Where do you want to put nuclear waste?

The following article by Ben Heard and me was published on The Conversation today. This is a repost on BNC.


Nuclear waste is safe to store in our suburbs, not just the bush

For years, Australia has been looking at remote Indigenous land to store its nuclear waste. But now that Muckaty is off the table, it’s time to consider big city locations. Caddie Brain/Flickr, CC BY-NC-SA

Right now, radioactive material is stored at more than 100 locations in cities and suburbs across Australia. Yet after the withdrawal of a proposed remote site for a “nuclear waste dump” at Muckaty Station in the Northern Territory, we’re back to square one to find a longer-term nuclear waste site.

Instead of trying to dump the dump on one remote community, we should be looking in our own backyards – including in the suburbs of our biggest cities – to solve Australia’s growing nuclear dilemma.

Mucking up the process at Muckaty

After years of debate, last week’s withdrawal of Muckaty Station as a possible nuclear waste site was the inevitable outcome of a flawed process.

By failing to trust average Australians for so many years, successive federal governments have been unwittingly co-opted into the role of villains in an orchestrated campaign of radiological fearmongering.

Nuclear technologies are used all over the world, and bring great benefits in generating zero-carbon electricity, as well as applications in health science, food hygiene, industrial processing and fundamental research. Many of those technologies are in use here in Australia, including at hospitals and at ANSTO’s OPAL reactor in Lucas Heights, 40km south-west of Sydney’s city centre

Inside the Opal nuclear research reactor at Lucas Heights in Sydney, operated by ANSTO.AAP Image/Tracey Nearmy

Radioactive waste is not automatically more hazardous than others waste. Indeed, it is demonstrably less hazardous than the organo-chlorine pesticides, poly-chlorinated biphenyls and heavy metal mixtures that also feature in Australia’s hazardous waste portfolio.

Our radiological waste is produced for good reasons. The most radiologically hazardous waste is the result of producing life-saving diagnostic medicines (radio-phamaceuticals) that are essential in our health-care system.

That’s why we need a centralised facility to house our waste in Australia. Fortunately, this material is relatively small in volume: about 4500 m3, or roughly the volume of a couple of Olympic swimming pools for the entire country. That waste is predominantly lightly contaminated soil, mostly relatively low in hazard, and well understood with mature techniques for treatment and storage. These are quantifiable facts and it’s an entirely manageable problem.

But our point is this: if the authorities know, as we know, that this waste stream just isn’t that dangerous, why outback Muckaty or similarly remote sites in the past?

How have we ended up with a process that includes only one site, with that site in the middle of nowhere? What message does that send to every Australian about this waste stream?

“Wow. It must be really, really dangerous if we have to put it there”.

And if that’s the message, what might any Australian with an interest in the land in and around Muckaty think about ending up with the facility in their backyard?

“How completely unfair. No way!”

The irony is that while the first statement is dead wrong, the second statement is quite reasonable.

Our cities are already home to nuclear waste

When dealing with any controversial issue – especially something as emotive as a nuclear waste “dump” – fairness eats facts for breakfast.

Once a process is popularly perceived as “unfair” and the proponent perceived as untrustworthy, the facts about the hazard itself are irrelevant. So why have successive Australian governments from both major parties seemed hell-bent on starting a process from that impossible position?

Most of our radioactive material can and should be transported and stored safely above ground in a suitably dedicated centralised storage facility for use on an intermediate basis (that is, for some decades). The identification of suitable sites for this storage facility ought to be principally a matter of infrastructure and zoning. Suitable sites for open discussion could and probably should be in the outer industrial areas of our capital cities.

That’s right. Australian capital cities.

Continue reading

The clock is ticking on the drive for sustainable energy

The below is a (short) chapter I wrote for the recent book “The Curious Country“, published by the Australian Office of the Chief Scientist.

This excellent and well-illustrated book can be downloaded for free here. The blurb:

During 2013, The Office of the Chief Scientist asked Australians what they would like to know more about; what scientific issues concern them and what discoveries inspire them.

The results shaped this book – a collection of essays about the scientific issues affecting Australians today.

The Curious Country is available as a free download from ANU E Press. It is currently available as a pdf, so can be downloaded and read on your e-book reader, tablet, computer or mobile phone


POWERING THE FUTURE - The clock is ticking on the drive for sustainable energy

(Download the PDF for this article and the other energy-related chapters, here)

ACCESS to cheap and reliable energy has underpinned Australia’s development for decades. Fossil fuels — coal, oil and natural gas — provided the concentrated energy sources required to build our infrastructural, industrial and service enterprises. Yet it’s now clear this dependence on carbon-intensive fuels was a Faustian bargain and the devil’s due, because the long-run environmental and health costs of fossil fuels seem likely to outweigh the short-term benefits.

In the coming decades, Australia must tackle the threats of dangerous climate change and future bottlenecks in conventional liquid-fuel supply, while also meeting people’s aspirations for ongoing increases in quality of life – all without compromising long-term environmental sustainability and economic prosperity. Fortunately, there are science and technology innovations that Australia could leverage to meet these goals.

Seeking competitive alternatives to coal

How can Australia shift away from coal dependence and transition to competitive, low-carbon alternatives, and what role will science and engineering play in making it happen? To answer these questions, a key focus must be on electricity generation technologies — electricity is a particularly convenient and flexible ‘energy carrier’— and to consider the key risks and advantages with the alternative energy sources that will compete with fossil-fuel power.

In 2012, the majority of Australia’s electricity was generated by burning black and brown coal (75 per cent), with smaller contributions from natural gas (13 per cent), hydroelectric dams (8 per cent) and other renewables (4 per cent). The nation’s installed capacity now totals over 50 gigawatts of power generation potential, with stationary energy production currently resulting in the annual release of 285 million tonnes of carbon dioxide, about 52 per cent of our total emissions.

CurCountry_Box1

Clearly, the non-electric energy-replacement problem for Australia would also need to consider transportation and agricultural fuel demands. In a world beyond oil for liquid fuels, we will need to eventually ‘electrify’ most operations: using batteries, using heat from power plants to manufacture hydrogen from water, and by deriving synthetic fuels such as ammonia or methanol.

Under ‘business as usual’ forecasts produced by Government energy analysts, electricity use in Australia is expected to grow by 60 to 100 per cent through to 2050 with hundreds of billions of dollars of investment needed in generation and transmission infrastructure just to keep pace with escalating demand and to replace old, worn out power plants and transmission infrastructure. At the same time carbon dioxide emissions must be cut by 80 per cent to mitigate climate-change impacts, via some combination of enhanced energy conservation and new supply from clean energy sources.

An uncertain mix of future options

Although there are a huge number of potential energy options now being developed that might one day replace coal in Australia not all alternatives are equally likely.

Continue reading

IPCC double standards on energy barriers

Advocating energy policy to ecologists…

It’s been quite a while since my last BNC update! My excuse is a heavy travel schedule – first to Moscow to help decide the winner of this year’s Global Energy Prize (see here) as part of the International Awards Committee, and then to Raleigh, North Carolina, to visit a long-standing colleague (Scott Mills and the ‘hare lab’) at NCSU and deliver a couple of talks (one on meta-modelling and another on energy policy – see here for a write-up of the latter talk). I also snuck in a visit to the spectacular Hanging Rock.

Anyway, to the main point of this post. The IPCC have released statements regarding their Working Group III report for AR5, on mitigation, with the full report to be released tomorrow (15 April). Summary for Policy Makers is here. See here for some responses from experts in Australia.

Today, a colleague pointed out to me what appears to be double standard in how IPCC depicts problems with nuclear versus renewable energy.

For nuclear, IPCC notes “a variety of barriers and risks exist” and specifies them: “operational risks, and the associated concerns, uranium mining risks, financial and regulatory risks, unresolved waste management issues, nuclear weapon proliferation concerns, and adverse public opinion (robust evidence, high agreement).”

By contrast, the word “barrier” is not mentioned with renewable energy, much less its obvious specific problems e.g., massive land use requirements and intermittency. As such, the clear sense a policymaker would get is that with only a bit more subsidies, renewables are the future. Whereas the other fissionable option is too fraught. The path is apparently clear!

Here are the two pertinent statements:

Since AR4, many RE technologies have demonstrated substantial performance improvements and cost reductions, and a growing number of RE technologies have achieved a level of maturity to enable deployment at significant scale (robust evidence, high agreement). Regarding electricity generation alone, RE accounted for just over half of the new electricity‐generating capacity added globally in 2012, led by growth in wind, hydro and solar power. However, many RE technologies still need direct and/or indirect support, if their market shares are to be significantly increased; RE technology policies have been successful in driving recent growth of RE. Challenges for integrating RE into energy systems and the associated costs vary by RE technology, regional circumstances, and the characteristics of the existing background energy system (medium evidence, medium agreement). [7.5.3, 7.6.1, 7.8.2, 7.12, Table 7.1]

and…

Nuclear energy is a mature low‐GHG emission source of baseload power, but its share of global electricity generation has been declining (since 1993). Nuclear energy could make an increasing contribution to low‐carbon energy supply, but a variety of barriers and risks exist (robust evidence, high agreement). Those include: operational risks, and the associated concerns, uranium mining risks, financial and regulatory risks, unresolved waste management issues, nuclear weapon proliferation concerns, and adverse public opinion (robust evidence, high agreement). New fuel cycles and reactor technologies addressing some of these issues are being investigated and progress in research and development has been made concerning safety and waste disposal. [7.5.4, 7.8, 7.9, 7.12, Figure TS.19]

Anyone bothered by this double standard?

Fukushima – Jim Green’s distractions and James Hansen’s warning

Yesterday, Jim Green, anti-nuclear spokesman for ‘Friends of the Earth’ in Australia, published an opinion article on Climate Spectator entitled “Fukushima apologies and apologists“. This piece included an attack on Geoff Russell and me, in which he demanded that we make an apology. Today they published our response, which I reproduce below.

———————-

It’s been interesting to see the media response to the third anniversary of the 2011 Tohoku earthquake and tsunami. Has the focus been on mourning and commemorating the 18,000 deaths or on kicking the anti-nuclear can over the triple meltdown at Fukushima which killed nobody?

Jim Green’s recent Climate Spectator article neglected any mention of the 18,000 deaths caused by the quake and tsunami and chose instead to fiercely debate whether the meltdowns had killed anybody. Of the 18,000 actual deaths, many were due to engineers or penny pinching local officials designing or building protective sea walls for a much smaller tsunami than the one which actually arrived. They were wrong and thousands died. Green is predictably silent about these engineering failures which killed thousands and only has eyes for the nuclear failures which didn’t.

This is classic Green. Always trying distract people from thinking about the big issue. The big issue is climate change and whether nuclear power should be part of the global response. The way to come to a rational decision is to weigh up the pros and cons.

Pick a number from Green’s estimates of the number of cancers that might be caused over the next 30 years by Fukushima radiation and write it down as a con along with whatever figure you’d like to put down for the Chernobyl toll of premature deaths. On the other side you should note the 1.8 million premature deaths already prevented by nuclear power by reducing the toxic pollution from coal fired power plants. You should also write down about 64 gigatonnes of CO2 saved by current nuclear plants.

At that point, it’s pretty much a slam dunk, you could stop writing. Any negative impacts of nuclear power have been swamped by the positive impacts.

But it’s useful to build another list of pros and cons which represent the impacts of the anti-nuclear movement over the past few decades.

On the pro side of the ledger will be the accidents we didn’t have because we built coal power stations instead of nuclear. Until very recently, the anti-nuclear movement has protested any nuclear construction vigorously and been totally silent about coal, so this is a fair comparison.

So what if we had continued the nuclear rollout of the 1970s and now had 10 times as many reactors producing all of our electricity? We’d have had a few more accidents, how many? Let’s say 10. So write down however many premature deaths you think is reasonable on the pro side and now on the other side write down the saving of 18 million premature fossil fuel related deaths together with the saving of 640 gigatonnes of CO2. Note that this anti-nuclear consequence of some 640 gigatonnes of CO2 has single handedly delivered us into the gaping jaws of a horribly elevated risk of dangerous climate change. What do you write down for that?

But let’s go back to that 1.8 million premature death saving estimate. The authors were NASA climate scientists Pushker Kharecha and living legend James Hansen. It was a very conservative estimate. In places like China and India, nuclear has been displacing not just coal, but wood fires in people’s living areas. Wood cooking stoves annually kill about half a million children under 5 years of age with an added illness toll much larger. Hansen has recently written an opinion piece with the striking title of ‘World’s Greatest Crime against Humanity and Nature’.

What’s he talking about?

Hansen wants the US to assist China with its nuclear rollout because he thinks it’s blindingly obvious that without nuclear, there is simply no way to avoid dangerous climate change. As part of the argument Hansen charges those who believe in a non-nuclear 100 percent renewable response to climate change with the major responsibility for the rise of both gas fracking and the exploitation of tar sands and other unconventional oil technologies. This is supported by falling natural gas production during the US nuclear roll and the subsequent resurgence after the anti-nuclear movement got spurred on by the Three Mile Island meltdown and Chernobyl.

But we suspect Hansen may be wrong about one thing … which is that given the astonishing Chinese progress in nuclear technology in recent years, we’d be thinking that it might be the US who need Chinese production engineering assistance, but that’s another issue.

———————-

Geoff Russell is an author with qualifications in mathematics and philosophy. Barry Brook is an environmental scientist and director of climate science at the University of Adelaide’s Environment Institute.

The REAL reason some people hate nuclear energy

Guest Post by Martin Nicholson. Martin studied mathematics, engineering and electrical sciences at Cambridge University in the UK and graduated with a Masters degree in 1974. He published a peer-reviewed book on low-carbon energy systems in 2012The Power Makers’ Challenge: and the need for Fission Energy


When people express their nuclear hatred, they usually argue about: the dangers from radiation leaks, the risk of weapons proliferation, the nuclear waste problem, that nuclear power is too expensive and in any case we just don’t need it!

None of these reasons have solid scientific backing. If they did, countries around the world (like USA, UK, France, Finland, Russia, China, India, South Korea, UAE) would not continue to build new nuclear power plants to supply their growing need for energy.

So what is going on?

I have recently read David Ropeik’s book How Risky Is It, Really?, (2010 McGraw-Hill) and it could provide an explanation.

Ropeik is a consultant in risk perception and introduces us to the psychology of fear. He looks at why our fears don’t always match the facts. He provides an in-depth view of our perceptions of risk and the hidden factors that make us unnecessarily afraid of relatively small threats and not afraid enough of the bigger ones. He introduces the important concept of the Perception Gap – the potentially dangerous distance between our fears and the facts. We need to recognize this gap if we are to reduce it and make healthier choices for ourselves, our families, and society.

Risk Perception Factors

Ropeik explores a number of what he calls Risk Perception Factors. These factors can make fear either go up or down. Usually more than one factor is involved in our overall perception of a threat. Below I list some of the key factors and provide my examples of how these factors could have impacted attitudes towards nuclear energy over the last few decades:

Continue reading