The cost of ending global warming – a calculation

Guest Post by Chris Uhlik. Dr Uhlik did a BS, MS, and PhD in Electrical Engineering at Stanford 1979–1990. He worked at Toyota in Japan, built robot controllers, cellular telephone systems, internet routers, and now does engineering management at Google. Among his 8 years of projects as an engineering director at Google, he counts engineering recruiting, Toolbar, Software QA, Software Security, GMail, Video, BookSearch, StreetView, AerialImaging, and research activities in Artificial Intelligence and Education. He has directly managed about 500 engineers at Google and indirectly over 2000 employees. His interests include nuclear power, photosynthesis, technology evolution, artificial intelligence, ecosystems, and education.

(Ed Note: Chris is a member of the IFRG [a private integral fast reactor discussion forum] as well as being a strong support of the LFTR reactor design)

An average American directly and indirectly uses about 10.8 kW of primary energy of which about 1.3 kW is electricity. Here I consider the cost of providing this energy as coming from 3 main sources:

1. The fuel costs (coal, oil, uranium, sunlight, wind, etc)

2. The capital costs of the infrastructure required to capture and distribute the energy in usable form (power plants, tanker trucks, etc)

3. The operating costs of the infrastructure (powerline maintenance, plant security, watching the dials, etc)

The average wholesale electricity price across the US is about 5c/kWh, so the all-in costs of providing the electrical component is currently ~$570/person/year or 1.2% of GDP. The electric power industry including all distribution, billing, residential services, etc is $1,120/person/year or 2.4% of GDP. So you can see there is about a factor of two between marginal costs of electricity production (wholesale prices) and retail prices.

The rest of this energy comes from Natural gas, Coal, Petroleum, and Biomass, to the tune of 6.36 kW/person.

I’m going to make the following assumptions to calculate how much it would cost to convert to an all-nuclear powered, fossil-carbon-free future.

Assumptions (*see numbers summary at foot of this post)

  • I’ll neglect all renewable sources such as hydro. They amount to only about 20% of electricity and don’t do anything about the larger fuel energy demand, so they won’t affect the answer very much. Continue reading