Sustaining the Wind Part 2 – Indium and Beyond…

This is Part II of the “Sustaining the Wind” series of essays by David Jones. For Part I, click here.

At the conclusion of part 1[i] of this series, we saw that the putative demand for the element indium in order to build some 15,000,000 wind turbines (at a nominal peak capacity of roughly 900 MW) that would be required to produce annual outputs of 90 exajoules of energy, given the low capacity utilization associated with wind infrastructure, was on the order of 18,000 tons.  Although predictions about the total geological supply of any element or mineral are inherently fuzzy, we have also seen that if true, it is quite possible, that the indium demand for wind power alone, never mind the solar industry where it is a key constituent of “CIGS” (copper-indium-gallium-selenide) thin film solar cells, might well exceed the geologically available reserves of the element.   In this part we will look at indium as a surrogate for the many critical elements on which modern technology depends.   We noted in part 1 that a consideration demand for the elements and minerals required to construct so called “renewable energy” infrastructure is one to two orders of magnitude higher than the demand required to construct nuclear power plants.   Moreover we examined data connected with the Danish database of commissioned and decommissioned wind turbines to determine that historically wind turbines remain operational of a mean period of about 15 years – with some capacity lasting a little longer than 30 years, and some for less than two years – and thus efforts to expand wind capacity – which now produces less than 2 exajoules of the more than 560 exajoules of energy humanity consumes – will involve not only adding massive new infrastructure, but also regularly replacing worn out capacity.

As we look at indium, we will not assert that the wind industry is completely dependent on access to it.   It is always possible that replacements can be found for any material, as we will see, but we will nevertheless show that the game of “material musical chairs” if you will, is a profound challenge, and that often the hand waving and wishful thinking that surrounds issues in energy, especially where so called “renewable energy” is concerned, is at best glib, at worst misinformed to the point of delusion.    The fate of humanity is very much dependent on the decisions we will make in this century; possibly no generation has faced such a demand for clear thinking as the immediately coming generations will face, even as the current generation has failed the future miserably.

Continue reading

Complaint about misleading Helen Caldicott article in “The Saturday Paper”

Guest Post by Geoff Russell. Geoff recently released the popular book “Greenjacked! The derailing of environmental action on climate change“.

Preamble Following a recent article by Helen Caldicott in The Saturday Paper I submitted the following complaint to The Australian Press Council. Unfortunately TSP isn’t a member of the Press Council. Nonetheless they were kind enough to review my complaint and informed me that op-ed articles are judged rather differently from news reports and that even if TSP were a member, they would take no action. Given the high number of factually incorrect claims by Caldicott, I asked for an example of a false or misleading claim that would warrant Press Council action. None was offered. Accuracy features strongly in the Press Council General Principles, but where nothing is inaccurate enough to warrant censure, then it hardly matters what they claim to give a damn about.


Helen Caldicott is a well known ex-pat anti-nuclear activist. She recently (30/5) published an article in The Saturday Paper called “SA’s short-sighted view of uranium and nuclear options”. It’s some 1700 words long and a written in a gish-gallop debating style, packed full of technical jargon, sweeping and unsupported claims. (Editorial note: It was a similar performance by Dr Caldicott that turned George Monbiot’s opinion on nuclear around, as explained here and referenced in the blog post’s lead image above). It would have taken many thousands of words to respond to all of its claims, so rather than do that I wrote a 1300 word response which explains in lay language enough of the modern scientific picture of DNA damage and disease to explain why Caldicott’s three decades of predictions of nuclear catastrophe have failed dismally. I thought concentrating on explaining basic principles was preferable to a blow by blow rebutt al. That she is wrong matters less than understanding why.

Erik Jensen of The Saturday Paper rejected the piece saying they didn’t have space and suggested I submit a 100 word letter instead. I later found out that he had also rejected a response from Ben Heard who was named and subjected to an ill-informed hatchet job in the article. Ben subsequently gave up arguing with Erik who refused his reasonable requests for a proper response. Instead, Ben published a piece on his DecarboniseSA blog.

I decided instead to make a complaint to you, The Press Council, in the hope of getting an apology from The Saturday Paper both for publishing an article so clearly in violation of the Press Council General Principles; an article replete with misinformation and the omission of key facts. I also want TSP to publish a suitable response to Caldicott’s article; something of similar length.

I’d be happy, if required, to send the Press Council a copy of the original piece I sent TSP; but what follows is a more clinical blow by blow analysis of Caldicott’s misinformation and why it breaches Press Council Principles.

About the article itself

As I said above, dealing with a 1700 word article with sometimes multiple mistakes per sentence is a big job, so I’ll restrict myself to the most important examples which I believe violate the Press Council’s General Principles. Indented paragraphs are quotes from Caldicott’s article.

  • [MISLEADING: solar farms use far more concrete] Construction of the huge reactor complex adds substantially to global warming as it is largely made of concrete – a CO2-intensive product.

This is misleading because it omits a key fact, namely that nuclear power plants require considerably less concrete (and steel) per unit of energy than either a solar or wind farm.

For example comparing materials per megawatt hour for the Spanish Andasol I solar thermal farm in comparison to a Westinghouse AP1000 nuclear reactor shows the solar farm uses 15 times more concrete (and 75 times more steel, not to mention 2,530 times more land). And this is a generous comparison, because the reactor will last twice as long, so you’ll be building the solar farm twice.

  • [MISLEADING: irrelevant] …[a] 1000-megawatt reactor requires one million gallons of water a minute, for cooling.

Again misleading. Most nuclear reactors use water for cooling, just like all thermal power stations, whether they be coal, gas, biomass or solar thermal. Any power plant which heats water to drive a turbine is most efficiently designed using lots of water for cooling. But it isn’t strictly necessary, it’s just more efficient than air cooling. Typically, many nuclear plants are on the coast precisely to make use of the water because water cooling provides efficiency gains. You may not have this flexibility with coal or solar because the former need to be near mines and the latter need to be on cheap land, which isn’t normally coastal. The amount of water required has nothing to do with whether a plant is nuclear but on its thermal efficiency and the ambient temperature of the water. Continue reading

SA Nuclear Fuel Cycle Royal Commission – update

Today the Expert Advisory Committee of the South Australian Royal Commission into the Nuclear Fuel Cycle was announced. The members include Dr Tim Stone (University College London, KPMG), Prof Ian Lowe (my co-author Why vs Why: Nuclear Power), Dr Leanna Read (Chief Scientist of SA), Mr John Carlson (formerly of ASNO), and me (Barry Brook). I look forward to engaging in a productive, evidence-based process with my colleagues.

The first Issues Papers has also been released today Exploration, Extraction and Milling. Further papers will be released in the coming weeks, and then there will be 90 days open for submissions. The RC will report to the SA Government within just over a year: by May 2016.

Is Renewable Energy looking like a ‘new religion’?

Guest Post by Martin Nicholson. Martin studied mathematics, engineering and electrical sciences at Cambridge University in the UK and graduated with a Masters degree in 1974. He published a peer-reviewed book on low-carbon energy systems in 2012The Power Makers’ Challenge: and the need for Fission Energy

Firstly, what does renewable energy (RE) actually mean? Wikipedia says renewable energy refers to the provision of energy via renewable resources which are naturally replenished as fast as being used. RE resources include sunlight, wind, biomass, rain, tides, waves and geothermal heat.

In “The myth of renewable energy” (Dawn Stover, published in the Bulletin of the Atomic Scientists), Stover believes that “renewable energy” is a meaningless term with no established standards.

RE certainly needs to deliver energy that we can readily use – more than just the RE resources (sunlight, wind, etc.). These RE resources have to be converted into usable energy.  We need wind turbines, solar panels, farming equipment and generators for biomass, and water catchment and generators for hydro sources. Alas wind turbines and solar panels do not grow on trees.

Renewable energy converters require the use of steel, copper, concrete and rare earth elements plus all the land on which to build these converters. Wind farms and large scale solar plants require transmission lines to connect to the electricity grid. The materials used to make the energy converters and transmission lines are not naturally replenished so Stover is probably correct when she says “renewable energy” is a meaningless term. But let’s stick with the term for now because it is in the common vernacular.

But is RE looking like a ‘new religion’?

Continue reading

Tunnel Vision at the Climate Council

GR_April2015_CCCGuest Post by Geoff Russell. Geoff recently released the popular book “Greenjacked! The derailing of environmental action on climate change“.

The Climate Council has a new report out. The Global Renewable Energy Boom: How Australia is missing out (GREB) is authored by Andrew Stock, Tim Flannery and Petra Stock. The lead author is listed on the Climate Council website as a “Non Executive Director of several ASX listed and unlisted companies in the energy sector, ranging from traditional energy suppliers to emerging energy technology companies.” He’s also a chemical engineer.

Page 6 of the report begins by claiming “Globally, renewable energy’s contribution to global capacity and generation has climbed steadily upwards (Table 1)”.

Here’s line 4 from Table 1 except that I’ve added a column in red for 1973 using data from the IEA:

The percentage isn’t so clearly “climbing steadily upwards” now is it?

This table is one of a number carefully chosen or designed to enhance the images of wind and solar power and to misleadingly exaggerate their ability to prevent further destabilisation of the climate.

Misusing words

Page 8 follows with a claim in a large red font: “Global wind and solar capacity is growing exponentially”. This is accompanied by a graph which I’ve repeated here; but with a few annotations … in black. I’ll discuss them later.

Who think the graph supports the claim? It doesn’t. Exponential growth, by definition is growth with a regular doubling time, not regular increments … big difference! Growing exponentially is pretty easy for something trivially small, but it soon becomes hard and the graph shows clearly that both wind and solar are now only growing linearly; after about 2010 for solar PV and 2008 for wind.

The lead author is an engineer, so why call something exponential growth when it isn’t?

As the wind and solar contributions to an electricity grid grow, engineers expect stability problems to which there are currently no answers. AEMO’s 2013 report into 100% renewable electricty in Australia recommended underpinning wind and solar with either a biomass or geothermal baseload system to reduce the volatility; the sudden swings in supply. Germany obviously understands this and is now just burning half her forestry output annually. That’s about 30 million tonnes. This provides more electricity than either wind or solar.

Germany certainly had exponential growth in both wind and solar for some years, but that’s long gone. It took just one year to double the PV output for 2005; but the output from 2011 still hadn’t been doubled by the end of 2014. This slow down is despite solar providing just 6 percent of electricity. The wind power growth slowdown is even more advanced; it took eight years to double the 2004 wind output. Closer to home, South Australia has a higher renewable penetration than Germany, but no biomass baseload component, hence the stability risks which I suspect are behind the back-flip by long time nuclear opponent Jay Weatherill with the establishment of a Royal Commission into (almost) all things nuclear.

Understanding renewable growth

But am I being too cynical? The wind and solar growth lines above still look impressively steep. How can that be when Table 1, in contrast, shows a negligible percentage growth between 1973 and the present?

Continue reading