropical eastern Indian Ocean. The 
sensitivity to eastern Indian Ocean SST points to the need to improve 
observations and initialization in the Indian Ocean in order to improve 
dynamical seasonal prediction. 
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• POAMA is found to have skill in predicting the major El Niño-related SST 
variations as well as some of the east-west SST shifts in individual El Niño 
events that have large impact on east Australian rainfall. POAMA was also 
found to simulate the major atmospheric teleconnections driven by El Niño 
and it captures the observed sensitivity to the east-west shifts of El Niño. 
Direct prediction of rainfall in SE Australia, however, is hampered by model 
drift and bias. The ability to predict El Niño and some of its details suggests 
skilful prediction of regional SE Australian climate might be possible via 
bridging/downscaling (project 3.2.2) 
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Methodology and Results 
 
Objective 1: Potential Predictability of SE Australian Rainfall 
  
Introduction 
The Bureau of Meteorology routinely makes dynamical seasonal predictions out to 9 
month lead time with the POAMA coupled ocean-atmosphere forecast system. 
POAMA (Predictive Ocean Atmosphere Model for Australia) is an intra-seasonal to 
inter-annual climate prediction system based on coupled ocean and atmosphere 
general circulation models. The original focus for POAMA-1 was the prediction of 
sea surface temperature (SST) anomalies associated with El Niño / La Niña, for which 
POAMA’s predictions are internationally competitive. El Niño/Southern Oscillation 
(ENSO) is the dominant driver of Australian climate variability (e.g., McBride and 
Nicholls 1983), thus POAMA’s forecasts have great value for anticipating the 
behavior of El Niño. 

The POAMA system is continually evolving and improving, and subsequent versions 
of POAMA will address problematic bias and drift that hinder direct prediction of 
regional climate variations, such as rainfall and temperature across continental 
Australia. However, even assuming model drift and bias can be improved and that 
increased resolution leads to better regional climate simulation, the degree of 
predictability of regional climate is unknown. Perfect prediction of the slowly varying 
surface boundary forcing (primarily tropical sea surface temperatures; SST), which is 
thought to be the main source of seasonal climate predictability (e.g., Charney and 
Sukla 1981), will account for only a portion of actual climate variability due to the 
presence of internal atmospheric noise. Nonetheless, an assessment of the theoretical 
upper limit of predictability, given perfect knowledge of the slowly varying boundary 
forcing, will provide an upper bound on the expected skill of the POAMA system.  

Methodology 
To assess potential predictability of regional climate, we assume perfect knowledge of 
the slow variation of global tropical SST for the period 1982-2003. Effectively, we 
replace the ocean model component of POAMA with a prescription of the SST 
variation that actually occurred. To assess the relative roles of forcing from the Pacific 
and Indian Oceans SST, we conducted three additional experiments. In “Pacific 
large”, observed SST variations are prescribed in the entire tropical Pacific Ocean, 
while climatological SST is prescribed elsewhere. In “Pacific small”, observed SST is 
prescribed only in the eastern tropical Pacific Ocean. These two experiments are 
aimed at elucidating the global teleconnections that are driven by SST variations 
associated with El Niño/Southern Oscillation (ENSO). The Pacific small runs are 
aimed at understanding the forcing by SST variations in the main El Niño region of 
the equatorial eastern Pacific. The Pacific large runs include the SST forcing in the far 
western Pacific, where anomalies during ENSO tend to be out of phase with those in 
the eastern Pacific. The role of Indian Ocean SST is highlighted in the Indian 
experiment, where observed SST variations are prescribed only in the tropical Indian 
Ocean. In all cases, 8 ensemble members are generated for the period 1982-2003 
using slightly different initial conditions and predictability is assessed following 
Rowell (1998).  

Results 
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Fig 1. Correlation between simulated SON rainfall in SE Australia (area mean for 
point south of 32S) and SST for the (top-bottom) the model simulations forced by 

global SST, Pac large SST, Indian Ocean SST, and Pacific Small SST for the period 
1982-2004. 

 

Based on analysis of this suite of “perfect SST” experiments with POAMA seasonal 
forecasts system, SE Australian rainfall is found to be most predictable in autumn 
through spring, when up to 30% of the rainfall variance is predictable (Hendon et al. 
2007a). That is, if we could perfectly predict global sea surface temperatures, the 
maximum amount of rainfall variability that we could expect to predict is about 30%. 
This estimate is an upper limit, as we know that we can never perfectly predict SST. 
Nonetheless, SST is highly predictable at short lead time. Therefore, 30% 
predictability should not be viewed as being unattainable. Nonetheless, the potential 
usefulness of 30% predictability of rainfall needs to be assessed. For instance, 
predictability of crop yield or stream flow could be assessed based on output from this 
ensemble of simulations, where both the predictable component and noise component 
of the climate is known and well sampled.  
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The estimation of potential predictability of SE Australian rainfall in this study, while 
highly dependent on the model that was used, is in line with the observed rainfall 
variance that is accounted for by El Niño, which is the dominant source of interannual 
variation of SST and of rainfall variability (e.g., McBride and Nicholls 1983; 
Drosdowsky and Chambers 1991). This study also confirms that the atmospheric 
model of POAMA realistically simulates climate variability over SE Australia that is 
forced by variations of tropical SST (Hendon et al. 2007a). That is, the sensitivity of 
simulated rainfall in SE Australia to tropical SST variations is very realistic. 
Interestingly, this study indicates that a significant portion of the predictable rainfall 
variability in the SE during spring and winter stems from SST variations in the 
tropical eastern Indian Ocean (Fig. 1), consistent with observations of rainfall 
variations associated with the Indian Ocean Dipole (e.g., Nicholls 1989; Meyers et al. 
2007). This might appear to be counter to the notion that ENSO is the main driver of 
rainfall variability during these seasons. However, during ENSO SST anomalies co-
vary in the Indian Ocean with those in the equatorial Pacific (Meyers et al. 2007) and 
it is this co-varying SST in the Indian Ocean that drives a significant portion of the 
predictable rainfall variations in the SE. 

 

 

Conclusions 
The atmospheric component of POAMA realistically simulates climate variability in 
SE Australia given perfect knowledge of tropical SST. Improvement of rainfall 
prediction in the SE from the POAMA system will require improved initialization and 
simulation of the topical oceans and in particular the Indian Ocean and reduction in 
model drift. Currently, model bias and lack of accurate initial oceanic and 
atmospheric conditions hinder the ability to predict the coupled-state of the Indian 
Ocean. However, improvements to the POAMA component models should alleviate 
some of the bias in the Indian Ocean (in particular, the overall cold SST bias and 
elevation of the thermocline in the eastern Indian Ocean). Furthermore, a new ocean 
assimilation system is nearing completion and will be part of the POAMA 2 system. 
This new assimilation scheme, which initializes salinity, temperature and currents, 
shows great promise for improved initialization of the Indian Ocean. Experiments to 
assess its impact on predictability of SE Australian climate will continue in Project 
3.1.4  

Objective 2: Simulation/prediction of primary modes of SE Australia climate 
variability  

Introduction 

Assessment of POAMA’s ability to simulate the major modes of climate variability 
that are relevant to SE Australian climate is required to provide a benchmark for 
future improvements of the forecast systems, such as that anticipated by development 
of the ACCESS system (e.g., improved spatial resolution, improved physical 
parameterizations, and reduced model drift). This assessment is also required because 
the utility of the forecasts from the current version of POAMA is unknown. There is 
also scope for bridging and downscaling of the forecasts (Project 3.2.2), which is 
founded on the notion that important climate drivers (primarily ENSO and its 
teleconnections) are predicted faithfully. The focus of this study is not only on ENSO 
but also on other tropical sea surface temperature variations such as those in the 
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equatorial eastern Indian Ocean that are important for SE Australian rainfall (e.g., 
Nicholls 1989; Meyers et al. 2007). We have also assessed the impact of model drift 
on these relationships, which should aide future development of the POAMA system. 

Methodology 
The primary modes of climate variability that drive rainfall variations in SE Australia 
were assessed in the 25 years of hindcasts (re-forecasts) from the POAMA seasonal 
forecasting system. In contrast to the model runs used in the first part of this study 
where SST were prescribed as observed, this second study use the fully coupled 
system which predicts both atmosphere and ocean conditions. The analysis here is 
based on a 3 member ensemble of 9-month forecasts for the period 1982-2006. 
Forecasts are initialized from observed atmospheric and ocean initial states. The 
atmospheric initial state, together with the land surface condition, is produced by the 
ALI system (details at http://poama.bom.gov.au). The ocean initial condition is 
provided by the ocean initialization system that piggybacks on the POAMA system. 
Forecasts are initialized on the first of each month. Three forecasts are made each 
month from slightly different atmospheric initial conditions but with identical oceanic 
initial conditions.  

Results 
We first assess POAMA’s ability to simulate the major modes of SST variability that 
are relevant to Australian climate variability. Foremost is ENSO. However, Wang and 
Hendon (2007) emphasized that the eastern Australia rainfall is sensitive to the “inter-
El Niño” variations of SST as well, which are the east-west shifts of SST anomalies in 
the central Pacific between different El Niño/La Niña events. For instance, the 1997 
El Niño event had SST anomalies shifted well east in the Pacific while the 2002 El 
Niño was more concentrated in the central Pacific. Wang and Hendon (2007) showed 
that the springtime drought in 2002 could be accounted for by the westward shift of 
the El Niño, while the near normal spring in 1997 could be accounted for by the 
eastward shift.  

The skill for prediction of the temporal variation of these leading modes of SST is 
assessed by the correlation of the predicted and observed El Niño and inter-El Niño 
patterns of SST variability (Hendon et al 2007b). In general, the ENSO mode is 
predictable out to at least 6 months, while the “inter-El Niño” variations are 
predictable for about 4-5 months. At short lead times, the spatial pattern of the SST 
variations in the forecasts is nearly identical to the observed patterns (Hendon et al. 
2007b). At longer lead-times, some important drift in the leading patterns of SST 
variability occurs. The major drift is the extension of the warm anomaly associated 
with the El Niño all the way across the Pacific into Indonesia.  

We then assessed POAMA’s ability to simulate the teleconnection between the 
leading modes of tropical SST variability and Australian rainfall. The correlation of 
observed rainfall with the two leading patterns of observed tropical SST for the winter 
(JJA) season is shown in Fig 2 (middle panels). Correlations are generally negative 
across eastern Australia (warm SST in the central Pacific is associated with reduced 
rainfall in eastern Australia). But, rainfall in parts of central eastern Australia is more 
sensitive to the second mode of SST variation than to ENSO. The SEACI region is 
equally sensitive (Fig. 3). Similar sensitivity is seen in spring but then the ENSO 
mode is more dominant (Hendon et al. 2007b) 
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POAMA’s ability to simulate these relationships between rainfall and SST are shown 
in the panels around the perimeter of Figure 2 (as a function of forecast leadtime) and 
in Figure 3 for the SEACI region. The impact of model drift on the relationship with 
the ENSO mode is stunning. For instance, POAMA does a modestly good job 
representing the negative relationship on the east coast at short lead time (ie. reduced 
rainfall during El Niño). But, at longer lead-time, POAMA simulates exactly the 
wrong response (enhanced rainfall in the SE during El Niño). Model drift seems to be 
less of an issue for the inter-El Niño SST variations. Overall, though, the current 
version of POAMA appears to do a credible job of simulating the rainfall 
teleconnections associated with the main modes of SST variability at short lead time, 
but model drift appears to hinder this simulation at longer lead times.  

 

Fig 2. Left panel : Correlation between predicted rainfall and the leading pattern of 
tropical SST variability (the El Niño mode) for the JJA season from POAMA 

hindcasts at lead times 0 to 6 months (anticlockwise starting in upper left). Positive 
(negative) correlations are red (blue). Observed correlation is in center. Right panel: 

Same but for correlation with the inter-El Niño mode of SST variability: 
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Fig 3. Correlation of SEACI-mean rainfall (landpoints south of 32ºS) with leading 
patterns of SST variability from observations and from POAMA predictions for JJA 

season 
 

 

Conclusions 
The current version of POAMA (1.5) has skill in predicting tropical SST variations 
that are important for Australian climate. This includes not only skill in predicting 
ENSO, but also extends to the important east-west variation of equatorial Pacific SST 
of individual ENSO events. Eastern Australian rainfall, especially in winter and 
spring, is sensitive to these east-west variations of SST; hence, POAMA appears to 
have important predictive capability beyond simply that of the occurrence of El Niño. 
POAMA also realistically simulates rainfall teleconnections to Australia driven by 
ENSO and the inter-ENSO variations of SST at short lead time. However, model drift 
appears to degrade the realism of these teleconnections at longer lead times. There 
also appears to be an issue with spin up-, whereby the teleconnection is initially too 
weak, but then strengthens to realistic magnitudes 1-3 months into the forecast.  

These results imply that the model drift needs to be remedied and that initialization 
needs to be scrutinized. One way to alleviate model drift is to “flux correct” in order 
to maintain a realistic base state. Flux correction should be considered for future 
versions of POAMA. Improvements to the ocean initialization system are underway, 
which might remedy some if the apparent initialization shock (spin up) that has been 
diagnosed here. The impact of the new ocean initialization will be assessed in the 
coming year as the system becomes available. However, the best approach in the 
future will be to develop a truly coupled initialization system, whereby the ocean, 
land surface, and atmosphere are initialized in unison. Support for such a system 
should be considered in subsequent programs of SEACI. 

In conclusion, this analysis provides optimism for future direct utilization of regional 
climate forecasts from POAMA. In the meantime, these results provide 
encouragement for development of hybrid statistical-dynamical forecast schemes 
(Project 3.2.2), whereby predictable components of the climate from POAMA that are 
relevant for regional SE Australian climate are exploited by statistical techniques to 
deliver useful regional predictions. 
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1. Generate 
ensemble of 
simulations with 
atmospheric 
component of 
POAMA forced 
with observed 
and climo. SST 

Integrations 
completed and 
archived 

September 
2006 

35K 8 member ensembles 
for period 1982-2003 
generated using 1) 
global observed SST, 2) 
tropical Indian Ocean 
SST, 3) Tropical Pacific 
SST, and 4) 
climatological SST 
Runs have been 
archived  

none 

2. Assess 
simulation and 
potential 
predictability of 
climate 
variations in SE 
Australia in 
ensemble of 
forced runs and 
extended run of 
coupled version 
of POAMA  

Report produced 
(4 pages) 

Jan 2007 20K Analysis of potential 
predictability of 
regional rainfall 
completed. Report in 
preparation. 
 

none 
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3. Assess 
simulation of 
modes of 
climate 
variability that 
drive rainfall 
and temperature 
in SE Australia 
in the POAMA 
hindcasts 

Report produced 
(4-pages) 

June 2007 15K Seasonal variations of 
the impact of SAM on 
regional rainfall 
diagnosed (Hendon et 
al. 2007). Sensitivity of 
regional rainfall to 
inter-El Niño variations 
of SST diagnosed 
(Wang and Hendon 
2007). Analysis of the 
relationship between SE 
Australian rainfall and 
regional sea surface 
temperature variations 
as a function of season 
using BAM3 
simulations 
commenced. Drift of 
ENSO mode in 
POAMA hindcasts has 
been assessed and 
calibration to remove 
drift has been trialled. 
Sensitivity of SE 
Australian rainfall to 
regional SST variations 
in BAM3 simulations 
has been assessed. 
Ability of POAMA to 
predict higher order 
modes of SST 
variability and 
associated rainfall 
variations in eastern 
Australia has been 
assessed. 
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Abstract 
The Bureau of Meteorology routinely issues real-time forecasts for tropical sea 
surface temperature with up to 8 month lead time using the Predictive Ocean 
Atmosphere Model for Australia (POAMA). Regional climate forecasts from models 
such as POAMA are hindered by model bias and spatial scale that is too coarse for 
many applications. Therefore, we have reviewed and investigated the utility of simple 
statistical schemes for relating regional scale rainfall and temperature to forecasts of 
climate variables from POAMA.  
Statistical-dynamical forecasts capitalize on the components of the climate system for 
which POAMA provides skilful prediction and which have a strong association with 
Australian climate. Because statistical post-processing itself cannot generate skill, the 
dynamical model must have skill in predicting some aspects of the climate. A 3 
member ensemble hindcast from POAMA v. 1.5 was examined to determine the 
predictable components of climate variability that are related to south eastern 
Australian rainfall variability. The first few dominant modes of tropical Indo-Pacific 
SST variability, which explain up to 1/2 of Australian rainfall variability (depending 
on season), are predictable by POAMA at lead time up to 2 seasons. Furthermore, 
POAMA also demonstrates reasonable skill in directly predicting Australian rainfall 
at short lead times. Together, these findings suggest the possibility to improve 
regional forecast skill for Australian rainfall through statistical-dynamical prediction 
by using POAMA’s SST forecast (bridging) or POAMA rainfall forecast 
(calibration). Preliminary analysis of the POAMA hindcasts indicates skilful 
prediction for below/above median rainfall for south eastern Australia at lead times 
out to 2 seasons, and further skill improvement is obtained from statistical-dynamical 
calibration and bridging. However, skilful prediction by dynamical and statistical-
dynamical models varies for different regions in different seasons. 

 
Significant research highlights, breakthroughs and snapshots 

• POAMA demonstrates skill in predicting tropical Indo-Pacific SST (lead times 
to 6-9 months) and Australian rainfall (lead time to ~3 months) with 3 member 
ensemble hindcasts in 1980-2005.  

• Statistical bridging/calibration schemes were developed and found to be able 
to extend POAMA’s forecast skill for south eastern Australian rainfall.  

• 10 member ensemble hindcasts from 1980 to 2006 have been generated in 
order to reduce noise and improve reliability. 

• Current Australian rainfall and temperature real-time forecasts are available at 
POAMA official website : http://poama.bom.gov.au/ 

 
Statement of results, their interpretation, and practical significance against each 
objective 

• Project objectives: Review and identify possible statistical methods to 
improve direct prediction of rainfall and temperature from the Bureau’s 
dynamical seasonal forecast model (POAMA) 

1) Review of statistical-dynamical techniques 
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The basic approach of all statistical post-processing techniques is to develop 
relationships between forecasts and verification in a training period, and then to apply 
the statistical relationship to extend model forecasts for independent periods. In 
general, there are two ways to design statistical-dynamical prediction schemes: One is 
to relate forecasts of large-scale features from a dynamical model to regional scale 
climate variable (statistical bridging - e.g. use tropical SST predicted from POAMA to 
predict south eastern Australian rainfall based on their observed relationship). The 
other is to adjust patterns of regional forecasts from the dynamical model against 
observations in order to remove systematic bias (statistical calibration – e.g. POAMA 
rainfall forecasts across Australia to observed Australian rainfall). In these methods, 
predictors (e.g. POAMA SST or POAMA rainfall) must be fields for which the model 
has predictability, and predictands (e.g. observed rainfall) must have a robust 
statistical relationship with the predictors.  
Common approaches to identifying a statistical relationship of the predictors and 
predictands include singular value decomposition analysis (SVDA), canonical 
correlation analysis, or principal component analysis. These techniques expand 
predictors and predictands in terms of dominant patterns of variability and the time 
series of those patterns (Bretherton et al. 1992, Ward and Navarra 1997, Feddersen et 
al. 1999). In this project SVDA was adopted as it provides a direct measure of 
association between a predictor and a predictand, and its computation is 
straightforward.  
Once the major analysis tool is chosen, the rest of the processes to form a statistical-
dynamical prediction scheme are as follows: First the times series of the dominant 
spatial patterns of the predictor are regressed on the time series of the predictand by a 
multiple linear regression scheme in a training period. This regression relationship is 
used to make forecasts of a predictand in an independent period. For more details of 
the analysis tools and computing processes, refer to Hendon et al. (2007).  
2) Identification of predictable climate components by POAMA 
According to Wang and Hendon (2007), about 50% of eastern Australian spring 
rainfall was explained by the leading three spatial patterns (Empirical Orthogonal 
Function, EOFs) of tropical Indo-Pacific SST in 1982-2002. Wang and Hendon 
(2007) emphasized that Australian rainfall is not only sensitive to the leading pattern 
(EOF1) that represents mature ENSO condition, but also to the second and third EOFs 
which represent east-west shifts of equatorial east Pacific SST that occur in individual 
El Niño events. Our investigation with an extended observed data record (1980-2006) 
demonstrated that the temporal variations of the first 4 EOFs of SST can explain up to 
50% of the rainfall variability in the south eastern part of the country (SEACI region, 
38.5°-33.5°S, 137.5°-152.5°E; Fig. 1). 
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Figure 1: Correlation of observed south eastern Australian rainfall and the time series 

of the first four leading EOF modes of tropical Indo-Pacific SST variability 
(histograms). The spatial patterns of the four leading EOF modes of tropical SST are 

displayed with maps. 
 
Given the observed relationship between the tropical Indo-Pacific SST and Australian 
rainfall, it is important to address whether POAMA can predict the temporal 
variations of the leading patterns of tropical SST variability. Our study reveals that the 
first few EOF time series of SST predicted from POAMA are highly correlated with 
their observed counterparts with lead times of up to a season (refer to Table A-1 in 
Appendix for correlation coefficients). POAMA’s predictions of the first two 
dominant modes of SST readily beat persistence in all seasons except for autumn at 3 
month lead time. Therefore, POAMA has good skill in predicting not only the 
occurrence of El Niño/La Niña, but also some of the important variability of SST 
between ENSO events with lead time of a few months.  
On the other hand, POAMA shows moderate skill in direct prediction of Australian 
rainfall. The correlation between POAMA’s prediction at lead time 0 (lead 0 means, 
for instance, a forecast for JJA that is initialized on the 1st of June; Lim et al, 2007) 
and observation for Australian mean rainfall is 0.22, 0.56, 0.39 and 0.48, for summer, 
autumn, winter, and spring, respectively.  
The fact that POAMA is able to predict tropical Indo-Pacific SST variability with 
good skill and Australian rainfall with moderate skill provides a good base for 
statistical-dynamical prediction because statistical post-processing itself cannot 
generate skill: the dynamical model must have skill in predicting some aspects of the 
climate.  
3) Skill assessment of dynamical and statistical-dynamical forecast models 
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For statistical-dynamical prediction, we regressed the first five SVD mode time series 
of predicted SST from POAMA onto observed Australian rainfall for statistical 
bridging. For calibration, we regressed the first five SVD mode time series of 
predicted rainfall from POAMA onto observed rainfall. The resultant regression 
relationships were then used in forecast mode by plugging in the respective forecasts 
of SST or rainfall from POAMA. Because of the short period of hindcasts, we cross-
validated the entire processes (leave out a year, develop the relationships, make a 
forecast for the left out year, and repeat using all years), including recalculation of the 
SVD modes each iteration.  
We measured rainfall prediction skills of dynamical and statistical-dynamical models 
by hit rates of predicting below/above median rainfall over south eastern Australia 
(i.e. the percentage of correct forecasts for below/above median rainfall during 26 
years in each season). Direct prediction from POAMA shows high skill in autumn and 
spring rainfall prediction over south eastern Australia but no skill in summer and 
winter. By contrast, statistical-dynamical schemes results in skilful predictions of 
south eastern Australia rainfall in summer and winter (Fig. 2). Statistical calibration 
increases hit rates of prediction of below/above median rainfall in all seasons except 
for spring, whereas statistical bridging works better in winter than the other two 
models. As a result, statistical post-processing results in local improvement of skill for 
the SEACI region. However, it might be achieved at the expense of skill in other areas 
(see Figure A-1 in Appendix for detailed geographical features of prediction skill).  
 

DJF

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6

Lead Time (months)

Hi
t R

at
es

 (%
)

POAMA
Calibration
Bridging

 
MAM

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6

Lead Time (months)

H
it 

Ra
te

s 
(%

)

POAMA
Calibration
Bridging

  86



  

JJA

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6

Lead Time (months)

Hi
t R

at
es

 (%
)

POAMA
Calibration
Bridging

SON

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6

Lead Time (months)

H
it 

Ra
te

s 
(%

)

POAMA
Calibration
Bridging

 

 

Figure 2: Hit rates (%) of predicting below/above median rainfall averaged over south 
eastern Australia (SEACI region, 38.5°-33.5°S, 137.5°-152.5°E).  

 
Summary of methods and modifications (with reasons) 

• Review literature and practises at other national centres  

• Identify the predictable components of the climate system, such as sea surface 
temperatures (SSTs) in the Nino3 region (150º W to 90º W, 5º S to 5º N), with 
POAMA hindcasts that can be exploited to improve the prediction of climate 
variability in south-eastern Australia 

• Investigate some simple statistical schemes that exploit the most predictable 
components of climate in POAMA (e.g., Nino3 SST) 

 
Summary of links to other projects 
This project has exploited findings from project 3.1.3 concerning the drivers of 
climate variability in SE Australia. The results here will feed into 3.1.4 and 3.2.2, 
where a more comprehensive analysis of climate predictions for SE Australia will be 
developed and evaluated.  
Publications/reports arising from this project 
Lim, E.-P. and H. H. Hendon 2007: Dynamical seasonal prediction of tropical Indo-
Pacific SST and Australian cool season rainfall (in preparation) 
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Lim, E.-P. and H. H. Hendon 2007: Seasonal forecasts of Australian rainfall with 
statistical-dynamical methods (in preparation)  
Hendon, H.H., E. Lim, O. Alves, and G. Wang, 2007: Review of techniques to 
bridge/calibrate dynamical seasonal predictions with focus on south eastern 
Australia. SEACI Technical Report, Milestone 3.2.2. 
Lim, E., H.H. Hendon and O. Alves 2007: Seasonal forecast of the tropical Indo-
Pacific SST and Australian rainfall. SEACI Technical Report, Milestone 3.2.2.  
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1. Review 
literature on 
statistical/dynamic
al prediction and 
investigate 
practises at other 
national centres 

Report 
prepared 

December 
2006 

25K A technical report 
on literature review 
has been completed 

None 

2. Identify 
predictable modes 
of climate 
variability that can 
be used to bridge 
to rainfall and 
temperature in SE 
Australia in 
POAMA 
hindcasts 

Report 
prepared (as 
part of 
Technical 
report for 
milestone 3) 

March 2007 25K Sensitivity of 
rainfall to inter-El 
Niño SST 
variations has been 
diagnosed (paper 
prepared). 
 
POAMA’s ability 
to forecast inter-El 
Niño SST 
variations and SE 
Australian climate 
has been assessed. 

None 

3. Investigate 
some simple 
statistical schemes 
that exploit the 
most predictable 
components of 
climate with 
POAMA 

BMRC 
Technical 
Report 
prepared 

June 2007  11K Trial combinations 
of predictors and 
predictands have 
been tested for 
statistical post-
processing. 

None 
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Appendix A 
 

   

(a) DJF 

   

(b) MAM 

  

(c) JJA 

   

(d) SON 

Figure A-1: Hit rates (%) of below/above median rainfall prediction directly from POAMA 
(left panels), from a statistical calibration scheme (middle panels), and from a statistical 

bridging scheme (right panels) at lead time 0 month. The contour interval is 10%, and the hit 
rates greater than 60% are coloured. 
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Table A-1: Correlation of observed SST EOF time series with the corresponding POAMA 
SST EOF time series (their spatial domain is the same as shown in Figure 1). Bold numbers 
are the correlation coefficients statistically significant at the 95% confidence level. (i.e.- 
coefficients greater than 0.38 are regarded as being statistically significant, given 26 years of 
sample size). 
 

(a) At lead time 0 
 

correlation EOF1 EOF2 EOF3 EOF4 

POAMA 0.95 0.88 0.78 0.70  
DJF 

Persistence 0.98 0.91 0.84 0.76 

POAMA 0.91 0.92 0.81 0.69  
MAM 

Persistence 0.90 0.90 0.88 0.42 

POAMA 0.90 0.83 0.74 0.65  
JJA 

Persistence 0.83 0.88 0.89 0.35 

POAMA 0.96 0.87 0.54 0.21  
SON 

Persistence 0.88 0.82 0.84 0.37 

 
(b) At lead time 3 months 

 

correlation EOF1 EOF2 EOF3 EOF4 

POAMA 0.88 0.66 0.67 0.50  
DJF 

Persistence 0.78 0.58 0.62 0.16 

POAMA 0.75 0.73 0.55 0.18  
MAM 

Persistence 0.80 0.86 0.64 0.29 

POAMA 0.67 0.80 0.54 0.54  
JJA 

Persistence 0.44 0.69 0.59 0.02 

POAMA 0.73 0.76 0.44 0.19  
SON 

Persistence 0.40 0.58 0.75 0.06 
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SEACI publications 
The following publications have arisen from work undertaken in the South-Eastern Australian Climate Initiative: 
External Publications 
Author(s) Year Title Publication Status SEACI approval Location (website) 
1. Alory, 
Wijffels and 
Meyers 
Milestone 
1.2.1 

2007 Observed 
temperature 
trends in the 
Indian Ocean 
over 1960–1999 
and associated 
mechanisms 

Geophysical 
Research 
Letters, 34, 
L02606, 
doi:10.1029/2
006GL028044

published No record  

2. Alory, 
and Meyer 
Milestone 
1.2.1 

2007 Warming of the 
Upper Equatorial 
Indian Ocean and 
Changes in the 
Heat budget 
(1960-2000) 

Journal of 
Climate. 

Draft  With working group 
and Les Roberts for 
approval 

 

3. Chiew 
Milestone 
2.2.1 

2007 An overview of 
methods for 
estimating 
climate change 
impact on runoff 

Proceedings 
of 30th 
Hydrology 
and Water 
Resources 
Symposium, 
4-7 December 
2006, 
Launceston, 
Tasmania 

published Minute to Wendy 
seeking approval 
following working 
group approval  - 
can’t find copy of 
letter to CSIRO 

 
 

4. Hendon, 
Thompson & 
Wheeler 
Milestone 

2006 Australian rainfall 
and surface 
temperature 
variations 

Journal of 
Climate. 

submitted Working Group 
approval for SEACI 
acknowledgement 
11/10/06 – referred to 
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3.1.3 associated with 
the Southern 
Hemisphere 
annular mode 

Steering Committee 
but no record of 
having been 
considered 

5. Meyers, 
McIntosh, 
Pigot and 
Pook  
Milestone 
1.2.1 

2007  The years of El 
Niño, La Niña 
and Interactions 
with the Tropical 
Indian ocean 
  

Journal of 
Climate. 

submitted No record  

6. Murphy 
and Timbal 
Milestone 
1.1.1 

2007 A review of 
recent climate 
variability and 
climate change in 
south eastern 
Australia. 

International 
Journal of 
Climate 

submitted Paper is on MDBC 
folder – can’t find 
whether it was 
considered 

 

7. Timbal 
and Jones 
Milestone 
1.1.2 

2007 Future projections 
of winter rainfall 
in Southeast 
Australia using a 
statistical 
downscaling 
technique 

Climatic 
Change 

submitted No record  

8. Timbal & 
Murphy 
Milestone 
1.1.1 

2007 Observed climate 
change in South-
East of Australia 
and its relation to 
large-scale modes 
of variability 

International 
Journal of 
Climatology 

submitted Minute on MDBC 
system – not sure if 
Letter on system 
dated 5 April 2007 

 

9. Timbal & 
Murphy 
Milestone 

2007 Observed climate 
change in South-
East of Australia 

BMRC 
Research 
Letters 

in press Letter on system 
dated 5 April 2007 
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1.1.1 and its relation to 
large-scale modes 
of variability 

10. Rakich, 
Holbrook and 
Timbal  
Milestone 
1.1.2 

2007 An index to 
capture moisture 
transport over 
eastern Australia  

Geophysical 
Research 
Letter 

submitted Signed approval on 
MDBC system 

 

11. Wang 
and Hendon  
Milestone 
3.1.3 

2006 Sensitivity of 
Australian 
Rainfall to Inter- 
El Niño 
Variations  

Journal of 
Climate 

Submitted  Letter to Paul Holper 
(unsigned on system) 
approving 8 Feb 07 

 

12. Watterso
n, McGregor, 
Nguyen  
Milestone 
2.1.5a  

2007 Changes in 
Extreme 
Temperatures of 
Australian 
Summer 
Simulated by 
CCAM, and the 
Roles of Winds 
and Land-sea 
Contrasts 

Australia 
Meteorologic
al Magazine  

Submitted  Signed approval on 
MDBC system 
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Technical reports 
Author(s) Yea

r 
Title Publication Status SEACI approval File 

1. Campbell, 
E. Milestone 
1.5.5 

 Hierarchical 
Frameworks for 
physical – 
statistical 
climate models 

SEACI 
technical 
report 
milestone 
1.5.5 

 Include in Jan-June 
2007 milestone report 

1.5.5 Technical 
Report_07_18.doc  

2. Hendon , 
Lim Liu, 
Alves and 
Wang  
Milestone 
3.1.3 

2007  Assessment of 
simulation by 
POAMA of 
modes of 
climate 
variability that 
drives rainfall 
in SE Australia 

SEACI 
technical 
Report – 
Milestone 
3.1.3  

 Include in Jan-June 
2007 milestone report 

Report.3.1.3.drivers
.hhh.pdf  

3. Hendon, 
Liu, Alves 
and Wang   
Milestone 
3.1.3 

 Assessment of 
potential 
predictability of 
seasonal climate 
in SE Australia 
using the 
Bureau of 
Meteorology’s 
seasonal 
forecasting 
system  
 

SEACI 
technical 
Report – 
Milestone 
3.1.3 

 Include in Jan-June 
2007 milestone report 

Report.3.1.3.predict
ability.hhh.pdf  

4. Hendon, 
Lim , Alves 
and Wang  
Milestone 

2007  Review of 
techniques to 
bridge/calibrate 
dynamical 

SEACI 
technical 
Report – 
Milestone 

 Include in Jan-June 
2007 milestone report 

seaci_report.3.2.2.p
df  
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3.2.2 seasonal 
predictions with 
focus on SE 
Australia  

3.2.2 

5. Lim, 
Hendon and 
Alves  
Milestone 
3.2.2 

2007  Seasonal 
forecast of the 
tropical Indo-
Pacific SST and 
Australian 
Rainfall  

SEACI 
technical 
Report – 
Milestone 
3.2.2 

 Include in Jan-June 
2007 milestone report 

MilestoneReport_3.2
.2.reduce.pdf  

6. Pook M., J. 
Dunn, J. 
Risbey, P. 
McIntosh and 
M. Marzloff 
Milestone 
2.1.5a 

200
6 

The Application 
of an Automatic 
Synoptic 
System 
Identification 
Algorithm to 
CSIRO Mark 3 
Climate Model 
Output 

SEACI 
technical 
Report – 
Milestone 
2.1.5 

  
D:\My Documents\
Work\Projects\SEA 

7. Watterson, 
I. G  
Milestone 
2.1.5a 

200
6 

Surface 
hydrology fields 
simulated by 
the IPCC multi-
model data set 

SEACI 
technical 
Report – 
Milestone 
2.1.5 

  
D:\My Documents\
Work\Projects\SEA 

8. Watterson, 
I. G. 
Milestone 
2.1.5a 

200
6 

Probabilistic 
Climate Change 
Projections for 
South East 
Australia: 
Surface 
Warming 
Examples 

SEACI 
technical 
Report – 
Milestone 
2.1.5 

  
D:\My Documents\
Work\Projects\SEA 
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9. Watterson, 
I. G. 
Milestone 
2.1.5a 

2005 Annular modes 
in Mk3, and 
their influence 
on Australian 
rainfall and 
temperatures, in 
comparison 
with ENSO 

SEACI 
technical 
Report – 
Milestone 
2.1.5a 

   

 
 
 
SEACI presentations 
Presenter (s) Year Title Conference 

name 
location SEACI 

approval 
File 

1. Bryson 
Bates 

 Climate change 
and Australia’s 
water resources 

Greenhouse 
2007 

http://www.gr
eenhouse2007
.com/ 

Yes –end Sept 
07 

 

2. Bertrand 
Timbal 

2007  Observed 
climate change 
in the south-east 
of Australia: 
detection and 
possible 
attribution 

Greenhouse 
2007 

http://www.gr
eenhouse2007
.com/ 

Yes – end Sept 
07 

 

3. John 
McGregor 

2007 High-resolution 
dynamical 
downscaling 
over Eastern 
Australia 

Greenhouse 
2007 

http://www.gr
eenhouse2007
.com/ 

Yes – end Sept 
07 

 

4. Freddie 
Mpelasoka 

2007 Runoff 
projections 
from different 

Greenhouse 
2007 

http://www.gr
eenhouse2007
.com/ 

Yes – end Sept 
07 
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methods of 
GCM-based 
climatic 
scenarios 
(SEACI) 

5. Ian Smith 2007  Hydrology 
Symposium 

  
canberra_2007_2.pp

t  
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