In a recent issue of Dissent magazine, a regular commenter here on Brave New Climate, industrial engineer Graham Palmer, engaged in a debate with Mark Diesendorf on energy futures. Unfortunately, this exchange of prose is not available online, although Graham did send me a scanned version (because of potential copyright issues, I won’t post it here). The promo from Dissent was as follows:
Mark Diesendorf says that nuclear energy is a very dangerous, complicated and expensive way of boiling water which is not a sensible alternative to renewable energy in the production of base-load electricity.
Graham Palmer argues that because base-load electricity cannot be stored and wind and solar power are dependent on the wind and sun, renewable energy must be backed up by fossil or nuclear base-load capacity.
Fortunately, Graham also delivered a condensed version of his side of the debate to a national radio audience this weekend, via Robyn William’s ABC show Ockham’s Razor. With Graham’s permission, I’ve reproduced the transcript of his essay below (with a few hyperlinks and relevant pictures added), because I think it provides a useful context for discussion on the BNC blog. I trust you’ll find it interesting.
Coal dependence and the renewables paradox
(by Graham Palmer)
Listen to audio MP3 reading by Graham, here (6.5 MB, 14 min)
Just about everyone agrees that the most pressing challenge in averting climate change is reducing our dependence on coal. Like most environmentalists, I used to pretty much go along with the idea that a combination of wind and solar, combined with serious energy efficiency policies, could probably go a long way towards achieving that aim in the long term. But after two decades of intense international efforts, we seem to be running fast but actually getting nowhere. And growth in coal continues unabated. Even countries like Denmark and Germany, that have invested heavily in renewables over decades, despite managing modest relative reductions in emissions, have not found a way to displace their base-load coal with wind and solar. Indeed, despite around 100,000 wind turbines globally, and enormous investment in solar, there is not a single example anywhere in which a coal plant has been retired as a direct result of the installation of wind or solar. So what’s going on? To answer this, requires stepping back to 1865, and re-examining Stanley Jevons economics classic, The Coal Question.
Jevons proposed that an improvement in efficiency in steam engines would lead to an increase in the consumption of coal, arguing ‘It is a confusion of ideas to suppose that the economical use of fuel is equivalent to diminished consumption. The very contrary is the truth.’ His logic was impeccable – an improvement in efficiency led to the widespread diffusion of Watt’s steam engine, driving the industrial revolution. In fact, some ecological economists believe that improvements in technological efficiency, and the accompanying productivity gains, actually enable the increased affluence and population that are the primary drivers of resource depletion and pollution. Consider the substantial efficiency gains of modern aircraft and jet engines that have been achieved without a carbon price – fuel costs have always been a large proportion of airline operating budgets – we now have more efficient aircraft flying an expanding middle class, consuming more fuel than ever before.
Jevon’s Paradox helps explain why we continue to use more energy, and reveals one of the hidden traps of carbon pricing, but why hasn’t the enormous investment in renewables led to the retirement of coal plants?
The electricity network is based on one simple underlying principle – generate and distribute the power demanded by households and industry, every second of every year. It is this instantaneous demand that drives the highly dynamic operation of the market-driven network, and it is the peak demand that occurs for only a few hours a year that drives underlying capital investment. As electricity consumers, it is easy to think of our electricity connection as being somehow equivalent to an electrical tap in which there is a vast reservoir of electricity waiting to be consumed. But unlike our water supplies where there is more than a year’s supply waiting in dams, electricity must be consumed the very instant it is produced.
In one sense, power is what we use, but it is energy that we pay for. This subtle, but important distinction between power and energy is vital to appreciating the important difference between conventional generators that supply dispatchable power, and techno-renewables that supply non-dispatchable energy.
But green sources, such as rooftop solar, are amendable to community participation. These decentralized energy sources empower people, and encourage a richer understanding of the role of energy in our lives. Rooftop solar is community friendly, and although expensive, it offsets energy costs at the retail tariff rather than competing in the wholesale market.
But despite this, the sobering reality is that the intermittency of wind and solar requires the maintenance of conventional generation to ensure reliability of supply. Contrary to popular folklore, the mantra that ‘the wind is always blowing somewhere’ has no significance in electricity supply. The combined total of all South Australian wind farms, which make up around half of Australian wind capacity, can be counted on to supply a mere 3% of their rated capacity during periods of peak demand. Even adding in Victoria’s substantial wind capacity does little to improve this ‘reliable minimum’. Similarly, maximum wind power is just as likely to be developed when it is least needed.
Unlike wind, solar benefits from the regular daily correlation of daytime demand and sunlight, but regrettably, the correlation is too weak to ensure reliability of supply. Household solar’s greatest strength should be in the highly valuable niche role of reducing network and peak generation costs during summer air conditioner usage. But the peak on the hottest days typically occurs late in the afternoon on week days as people arrive home from work, after solar output has fallen.
What does this mean in practice? When the wind is blowing, or the sun is shining, the fuel consumption of the conventional plants will be reduced. But the need to ensure reliable supply ensures that fossil fuel plants cannot be turned off. As much as these innovative technologies seem to offer an intuitive appeal to energy supply for a large sun-drenched continent, a reliable electricity grid requires reliable dispatchable supply. Technology cannot undo this enduring truth.
This is the renewable paradox – it is only the availability of a reliable grid that permits the intermittent sources to have any value in reducing emissions, but it is replacing the fossil fuel generators that provide the reliable backbone that remains pivotal to delivering deep cuts in emissions. Does it make sense to deploy intermittent renewables, en masse, while we still remain dependent on coal, and are forced to use the least efficient peaking gas turbines to backup for intermittent renewables, rather than installing high-efficiency base-load gas turbines in the first place?
Yet the idea of energy transformations, perpetual motion machines and fuel saving innovations is deeply embedded in society – from the American guru of energy efficiency, Amory Lovins’ proposals in the 1970s for a wind and solar based society, to the radical, eco-socialist model of the Australian ‘Beyond Zero Emissions’ plan.
It is difficult to overstate the enormity of the challenge in potentially reverting to a society based on naturally occurring solar and renewable energies. One only has to consider a pre-industrial farmer who, relying on his own labour from consuming foods grown with traditional agriculture powered by sunlight, could sustain 100 watts of sustained effort, requiring several hours work each day to feed one person. With the use of horses, he gained access to perhaps 400 watts per animal, substantially improving his labour productivity and lifting the standard of living of his family and village. A modern farmer driving a diesel-powered John Deere harvester now has access to 300 thousand watts, and with modern agricultural methods, feeds thousands. Similarly, consider the proposed use of concentrated solar-thermal for electricity – all solar technologies rely on collecting very low density intermittent energy over a very large area – a solar thermal plant requires 15 times the concrete and 70 times the steel as a modern nuclear plant to deliver the equivalent quantity of energy – both materials with a significant environmental footprint – and constructed on massive allotments in remote desert locations far from industrial and demand centres, subject to the vagaries of climate, cloud cover and sand storms.
Renewable energy technologies will continue to get more efficient and cheaper. But taking a diffuse, intermittent, energy source and converting it into a reliable power source is not merely a case of stumbling upon a novel solution, or a project to be solved with the modern equivalent of an Apollo space program. These are inherent obstacles that will always remain as characteristic issues regardless of how cheap the basic generation technologies might become. Consider the technical brilliance of the Concorde passenger airliner – to some aviation observers of the early 1970s, it seemed perfectly obvious that the future of commercial aviation would be supersonic, but innovation was still not capable of undoing the physics of supersonic flight – both the supersonic boom and a substantial fuel consumption penalty compared to a Boeing 747 were inherent problems that undermined the Concorde’s business case for its 27 years of subsidised operation. For those with eyes to see it, there are indeed striking similarities with today’s energy debates.
Advocates of a twenty first century energy revolution should be reminded that Marchetti showed that coal’s displacement of wood in the early nineteenth century, then oil and gas’ displacement of coal, have followed similar progressions, taking 40 to 50 years to graduate from a 1 to a 10% share of global primary energy, or a hundred years to becoming the dominant primary energy source. Not even Henry Ford’s Model T, or big oil’s power was able to drive oil’s global penetration any faster.
So, is there a path out of Garnaut’s diabolical policy dilemma? While a carbon price will affect the relative price of alternatives to coal, it does not alter the physics of energy supply. Indeed, it is a triumph of hope over experience to assume that the emerging energy sources can take on a meaningful role for at least 2 to 3 decades.
The only feasible means to overcoming coal dependence is to deploy mature technologies that can meaningfully displace coal. Only gas and nuclear are capable of this pivotal role for the foreseeable future, with only nuclear providing the opportunity for deep cuts to emissions. But the most enthusiastic supporters of carbon mitigation are often the most strident critics of both of the only off-the-shelf, low carbon, base-load technologies, ensuring that deep cuts to Australian emissions prior to 2050 will remain an unfulfilled aspiration. Most of the claimed reductions in the proposed emissions trading scheme will come from purchasing forestry offsets, or in other words, paying landholders in Indonesia and New Guinea, not to chop down trees.
So what of the future? There is no fundamental reason why a suite of renewables could not play an important role in Australia’s energy needs in the second half of this century, but the obstacles to reaching this goal are much greater than merely an erratic policy environment, or resistance from the energy incumbents. Indeed, one can admire Europe’s willingness to embrace a new energy paradigm based around the mass deployment of renewables, but as they are now learning, the false promise of an early retreat from fossil fuels using a suite of renewables which are not fit-for-purpose is leading to higher energy costs, limited reductions in emissions, and delaying the long term transition to a low carbon future. Australia should be taking heed.
Filed under: Emissions, Nuclear, Renewables
Following.
What a pleasure it is to read (and hear) such intelligent discussion. Thanks.
Graham Palmer,
This is an excellent presentation. Well done and thank you.
I agree whole heartedly.
Barry, the chart is excellent too. Could you state what are the y-axis units
Excellent.
“Household solar’s greatest strength should be in the highly valuable niche role of reducing network and peak generation costs during summer air conditioner usage. But the peak on the hottest days typically occurs late in the afternoon on week days as people arrive home from work, after solar output has fallen.”
I do some work for an SME that has developed a DC solar panel powered air conditioning system. Of course, the cost of the system is increased by the necessary batteries for storing the power generated. It is possible to use solar for this purpose, but I’m not sure it is financially viable when the consumer can be connected to the the grid.
Good for off-grid applications though, which is where the firm sees its market.. .
I completely agree with Graham Palmer that it would be an excellent idea to build a couple of hundred nuclear plants in Australia and stop using and exporting coal.
I don’t agree with him that there is some fundamental law of physics that makes 100% renewable energy impossible. And it seems that his position is that of a rather small minority in most countries.
Support for renewable energy polls consistently very high in most industrialized countries. I just posted on my own blog a couple of poll results, most of them between 80 and 90 percent support.
So if your pro-nuclear advocacy is based on the premise that you need to convince people to refrain from building renewable energy projects, that seems to make the job that much harder.
The popularity of the idea of 100% renewable energy does not mean it has been properly considered. The environmental impacts of collecting solar energy are being ignored. This is idealism, not reality. Mark Diesendorf has a difficult case to defend. I would like to see him try on this site.
Well done, Graham Palmer. I think you have put your finger on a weakness in reasoning that should be taken seriously.
Great article, thanks Graham Palmer.
I think the comments Graham Palmer’s presentation on the Ockham’s Razor web site http://www.abc.net.au/rn/ockhamsrazor/stories/2011/3322792.htm
could do with some balance and explanation. I’ve just added a comment using the full 3000 character allowance. Hopefully some others may chime in.
Great piece Graham … to BNC regulars, this is all old news, but I suspect it will dazzlingly new to many regular ABC listeners
who are not also BNC readers. I spent some time looking at the
Azimuth project blog the other day … lamenting that the level of the
energy debate would have benefited from BNC exposure. Everywhere
I turn these days I keep hearing arguments where I want to
respond … ” … if only your read more BNC, you’d understand why
that argument/fact is nonsense … it was dealt with months/years back!”.
Geoff Russel. Yes to all. Try your hand at educating those commenting at OckHam’s Razor.
Excellent summary of the problems with solar and wind. In retrospect, the idea of powering modern civilizations with energy sources that are not there 75-90% of the time, seems rediculous to me, at best, it is asking for continued lock-in of fossil fuels. But in the past good data on real solar and wind projects was not available and I assumed it would get better. In recent years I’ve come to realize that the fault wasn’t with the technology, it’s the resource. Solar panels can get cheaper and more efficient. The sun will always be unreliable as a resource.
I think that most people don’t realize just how critical a product electricity is. This is because they’re so used to reliable electricity. Turn the switch, the light goes on. If it doesn’t it is considered unacceptable. Even a 99.99% reliability is considered very poor where I live. And if the sun is out, which is most of the time (night+winter+cloudy+rainy times) we have no choice but to fire up the fossil fuel generators. The alternative isn’t acceptable.
Oddly enough, there are no commercial developments that lead to cheaper electricity storage. All proposed technologies will be more expensive that what we’ve got right now (eg deep cycle lead acid batteries).
Combining the above, we quickly see why wind and solar are marginal energy sources. Only good in small amounts and only when you have lots of fossil fuels available to back them up. Actually it would be a fossil grid with a bit of solar and wind on it for pretty pictures and good feelings – talking about fossil fuel ‘backup’ is the understatement of the century.
Cyrl R, yes to all you say. This statement jumped out at me:
It is interesting to think about that. Wht would happen if the electricity system went down for an extended period:
No ATMs. Not banking transactions can take place. No money.
No water. Water supply system stops functioning.
Shop doors can’t open
No petrol – bowsers can’t operate, So we can’t get out of the cites to where there is food and water.
No transport, no ambulances,
No hospital equipment once their back up genberators run out of fuel
People in the cities would be gin dying from lack of water within days and from lack of food within weeks.
We are totally dependent on our electricity system. It is an essential service. Almost as essential as our water supply system.
The problem I have whenever Jevon’s Paradox is quoted is that it needs a causal link between saving energy and economic activity. This seems a magical thing to me. Isn’t it instead that if we find ourselves with a few spare pennies in our pocket at the end of the day we will be inclined to spend them and this has nothing to do with how those spare pennies get into our pocket.
Peter Lang, that’s a good thing to think about. In my country, large areas are kept from inundating by active pumping of water. A day of no electricity isn’t a problem but if it holds for weeks large areas of my country would flood. We won’t allow that. We’ll burn diesel in disgusting inefficient diesel gensets or mobile diesel driven pumps before we allow the country to flood.
Without electricity there would be no emergency communications. So no police. People would get murdered and raped in the dark nights without power.
A world without electricity would be a medieval world. We won’t allow this to happen; we’ll burn anything we can find. It is why wind and solar are dangerous distractions leading to dangerous fossil fuel lock-in.
Solar has its uses. Making chilled water for airconditioning seems like a good idea on first thought. And probably still a good idea on second thought. But solar isn’t suited for powering our country; failure to realise that is causing the conundrum that we see in Germany. They claim to be green but use more coal per capita than any other European country. They recycle paper and plastic but drive 3 ton vehicles at 250 kph (150 Mph) over the Autobahn, guzzling more fuel than an old American guzzler. Germany isn’t a sunny country and they need to realize this, just like they need to realize that driving 250 kph over the freeway is incompatible with being energy efficient. Germany shows us what happens if we try to cheat reality by taking a concept that has uses (solar aircon) to an extreme it cannot do (solar powering Germany’s grid). Conversely, putting nuclear reactors in cars or using nuclear reactors to directly drive an airconditioner is also an example of taking a good concept to an extreme it can’t do.
People will eventually realize this. But solar is sexy. Let’s face it. Putting solar panels on your roof, and generating electricity from the sun, is cool. It is like that beautiful, but mean and cheating girlfriend. You don’t want to let her go. But you’ll find out sooner or later, she’s really bad for you.
Karl-Friedrich Lenz, on 25 September 2011 at 7:02 PM said:
“Support for renewable energy polls consistently very high in most industrialized countries.”
The fact that what Mr. Lens says is true simply highlights the sad and unfortunate state of global energy policy. Addressing complex engineering issues by consulting a vast committee of, not just ignorant, but actively misinformed laymen is precisely the road that led us to our current dilemma.
It does not bode well for “industrialized countries” that public opinion poll results are “sold” (literally in some cases) as being equivalent to scientific data.
Damn shame…
John Rogers, that is precisely the point I made as well.
In my professional life I’m something of a consultant. As a consultant I know that clients place great faith in the know-how of consultants, because they simply can’t know everything themselves. So that means the quality of the client’s work is dependant on the quality and know-how of the consultant. If the consultant is ignorant, the client will suffer as well.
The public is basically ignorant of energy and science. So they are stupid and lousy consultants. They should not be consulted at all on this matter. But I realise this is a hard sell in a democracy. So the only other alternative we have is to educate the public about basic energy analysis. Making energy analysis a standard course in high school would help a lot for future energy transition decisions. It needs to be an objective and numerical course, something like David Mackay’s book would be a good book to base the course on.
@ Kevin Bennewith. Why use batteries to store PV electricity for airconditioning in a pure DC system (ie not grid connected)?
You can just make chilled water (just above freezing point) with the PV system and use a large well insulated chilled water tank. You can store 1-2 days of PV output this way fairly cheaply.
Then the rest of the grid demand would be fairly flat, ideal for nuclear baseload.
every kwh that is generated from renewables is one less kwh that is not generated in a fossil plant with the associated drop in overall CO2.
If your object is to lower CO2 then renewables helps one achieve that goal….and at least the public accepts it.
How many new nuclear plants are getting installed in the US?? Close to zero….and zero means zero reduction in CO2.
At least renewables do SOMETHING. No new NUKES do NOTHING.
So how’s the battle going in Australia?????
How many new nuclear plants are scheduled for construction???
Finally some sobering reality check for hard core renewable energy supporters. 45 years ago, an electrical engineering instructor told our class.,”without nuclear power the global society is doomed” It is interesting that in 45 years no amount of expended renewable energy effort and wishful thinking has changed anything about this fact.
Cyril R quote:
“Making energy analysis a standard course in high school would help a lot for future energy transition decisions.”
Excellent idea. High school kids could start getting an idea about kw’s and kwh. The difference between power and energy. and how it is produced, the types of energy conversion that take place. I think high school kids would really ENJOY it. No Calculus req’d. just fundamentals.
Perhaps a new generation will be smart enough to figure out that nuclear is the only logical solution…..say maybe by around 2050.
Will it be too late by then??
GeorgeS, on 26 September 2011 at 2:38 AM said:
“every kwh that is generated from renewables is one less kwh that is not generated in a fossil plant with the associated drop in overall CO2.”
Uhmm… Mr. S… this statement is patently untrue. If you reread the post above, as well as dozens of others on this site, you will discover that renewables have done nothing to reduce overall CO2. Big picture, solar is essentially useless except as a rich man’s toy, and wind is nothing less than a windfall for natural gas. These are the facts, which have been vetted and validated over and over again on this forum.
As previously stated, public acceptance can be (and is, in this case) a vice rather than a virtue, particularly when that acceptance is predicated on falsehoods like the ones in your response above. Popularity is often at odds with wisdom, and requires no necessary linkage with truth to exist.
The key “SOMETHING” that renewables “do” is foster an environment of public complacency, providing a sense of accomplishment in the public mind for an on-going activity that yields no tangible result other than delaying the adoption of energy policy equal to the task at hand.
So far, there is no evidence that ANY amount of renewables has reduced ANY CO2 production, and much evidence that as more renewables come on-line, more natgas plants come on-line to smooth out the inherent variability.
The only statement in your offering that rings true is, “No new NUKES do NOTHING.” Of course, that suggests other truisms…
“Every new NUKE does SOMETHING.”
“Many new NUKES would do a GREAT DEAL.”
“A long term, dedicated NUCLEAR ENERGY POLICY offers real prospects for a SUSTAINABLE GLOBAL ENERGY SOLUTION!”
GeorgeS, on 26 September 2011 at 2:38 AM said:
every kwh that is generated from renewables is one less kwh that is not generated in a fossil plant with the associated drop in overall CO2.
We’ve had this discussion multiple times in the past. It’s not a 1 for 1 exchange. The fossil fuel plants still are running as ‘spinning reserves’. Also as a general rule fossil plants that are being run as ‘load followers/peakers’ are less efficient then fossil plants that are being run at optimal efficiency.
So intermittent renewable ends up forcing fossil plants to spend a greater proportion of the time and resources in ‘load following’ mode then in ‘maximum efficiency’ mode.
So the ratio ends up being less then 1 to 1.
How much less requires a detailed complex study of the ‘unintended consequences’ of introducing intermittent generation onto the grid based on local conditions.
In the US Pacific Northwest ‘wind power’ ends up displacing a not insignificant amount of hydro-power in the spring.(My tax dollars at work, replace one form of clean energy with another at enormous expense while the owner of our ‘old smokey coal plant’ laughs all the way to the bank).
Harrywr2,
I understand that it would not be 1 to 1. I also agree that Nuclear is the best solution. Even if it was 1 to 1 you still have to have full backup so you end up essentially buying 2 forms of power gen that can be accomplished w/ 1 (ie nuclear).
The problem is that it is just extremely frustrating that nothing gets done on the nuclear front and it looks like nothing WILL get done in the near future here in the US anyway.
Hopefully you will get something accomplished in Australia.
Meanwhile I WILL NOT get disappointed that I installed my 3 kw solar PV here in AZ. and I will not get upset when it gets called a “rich man’s toy”.
At least I did something.
Kind of goes along the lines of a very famous management phrase we had at Honeywell:
“Do something, even if it is wrong.”
Please update me on what progress is being made towards getting nuclear in Australia.
GeorgeS, on 26 September 2011 at 5:28 AM said:
The problem is that it is just extremely frustrating that nothing gets done on the nuclear front and it looks like nothing WILL get done in the near future here in the US anyway
Vogtle #3 and Vogle #4 will almost certainly be built in the US as well as VC Summer #2 and VC Summer #3.
Those are the ‘test beds’.
If I put my ‘investment bankers’ hat on there are a number of unanswered questions that make investment in nuclear difficult
1) Can I get regulatory approval to build a nuclear power plant
2) Can I build the power plant on time and on budget
3) If I build the plant will I be able to sell the electricity at enough of a profit to guarentee a return
At the moment the answers to all 3 questions is ‘maybe’.
The (hopefully) final round of licensing hearings begins next week for Vogtle #3 and Vogtle #4.
http://chronicle.augusta.com/news/government/2011-09-24/hearings-licensing-new-plant-vogtle-reactors-begin-tuesday?v=1316897565
.
.
Thx for the links Harrywr2. The video was good too.
Do something, even if it is wrong is why the flawed carbon tax is a step in the right direction. It beats another decade of wailing and academic analysis.
By following World Nuclear News one will see the progression of nuclear power developments world wide. [One reason for the paucfity of new builds in the USA has been the upgrading of many of the older Gen II units to produce more power each.]
I’ve just left some comments on Ockham’s Razor, hopefully others will do so also. It’s appalling that the ABC should allow falsehoods in the form of unsubstantiated assertions to spread from its site.
@John Newlands,
Indeed. It may be the “tax we had to have”, with apologies to Keating. Otherwise a couple of governments hence, some bright spark will come up with the idea of a carbon tax and we will be no further advanced than we are now.
Sometimes it is better to learn by doing, even if it is very imperfect than by doing nothing at all.
@quokka:
Very true – even if the lesson is simply: “A carbon tax doesn’t do squat to reduce emissions”, it will have been worth learning.
I suspect that by the time the lessons have been learned from the carbon tax experiment, that sufficient other lessons will have been learned from changes to the climate that the need for urgent action will be clear & obvious.
If Germany do go ahead & shut down their nukes, then the lessons from that experiment should be clear by then as well.
Quokka and John Newlands,
Regarding the carbon tax, did you see this:
http://bravenewclimate.com/2011/07/06/carbon-tax-australia-2011/#comment-136435
and this:
http://bravenewclimate.com/2011/07/06/carbon-tax-australia-2011/#comment-136436
Quokka
That seems to me to be the lamest argument ever for the carbon tax.
If your argument was valid, then you should argue the same for renewables: implement the BZE plan to power Australia with renewable energy by 2020. Then we’ll know it doesn’t work. How ridiculous is that argument?
If your argument is where the argument for the carbon tax has got to, surely it is time we recognise it is a very bad policy approach and we move on to advocating good policy instead.
MODERATOR
Quokka, JN, PL etc you are drifting off topic here. Please continue this discussion on the Carbon Tax thread.
“Do something, even if it is wrong.”
A problem with this is when people decide that they must spend their entire life protesting and roadblocking nuclear construction. Even if it turns out that nuclear is the right choice, at least they were doing something.
That phrase is only useful if there is the awareness that what you are doing is potentially the wrong thing. If there is an absolute faith that what you are doing is the right thing, then such ways of thinking can lead to disastrous results.
Following.
Yes, I have paid a visit to the Occam’s Razor site.
They say that they provide moderation. It’s scandalous that they fail to moderate adequately.
Petitions to Obama:
Please sign my petition at http://wh.gov/gtV.
“WE PETITION THE OBAMA ADMINISTRATION TO:
Stop Global Warming by shutting down the coal industry.
If we do not stop Global Warming [GW] now, the desertification will continue and increase. Some time between 2050 and 2055, the land surface will be 70% desert and agriculture will collapse. Collapses due to small climate changes have happened many times before. If agriculture collapses, civilization collapses. If civilization collapses, everybody or almost everybody dies. We must prevent this by shutting down the coal industry. Let the electric companies figure out how to make electricity without making CO2, as long as they do so. Set a time limit of the end of 2015 to reduce the CO2 from a power plant by at least 95%.
Created: Sep 24, 2011
Issues: Energy, Environment”
And go to
https://wwws.whitehouse.gov/petitions?utm_source=092311&utm_medium=graphic&utm_campaign=daily
and start another petition.
Even to move Australia completely off fossil fuels, Australia’s energy requirements do not require anything even remotely close to a “couple of hundred” nuclear power plants.
In fact, about 30 would do now, in about eight nuclear power stations – two in each of Qld, NSW and Vic, and one in each of SA and WA.
The criterion of eliminating ALL fossil fuels would need to include dedicated synfuel production plants for IC engines for transport and other uses. They promise to be energy-hungry.
30 might be enough for Australia, but if you want to also replace all the coal exports with exports of hydrogen or quicklime or electricity over a world wide grid…
Anyway, my point was only that I agree with the article in supporting nuclear power.
On the other hand, I may be wrong, but this article did not convince me that renewable energy is hopeless on principle.
I have read it a couple of times, but the main objection seems to be that renewable energy is intermittent.
I think we can all agree that this has been mentioned before on this blog and elsewhere. Does not impress me as a new argument, but I may have overlooked something here.
Karl, just because an argument isn’t new doesn’t make it unimpressive.
Let me put it differently.
Solar is not there 80% of the time in the desert and 90% of the time in a cloudy country such as my own (thousands of miles away from the nearest desert).
This is not ‘intermittent’. It is ‘not there most of the time, unreliable, undispatchable and marginal’. Intermittent is far too kind a word to describe nearly useless marginal energy sources.
You can never do just one thing. Adding useless marginal unreliable unproductive non-dispatchable energy sources to your grid means you have to balance it out with lots of storage and/or fossil fuel.
Energy storage, too expensive and bulky. No learning curve. No chances of getting much cheaper. So no way out there either.
Geographic spreading of wind turbines, not good enough. Still unreliable.
This leaves just one option: a little bit of solar and a lot of fossil.
If you don’t like this, and I don’t, we need to get back the option that isn’t allowed right now: a little fossil and a lot of nuclear.
Trying to power grids such as Germany with solar will lock Germany into fossil fuels indefinately.
For a proper thrashing of wind and solar, and to back up some of my claims above, please read the posts on this blog
http://uvdiv.blogspot.com/search?updated-min=2010-01-01T00%3A00%3A00-05%3A00&updated-max=2011-01-01T00%3A00%3A00-05%3A00&max-results=38
Just compare some of the numbers there, which are apples to apples comparisons, and you’ll see what I’m talking about.
David B. Benson, on 26 September 2011 at 7:33 AM said:
“By following World Nuclear News one will see the progression of nuclear power developments world wide.”
Good suggestion! WNN is now on my daily read along w/ BNC.
Cyrl R, 26 September 2011 at 11:57 PM
what an interesting link you found. And look at this link embedded within it:
http://www.oecd.org/dataoecd/59/50/45528378.pdf
Clever find because it is a link to an errata sheet for a report that costs $100. Book mark this for future use.
What I find interesting is that nuclear is cheaper than coal at 5% discount rate in nearly all countries and roughly the same as coal at 10% discount rate in most countries. In Korea at 10% discount rate, nuclear is about 60% the cost of coal.
Recent studies in Australia have been using weighted average cost of capital (or discount rate) of about 7.5% to 8.5% (depending on whether it is before or after tax rate).
Conclusion: If Australia implements something along the lines of what I laid out here, (Attachment 1 within this comment: http://bravenewclimate.com/2011/07/06/carbon-tax-australia-2011/#comment-136436 ) we could achieve what France has achieved (75% nuclear generated electricity and 8% of Australia’s current emissions from electricity generation per MWh) by 2040 ro 2050 with only a relatively small injection of taxpayers money to get it going. Thereafter “no more to pay” from the taxpayer.
@Cyril R.
I agree that solar and wind are not available all the time. Again, nothing new for anyone.
You probably agree that hydro, biomass and geothermal are available whenever one chooses to use them. These are also renewable sources.
You seem to like the book by McKay. Each of his plans makes use of renewable energy, even his most nuclear based “plan E”:
http://www.inference.phy.cam.ac.uk/withouthotair/c27/page_206.shtml
If you think that Australia should choose a plan based only on nuclear energy under the current poll numbers, good luck with your advocacy effort. I think that is hopeless, but I would be quite happy to see you succeed.
Peter Lang,
The whole 2010 Projected Costs of Generating Electricity is available free here:
http://www.mit.edu/~jparsons/current%20downloads/Projected%20Costs%20of%20Electricity.pdf
Get it while you can.
Quokka, Thank you.
Another point of interest from the first table here http://www.oecd.org/dataoecd/59/50/45528378.pdf : EPRI’s LCOE ($/MWh) for nuclear is $48 and $73 for 5% and 10% discount rates respectively.
Why is the LCOE nearly three times these figures in the EPRI report to the Department of Resources, Energy and Tourism?
The EPRI report commissioned by Department of Resources, Energy and Tourism gives the LCOE of nuclear as $173/MWh at 8.4% discount rate (WACC before tax).
Refer: Table 10-1 and Table 10-13 here: http://www.ret.gov.au/energy/Documents/AEGTC%202010.pdf
Why the large difference between these two EPRI estimates of LCOE for nuclear? Both were done in 2010.
Karl-Friedrich Lenz, on 27 September 2011 at 7:31 AM — For the Columbia River system, the hydro is largely use it. Period. Compared to annual fllow there is only modest storage possible. Also, there are limitations on spill rates for fisheries reasons. This led to a rather embrassing overgeneration situation in June of 2010.
Peter Lang, on 27 September 2011 at 8:42 AM — VC Summer (Westinghouse AP1000) planning document gives an LCOE of US$76/MWh. I just checked that via the NREL calculator and obtained US$74/MWh, close enough.
Quokka, Ahh! I remember now, that’s the OECD report with the $30/tonne CO2 price included in the LCOE for fossil fuel generated electricity in the OECD countries but not in the non-OECD countries. Hmmm! Fair comparison??
Peter Lang, on 27 September 2011 at 8:42 AM said:
Why the large difference between these two EPRI estimates of LCOE for nuclear? Both were done in 2010.
All the thermal plants(including nuclear) in the EPRI report done for the Australian Department of Resource, Energy and Tourism were specified as having ‘dry cooling’(closed loop)..
I didn’t see ‘dry cooling’ mentioned in the OECD report. Dry cooling is not a common method of cooling thermal power plants.
Many thanks, Peter, David and quokka.
These are very interesting references, indeed.
I have been on the lookout for some dry cooling cost estimates and these are the first I have seen.
The median NPP LCOE goes from $60 (in USA) to $170 (round figures, in Australia plus dry cooling).
Am I correct to infer that dry cooling will add a similar penalty to coal fired options? I.e, of the order of $100/MWh difference in LCOE.
This is significant in relation to the proposed Bayswater B Power Station of 2000+MW in the Hunter Valley. Interim planning approval has been received on the basis that this station would either be CCGT or dry cooled, “CCS-ready” coal. The cost of dry cooling appears to make that outcome very improbable.
So, CCGT it will be, if at all, especially in a market (the NEM) that has for the past couple of years hovered in the $40/MWh range. Even CCGT or conventional coal would fail to be commercial in that environment. It looks very much as though B2 Power Station will not go ahead.
This article (half way down) says Kogan Ck air cooled power station is 37% efficient but would be 43% if seawater cooled
http://goliath.ecnext.com/coms2/gi_0199-6180681/Kogan-Creek-enters-the-commissioning.html
Putting a desal next to NPP helps justify a coastal location. Around Fukushima there seems to me more concern over airborne contamination than seaborne.
John Bennetts, on 27 September 2011 at 10:29 AM — Dry cooling will add some cost for any Rankine cycle irrespective of the source of heat. However, the fossil fuel fired Rankine cycle turbines surely have a higher upper temperature, so the added cost for dry cooling will be different.
Peter Lang – “In fact, about 30 would do now, in about eight nuclear power stations – two in each of Qld, NSW and Vic, and one in each of SA and WA.”
Interesting you should say that however how exactly would it be done for WA? Here is the real and projected load data for the South West Interconnected System (SWIS)
http://www.imowa.com.au/rc-capacity-in-the-swis
The interesting part is that the base load (dark grey) requirement for WA is pretty steady from 2007 to 2010 at around 1.5GW. The growth requirement is peaking power which in combination with load following (mid grey) will be 50% of capacity in 2012/2013. The planned capacity increase of baseload for 2010/11 until 2012/13 is only very small rising to 3GW in this time period.
To replace the present fossil fuelled fleet with conventional nuclear we would need 3 X 1.5GW reactors. We would need three because of the operational reserve requirement. WA would have to increase its operational reserve to cope with the loss of one of the nuclear plants. We could of course use AP-1000 then we would need seven of these to match the capacity plus reserve of the present day baseload. Of course the operational reserve could be supplied by leaving some or all of the coal plants running as spinning reserve.
The problem is the required 3GW of mid-merit load and peaking load. The only people to run load following nukes are the French:
http://www.world-nuclear.org/info/inf40.html
“PWR plants are very flexible at the beginning of their cycle, with fresh fuel and high reserve reactivity. But when the fuel cycle is around 65% through these reactors are less flexible, and they take a rapidly diminishing part in the third, load-following, aspect above. When they are 90% through the fuel cycle, they only take part in frequency regulation, and essentially no power variation is allowed (unless necessary for safety).”
The only present nuke with load published load following capability is the EPR. Otherwise if you used other designs you would have to modify most of our reactors to be load following, because as you can see, there are limitations and the load following has to be shared around. Modifiying the reactors would be expensive and require re-certification and testing delaying the program. The two EPRs under construction in France and FInland are both over budget and behind schedule while being built in countries with present extensive nuclear experience. This does not bode well for a similar construction in Australia with no nuclear.
And of course the 3GW of peaking capacity would have to stay in its present form without load following nukes WA could only replace half of its capacity with nuclear leaving the rest fossil fuelled. So what is the plan for a nuclear Western Australia given these limitations?
References: From http://www.world-nuclear.org/info/inf40.html
” The Flamanville construction schedule then slipped about nine months, with first power then expected in 2012 and commercial operation in 2013. The reactor vessel nozzle support ring was forged by JSW in 2006 and the vessel manufacturing is at Areva’s St Marcel factory. Forging of steam generator shells was at Areva’s Le Creusot factory from 2007.
At the end of 2008 the overnight cost estimate (without financing costs) was updated by 21% to €4 billion in 2008 Euros (€2434/kW), and electricity cost to be 5.4 cents/kWh (compared with 6.8 c/kWh for CCGT and 7.0 c/kWh for coal, “with lowest assumptions” for CO2 cost). These costs were confirmed in mid 2009, when EdF had spent nearly EUR 2 billion. In July 2010 EdF revised the overnight cost to about EUR 5 billion and the grid connection to early 2014 – two years behind schedule. In July 2011 EdF again revised the completion time to 2016 due to re-evaluation of civil engineering works and to take into account interruptions during the first half of the year. There have been problems coordinating the nine main subcontractors, and EdF hopes the new schedule will progress “the construction of the Flamanville EPR …… under optimized conditions.” The cost was now put at EUR 6 billion.”
http://www.world-nuclear-news.org/NN-Startup_of_Finnish_EPR_pushed_back_to_2013-0806104.html
The ACIL-Tasman (2009) report shows the difference in LCOE between dry cooling and wet cooling for coal plants. It assumes nuclear is wet cooling, as does the EPRI report (I think from memory). So I don’t think this explains the difference between the EPRI figures in the IEA-NEA report and the DRET.
ACIL-Tasman, 2009, Table 55, http://www.aemo.com.au/planning/419-0035.pdf for 2011-12:
SC BLACK (WC) NQ = $53.43
SC BLACK (AC) NQ = $54.54
So, about 2% higher for air cooled (normally, I’ve heard the difference is a bit more than this).
Nuclear is only slightly less thermall efficient than coal, so if we factor up from the ACIL Tasman LCOE difference, nuclear air cooled to be about 2.5% higher than water cooled. However, again from memory, the EPRI report says it would be unlikely we’d build air cooled nuclear. So I wouldn’t push that option.
By the way, Millmeran and Kogan Creek in Queensland are both supercritical, air cooled plants. I think they are the only two in Australia.
DBB: Agreed. What I was getting at was the disparity between guesstimates I have heard socially regarding air cooled plant and the figures I have just cited.
The additional costs for air cooling amount to pumps, fans and radiators – plenty of very big ones. I had expected an additional energy cost (for fans) of about 10% and an additional capital cost of about 10%. I have no figures to substantiate these guesses.
From JN’s reference: The energy sent out figure of 711MW for a station with busbar generating capacity of 750MW suggests that the additional energy requirements for air cooling are way less than even 10%. Auxiliary energy consumption of 20MW would be about right for a unit of this size and wet cooling. That means perhaps 30MW additional for dry cooling, or 4.2% on an energy sent out basis.
So, when I see figures which suggest LCOE $110 penalty for air cooling of NPP’s I am surprised, because the principles and engineering are identical.
I guess that I will stick to a nominal 10% penalty for capital cost and adopt 5% energy cost for the air cooling, till respectable figures come along. The $110 figure is way over the top.
Thanks, Peter L.
Re those two Qld units, I agree – they are supercritical. They also have very low staffing levels. I don’t know how they can get by with only 3 dozen operator/maintainers for a 1-unit station.
jb
That’s the result of allowing free enterprise. NSW could be a lot more efficient too if they could privatise the electricity generators and transmission as Victoria has done so successfully. 🙂
I think this is a misunderstanding. I don’t think the $110/MWh difference in LCOE is due to wet cooling versus dry cooling. I think both figures are for wet cooling (from memory).
I think the difference is due to the terms of reference the DRET provided to EPRI and the assumptions EPRI were directed to use for estimating the cost of nuclear in Australia.
Ender,
What point are you trying to make about the cost of the Flamanville EPR? If a capital cost of 4 billion euro results in electricity cost of 5.4 cents/kWh, then escalation to 6 billion should result in an electricity cost of <= 8.1 cents/kWh. Agreed?
Where else will you get low emission reliable baseload electricity for that price other than hydro (where feasible)?
The UK Climate Change Committee estimates cost of on shore wind in the range 8-9.5 p/kWh ~ 9.2-10.2 cents/kWh (Euro cents). Off shore wind, solar, tidal etc are all substantially more expensive.
http://hmccc.s3.amazonaws.com/Renewables%20Review/The%20renewable%20energy%20review_Printout.pdf
So even with FOAK costs, and a project that it seems has not been well executed using the most expensive reactor in the world, nuclear is competitive on a simple LCOE basis, not to mention reliability.
Ender,
I don’t understand your concern.
Firstly what is wrong with having load-following nukes? After all, nuke powered ships control their speed without any problem. And we wouldn’t need load following nukes in WA until it has nuclear generating most of its baseload power – say around 2040 or so. Surely you are not arguing that load-following nukes will not be ubiquitous by then, are you? The French plants have been load following for 30 years. The EPR is designed to load follow down to 25% of full power and ramp at 5% per minute; that’s 80 MW per minute.
Secondly, if solar and wind need storage, wouldn’t it be far cheaper to match storage with nuclear rather than wind or solar? After all, with nuclear, the storage is recharged reliably each day. With solar we need to have enough storage to provide most of our power from storage through lengthy periods of overcast whether, and much more transmissions line capacity and length, and the requirements go on and on. But we’ve covered all that before, haven’t we?
Peter Lang – “Firstly what is wrong with having load-following nukes?”
Nothing except that they only exist in France. No other design other than the EPR has a load following capability, so unless the other designs are re-worked then this load following capability does not exist. Both EPRs are over budget and schedule in nuclear capable countries. How do you really think this would go in Australia with no nuclear capacity or experience?
Additionally as you can see from the French experience the load following capacity of PWRs varies over the fuel load. Going on the current price of the EPR we would have to spend 6 billion Euro overnight cost (12 billion finished and financed) times three or four. If we started them today then they would be operating very optimistically in 2019 (7 years based on the Flamanville plant). Who do you think would cough up the money for this when some of them would be operating as mid-merit capacity with a CF of between 25% and 75%?
If you are saying that nuclear needs storage then what is the advantage of nuclear over renewables in WA if they both need backup? Remember WA has a some of the best solar resources in the world. A solar thermal plant with storage would have a very minimal gas burn <10%. We also can disperse wind from Geraldton with a CF of 47% to Albany which is not far behind.
Apart from your statement that we only need one station which seems to be wrong are you suggesting all the peaking power for WA come from storage? With our renewable resources charging storage is no less a problem with renewables than nuclear.
References:
http://ramblingsdc.net/Australia/WindWA.html
"This wind farm has the, so far as I know, otherwise unheard of capacity factor of 47%. This means that the amount of electricity generated is 47% of the rated capacity of the wind farm. A more typical capacity factor is 30%; 33% is the average for most Eastern Australian wind farms. Miles George of Babcock and Brown Wind Partners also informed me that this c.f. is the best for all of B&B’s 79 wind farms."
http://www.bom.gov.au/jsp/ncc/climate_averages/sunshine-hours/index.jsp
MODERATOR
Please read your comment before posting. I have made 3 changes for you but this is very time consuming.
quokka – “What point are you trying to make about the cost of the Flamanville EPR?”
Only that these are both being build in countries that are very experienced with nuclear power. They have the supply chains and logistics plus presumably trained manpower in place. Even with all of this they are still over budget and over schedule.
If they cannot build an EPR to budget and schedule what do you think the chances are that one could be built in WA with no nuclear experience, manpower or logistics?
Ender @ 27 September 2011 at 12:21 PM
I think you have made many underlying assumptions that are not stated.
All the existing power stations will reach the end of their economic lives and will have to be replaced eventually. They should be replaced with the most economically viable option at the time, with no government imposed market distortions forcing preference for renewables.
It is unlikely WA would build the 1 GW or larger NPPs. I expect it would go for smaller units, as many other countries have done.
It will be some time before the first NPP is commissioned in WA. Even longer until the third is commissioned. By which time baseload will have increased and load following plants will be common, etc. So I do not agree there is any reason why WA cannot and should not go nuclear, along with the remainder of Australia.
You like to point out the cost overruns on the FOAK Finnish EPR NPP. But never seem to highlight the massive overruns that occur on renewable projects. Why not?
Here is just one example. Gemasolar incurred a real cost increase of 300% from 2005 and 2009. (€ 53 million to € 230 million).
A few comments on the “Capacity of the SWIS’ link: http://www.imowa.com.au/rc-capacity-in-the-swis
1. The “Competition” section shows that WA has found a good way to move progressively from government ownership to private ownership of the electricity system. The chart shows that this is progressing well.
2. The “Fuel Diversity” section shows renewables are an insignificant contribution. A joke. A toy to satisfy the idelogical believers. Just like everywhere else in the world.
This http://www.imowa.com.au/f175,877592/MRCP_Transmission_Cost_Estimate_for_2013_14_Capacity_Year_V4.PDF gives examples of the additional constraints (and therefore, costs,) resulting from mandating intermittent, unreliable generators, like wind and solar.
Ender,
If you go to Section 6.2.5 (page 121) of the IEA 2010 Projected Costs of Generating Electricity, you will find that the LCOE of solar and wind are substantially more sensitive to load factor than is nuclear.Their economics are highly dependent on being paid for every kWh they are capable of producing. At 65% or 70% load factor, nuclear looks quite competitive. It will of course depend on how the particular market prices their electricity.
Also while on the topic of cost and time overruns, the LCOE of solar and wind is substantially more sensitive than that of nuclear. (S 6.2.4).
Peter Lang – “They should be replaced with the most economically viable option at the time, with no government imposed market distortions forcing preference for renewables.”
And no government imposed market distortions preferencing nuclear either!!!
“I expect it would go for smaller units, as many other countries have done.”
So what smaller reactors are presently certified and ready to be built?
“You like to point out the cost overruns on the FOAK Finnish EPR NPP. But never seem to highlight the massive overruns that occur on renewable projects. Why not?”
Because as the inventors of a quite large section of recent solar thermal and PV technology Australia is well placed with expertise to build solar power plants. There is very little in the way of restricted trades, like nuclear certified welders for example, required to build either wind or solar power plants. Many such have been build mostly on time and budget and are operating today.
“By which time baseload will have increased and load following plants will be common, etc. So I do not agree there is any reason why WA cannot and should not go nuclear, along with the remainder of Australia.”
If load following plants were to become common why have they not done so in the 50 years or so nuclear power plants have been operating and been heavily subsidised?
http://thinkprogress.org/romm/2011/09/26/328612/new-report-energy-subsidies/
“With that said, even if you threw all these other investments together, the subsidies for fossil resources and nuclear would far surpass anything in renewable energy. According to the report, the American oil, gas and nuclear industries have cumulatively taken in more than $630 billion, with most of those government subsidies created in the earliest days of those sectors in order to build them up.”
“The “Fuel Diversity” section shows renewables are an insignificant contribution. A joke. A toy to satisfy the idelogical believers. Just like everywhere else in the world.”
It also shows nuclear at exactly zero, so at least I have some renewables to satisfy my ideological beliefs. You have nothing at all. Also both solar and wind are being built and the proportion will rise.
Ender,
Armenia, Netherlands and Slovenia each have one reactor (capacity 376MW to 696MW).
Argentina Romania have two reactors (average 468 MW and 665 MW)
Pakistan has 3 reactors (average 242 MW)
Slovakia, Hungary and Finland have 4 reactors (average 454 MW, 470 MW and 685 MW)
Source: http://www.world-nuclear.org/info/reactors.html
WA could commission several small to mid size reactors to meet baseload capacity increase and replace existing coal power stations as they reach retirement age over the next 20 years before we’d need load following plants.
I have a bias towards Canada’s CANDU. The curent version is 700 MW sent out.
Ender,
By the way, the Candu has on line refuelling. It does not need to be shut down for refueling. And just for interest, the Wolsung plant in Korea had the highest life time capacity factor of any NPP anywhere in the world (last time I looked).
Graham Palmer has a strong argument and I thought the Ockham’s Razor broadcast was excellent. The response by the anti-nukes was disappointing. They didn’t even critique Graham’s main argument. Most just trotted out their time-worn arguments. Even with a carbon tax it seems the need for nuclear power is not yet urgent enough to overcome their fear campaign. They would rather pay the Indonesians to conserve their forests. I am sure the price of doing so will rapidly increase as time progresses.
Peter Lang – if you look at the Reactors proposed and planned only a very few are under 1000MW. Additionally how many of the smaller designs are certified safe? I am pretty sure we would follow the US with reactor certification standards.
“WA could commission several small to mid size reactors to meet baseload capacity”
Yes we could however at what price? Commissioning FOAK small reactors would be a horrendous risk with little chance of success given our lack of nuclear expertise. Why would nuclear be any good for us here when our renewable resources are so large? Even given the cost overruns of the FOAK Gemsolar plant, subsequent plants could be built in WA at a much smaller risk given our solar resource which is far better than Spain. 50MW increments of added capacity are far easier to manage than commissioning a new type of small reactor design. BTW I think you will need to supply a reference for the cost increase of Gemasolar. I can only find ones like this:
http://www.thefuturebuild.com/torresol-energy-commissions-19-9mw-gemasolar-power-plant-in-spain-27587/news.html
and
http://www.renewable-energy-sources.com/2009/01/19/171-million-euro-secured-to-fund-gemasolar-the-worlds-first-solar-power-plant-with-central-tower-and-salt-receiver-technology-commences-construction-in-spain/
and
http://www.dailymail.co.uk/sciencetech/article-1393879/Gemasolar-Power-Plant-The-worlds-solar-power-station-generates-electricity-NIGHT.html
I see no mention of a cost blowout.
@ Peter Lang, on 27 September 2011 at 1:14 PM:
Qld’s two supercritical coal fired power plant were constructed for a corporatised but not privatised state owned entity. Just like the State Owned Corporations which have been half-sold or not sold at all in NSW: Delta, Eraring Power and Macquarie Generation.
The control systems at Liddell, for example, have been centralised into one plant control room, so 4 units are run by one Shift Manager and a few Plant Operators and Assistant Plant Operators. Their tasks include coal dozer driving and operation and fault finding of remote plant such as conveyors and ash disposal systems. Add a cleaner/labourer or three, a few technicians and a few mechanical fitters and the total crew quickly becomes 7 + 2 + 3 + 2 + 2 = 16. Times 5 = 80. Add a few more to cover annual and long service leave and there’s no change from about 100.
For Queensland to cover all the skills required and run single unit stations with 3 dozen operating staff is interesting.
But, with all due respect to your distinction between private and public ownership, I don’t think that the basic difference lies there. I suspect that all external functions have been contracted out, which is quite a rational arrangement.
I’ll ask a friend or two and get back to you.
Our friends who deal with renewables appear to have the same issues regarding maintenance costs, cleaning, management of the unexpected. In particular, I have been amazed to read of the horrendous working conditions for maintenance crews in the North Sea off Scotland. The work environment alone should outlaw some locations and designs… that is, assuming that the approach to safety is to engineer out risks where possible. For example, by constructing clean, reliable, safe nuclear PP’s on shore and leaving the North Sea to the fishes.
Ender,
A twin Candu 6, 1400 MW, would avoid about 11 Mt/a at a cost of $50/t
1400 MW of solar thermal with some storage, would avoid about 4 Mt/a at a cost of $300/t
Ender @ 27 September 2011 at 5:04 PM
The CANDU 6 is being marketed all over the world.
You have not managed to come to grips with the cost aspects of the choice between renewable and nuclear. See my last post for example. And please do read the section “Addendum Attachment 1” in this comment: http://bravenewclimate.com/2011/07/06/carbon-tax-australia-2011/#comment-136436
That is a falacious argument. The FOAK cost include the costs of getting started. All countries have started fro scratch. UAE is just getting started with their first. We will have to also. There is no other way to significantly reduce emissions and meet our electricity needs.
I laid out in the “Alternative to Carbon Price” lead article a progamme to get our first NPP commissioned. It covers the establishment of the regulatory regime and the education and training regimes. http://bravenewclimate.com/2010/01/31/alternative-to-cprs/
Solar Tres became Gemasolar. Costs were obtained from
:
2005: http://www.nrel.gov/csp/troughnet/pdfs/2007/martin_solar_tres.pdf
2007: http://www.needs-project.org/RS1a/RS1a%20D12.2%20Final%20report%20concentrating%20solar%20thermal%20power%20plants.pdf
2009: http://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=40
quokka – “If you go to Section 6.2.5 (page 121) of the IEA 2010 Projected Costs of Generating Electricity”
It also says this:
“With all the caveats inherent to the EGC methodology, Projected Costs of Generating Electricity nevertheless
enables the identification of a number of tendencies that will shape the electricity sector
in the years to come. The most important among them is the fact that nuclear, coal, gas and,
where local conditions are favourable, hydro and wind, are now fairly competitive generation
technologies for baseload power generation.3 Their precise cost competitiveness depends more
than anything on the local characteristics of each particular market and their associated cost of
financing, as well as CO2 and fossil fuel prices.4 As mentioned earlier, the lower the cost of financing,
the better the performance of capital-intensive, low-carbon technologies such as nuclear,
wind or CC(S); at higher rates, coal without CC(S) and gas will be more competitive. There is no
technology that has a clear overall advantage globally or even regionally. Each one of these technologies
has potentially decisive strengths and weaknesses that are not always reflected in the
LCOE figures provided in the study.
Nuclear’s strength is its capability to deliver significant amounts of very low carbon baseload
electricity at costs stable over time; it has to manage, however, high amounts of capital at risk and
its long lead times for construction. Permanent disposal of radioactive waste, maintaining overall
safety, and evolving questions concerning nuclear security and proliferation remain issues that
need to be solved for nuclear energy.”
Do you really think that in the current financial environment WA could borrow billions of dollars for a high risk nuclear power plant at low interest rates?
Also about the LCOE
“Because nuclear and coal with CC(S) have much higher fixed costs than alternative fossilfuelled
baseload generating technologies, their total LCOE is most affected by the load factor
variation, in particular at a 10% discount rate, where fixed costs weigh more heavily. Variable
generation sources, wind and solar PV, where fixed costs constitute an even higher share of total
costs, are logically even more sensitive to the variation of load factor. Of all generating technologies,
gas, where variable costs weigh most in total costs (fuel and CO2 costs together account for
between 78% and 84% of total LCOE, depending on the discount rate), is the least affected by the
load factor variation. In other words, running or not running a gas plant makes a much smaller
difference to the profitability of a project (due to the high variable costs of gas) than running or
not running a nuclear, wind or solar power plant since all three must resolutely cover their high
fixed costs, while their variable costs are very low.”
In the opinion of the study nuclear, wind and solar are all equally affected by CF. The axis are different for the various generating methods. For renewables the upper limit of CF is 27.5% where both wind and solar PV are going to 90% of their original LCOE. Given WA fantastic resources with Walkaway demonstrating over 40% CF and Gemasolar in Spain, with less sun than WA, demonstrating a CF of over 50% the analysis does not count in this case. If you wanted to follow the graphs on page 121 downward to the actual CF of WA renewables you would have something like 50% of the original CF being realised.
JB,
Yes. I accept all this. But how much further would the efficency and productivity improvements be taken if it was in private hands? Generally, the people who are in the business cannot see the potential that outsiders can see.
I recognise that you have been working in the NSW electricity generation system for most of your career and, therefore have extensive knowledge about the NSW plants and the electricity industry.
I am somewhat familiar with the arguments on both sides of the private/public ownership argument. I have another senior engineer friend who has also worked all his life in the NSW electricity industry. He passionately believes that the public sector can do a better job than the private sector at providing this essential service, over the long term. He sends me lots of reports showing that, for example, US states with publically owned electricity supply have lower electricity costs than the states where the electricity industry is in private hands.
He argues for example that the power station where he worked couldn’t cut the work force much more than it already has.
My response is to suggest he look at what happens when industries are privatised. Here are some example:
1. Victoria’s electricity generation and transmission system is running more efficiently than NSW, despite the many government interventions in the Australian electricity market which seriously constrains productivity and efficiency (and accepting all the differences between NSW and Vic that are brought up by the advocates in defending their state and ridiculing the other).
2. When Patrick managed to get control of the wharves from the unions, after 50 years of fighting and strikes, they improved efficiency and productivity enormously – container loading and unloading rates doubled.
3. The banks are far more efficient than they would be if they were still publically owned.
4. Imagine if our groceries stores (Woolworths, Coles, IGA) were publically owned. Getting a litre of milk would be like lining up to get your licence or your car reregistered.
I wholeheartedly agree with your last paragraph.
I don’t follow why Graham went from Jevon’s to dismissing renewables.
The graph (from Barry??) says to me; cheap source of energy, rape and waste it, then move onto the next one. To that end, what possible problem can occur if there is a Rebound Effect from renewables causing more use of renewables?
BTW, Australian energy intensity is falling, with energy supplied via the sunk cost of fuel, that surely is a good thing for our living standards.
http://adl.brs.gov.au/data/warehouse/pe_abares99001743/RR10.08_energy_intensity_REPORT.pdf
Peter Lang – “The CANDU 6 is being marketed all over the world.”
Interesting article about the Candu:
http://www.energyquest4nanticoke.ca/green2.htm
“I am writing as a former OPG research scientist, with 23 years experience in nuclear operations, to suggest that any further investment in generating capacity based on the CANDU design would be a serious mistake. I have put together a summary of my reasons for rejecting CANDU technology in an attachment to this letter and would ask that this material be considered by the OPA.
Sincerely,
Dr. F. R. Greening”
“The FOAK cost include the costs of getting started.”
Maybe but that did not help the Fins. We are starting far behind them as we do not even have the infrastructure that they would have supporting their current nuclear capacity.
“Solar Tres became Gemasolar. Costs were obtained from”
Sorry – nothing in any of those references that indicate a cost blowout. you will have to be more specific.
BTW you have not mentioned the 50% peaking power still required. Your best nuclear effort would be 50% of capacity – hardly a sterling effort.
Just a quick question to those here critical of renewable energy. Does anyone of you go so far as to require shutting down already existing capacity, mirroring the anti-nuclear campaigners who want all nuclear plants closed tomorrow?
K-F L, no, I very much doubt it. The commenters on this blog are, by and large, rationalists, not ideologues.
Just reading this post there are two suppositions that I find highly questionable:
Graham Palmer argues that because base-load electricity cannot be stored
Why not? I wasn’t aware that storage facilities gave a damn about where or how the input power was produced. Some further details on why some power is storable whereas others aren’t – based purely on the production technology – would be useful.
solar benefits from the regular daily correlation of daytime demand and sunlight, but regrettably, the correlation is too weak to ensure reliability of supply.
This is an extraordinary statement. Given that demand is highest during the day and lowest at night (to the point where the demand curve is nearly an overlay of the solar supply curve) – viz off peak power – the idea that the correlation is weak boggles the mind. Especially since the first use of the word ‘correlation’ completely contradicts the second usage.
Could the author provide a rigorous analysis to back this complete statement up? Otherwise it is nonsense on its face.
Ender, all, it’s not true the EPR is the only load following reactor. The AP1000 can load follow and is based on the same engineering as the French fleet AND the EPR:
http://www.ne.doe.gov/pdfFiles/AP1000_Plant_Description.pdf
The Korean APR1400 can also be *configured* for load-following (but not as good as the EPR) and, the reality is that almost all the Gen III plants can be configured as such.
Thus if you have a 1.5GW base load with peak of 3GW (I’m using base load as the *minimum* 24 hour average load) then in theory 3 AP1000s can handle this. Obviously, in a true regional grid, you’d have to account for outages scheduled or otherwise.
Secondly, the article posted here is about eliminating coal. We can do *this* in any country with Gen II or Gen III reactors *now*. We don’t need load following to do this. It’s only one part…a big part…of the whole climate issues, but it can be done.
And, just to needle Peter Lang: it’ll never happen without massive gov’t assistance and out right ownership, like in the UAE and China. 🙂
And just to be clearer about my second point at 12:37
The first phrase of the sentence re. solar vs demand says that there is a beneficial correlation between the two.
The second phrase however says there is effectively no correlation.
Which is which?
David, how can you possibly make nonsensical statements like this:
The AP1000 can load follow and is based on the same engineering as the French fleet AND the EPR:
The AP1000 is identified as a different generation from the French “fleet” which is based on 30 year designs both of which are also distinguished from the EPR.
There are only one way to make sense of such a statement: the assertion:
It’s nuclear, it’s a reactor, therefore it’s the same as every other
BJ, then you didn’t read the quote. By same engineering method I meant that the AP1000 load following is similar to the EPR. both use ‘grey rods’ and, in a fleet or reactors, stagger their load following capabilities. But its’ based on the same paradigm, the use of special control rods for load following.
If you compare this, to, say how nuclear propulsion systems work, which is somewhat classified, that can do zero to full load in about 4 minutes (also classified :), that don’t use control rods like this, they rely as much on temperature control of the steam generator to control neutron poisons like xenon.
The main point is that we are trying to phase out coal here (here being Austr. and the US) and the current fleet of reactors can do that. Coal isn’t used for peaking power. This shouldn’t even be part of the discussion. Its for baseload generally, with frequency and *some* load following. That’s it.
Secondly, people make a big deal about the lack of load following capability of Gen II reactors with the exception of the French fleet. This is not, I repeat “not” an engineering question but one of financing. You pay for load following capability. It’s an ancillary service that one can garner revenue from. If load-following is built into the tender, then the reactor can be *slightly* modified along with the controls to accomplish this.
I can’t stand it when pro-nuke types can’t think outside the box.
David
Lets talk about load-following but from yet a different angle. Let’s talk a “non” load following Gen III reactor, that is one that isn’t deployed for load following as we know it. But….we want it to be able to rise and fall with load demand *anyway*. Is this an “oops! We’re screwed”? No.
How many discussion threads have there been here about “desal” (desalination of seawater into potable water)? Dozens. Hundreds maybe. Suppose instead of the reactor following the load, we have the reactors 100% out 2/47 but we divert some of the electricity generated to a desal. When load goes down, the reactor sits at 100% but the power is automatically diverted to a desal unit, someplace, doesn’t even have to be close to the power plant. At night, we produce H20 to green Australia a bit as morning progresses toward noon, we send the power out toward the grid. The load determines the rate of H20 production. QED.
I don’t know if this is economically feasible but it’s certainly doable. This way, from simply an engineering perspective, we could get rid of Aussie coal burning and throw in all the natural gas and any diesel generation being used as well. We can do this folks.
Karl-Friedrich Lenz, on 27 September 2011 at 11:19 PM said:
Does anyone of you go so far as to require shutting down already existing capacity
In Oregon and Washington in the US there were high hopes that we would have been able to shut our coal fired plants in 2010 as a result of all the windmills we built. The licenses were set to expire and public opinion was overwhelmingly in favor of closing them.
In addition to ‘climate issues’ there are NOx issues and haze issues that occasionally spoil the view of our snow covered mountains. In Washington State our last coal mine closed in 2006 so there is no ‘miners union’ left to advocate for coal usage.
In Oregon there is a single 550 MW coal fired plant and in Washington we have two 688 MW coal fired plants.
Oregon and Washington each have 2.3 GW of installed wind power.
On an annualized basis the windmills produce between 28 and 34% of their nameplate capacity which is well within the range of ‘performing as advertised’.
Unfortunately there are seasonality issues. It’s one thing to store enough water for a few days of load balancing, It is another thing to store enough water for a few months of load balancing.
The current plan is that 2 of our 3 coal fired plants in Washington and Oregon will close by 2020. They didn’t close in 2010 and their licenses had to be extended at the ‘last minute’.
it took the Washington State Legislature all of a few minutes to vote on the extension and the Governor a few more minutes to sign it in to law. Then they all went on TV and blathered on about how it was a ‘difficult decision’ but there really wasn’t a viable alternative at the current time.
Ender,
Re: your link to the 2005 Greening letter arguing against further development of CANDU. Is this an example of the sort of anti-nuclear site you rely on for your information?
Enough said on this one!
So you don’t consider a 300% increase in cost (€ 53 million to € 230 million) over 4 years a blow out?
I did. I also pointed out that replacing 1400MW of baseload avoids more emissions at much lower cost that replacing peaking capacity.
Therefore, we should focus on baseload first.
KFL an unresolved question is whether renewables would increase or slide if subsidies and quotas were removed. In Australia the government’s own advisers said new renewables should stand on their own feet once carbon tax was introduced. That advice was ignored. Now we have wind and solar getting multiple layers of support – carbon tax to handicap coal and gas, capital assistance, loan guarantees, a 20% target, State feed-in tariffs and Federal renewable energy certificates worth about 4c per kwhe.
Take some or all of that away and I doubt there will be any more wind and solar installation. Some already built low yield projects could get mothballed.
Ender — The Atmea1, 5 under construction, does load folowing @ 5%/minute between 30% and 100%. Even the nearby old BWR can (and has done) diurnal load following between about 80% amd 100%; this after a period when it had intentionally been trottled back to 20%. That BWR ddoesn’t ordinarily run that way, but the situation in June of 2010 was rather bizarre.
Peter Lang, on 28 September 2011 at 5:43 AM — I’ve written a peer-reviewed paper, nonw published, with Frank Greening although I’ve nev er actually met him. His views on the CANDU are based on his knowledge of radiochemistry. I think his opinions ought to be considered quite seriously; that doesn’t mean I think he is right (or wrong) as I don’t have the expertise to judge.
@Barry Brook
I am not sure why it would be not rational to consistently oppose renewable energy regardless of the state of projects. Actually, the reason for opposition given in the article (intermittent availability) would seem to apply for an existing capacity even more than for one still only in the planning stage.
So if it is true that no one calls for shutting down existing projects and opposition to renewable is limited only to projects or policies still in the planning stage, how is that difference explained? Is there a specific level of renewable penetration that triggers the opposition? If so, what level would that be?
@John Newlands
You point out a third alternative I hadn’t thought of when asking that question. An opponent of renewable might take the position that there is no need to shut down existing projects, but that there will be no more feed-in tariffs paid even for those.
KFL:
An argument against capital expenditure offering only the very meagre returns which unsubsidised PV offers is easy to mount.
Argument for dismantling existing PV capacity is entirely different. It would, if rational, be based on the premise that there is a better use for the existing resource – ie, that the dismantled components could be recycled or reused more benefitially otherwise. Unless the scrap market for panels and support frames, etc, increases many-fold, these gadgets might as well stay where they are, providing whatever they can whenever the sun is shining.
My gut feeling is that few panels would be maintained optimally and some would soon become dilapidated eyesores.
Perhaps then, municipalities will mandate the removal of abandoned PV panels and wind turbines and solar thermal arrays and towers. Why so many are currently strewn, abandoned and unwanted about the landscape already without prompting regulatory action is beyond me.
See:
http://www.radicalgreenwatch.com/main/?p=1137 and
http://webecoist.com/2009/05/04/10-abandoned-renewable-energy-plants/
Perhaps abandoned solar panels will be recycled by thieves, as in this case of $50k worth of Australian federally funded panels being abandoned after only one year in service and then nicked from a NSW public school:
http://northcote-leader.whereilive.com.au/news/story/solar-shame/
Peter Lang – “So you don’t consider a 300% increase in cost (€ 53 million to € 230 million) over 4 years a blow out?”
No I would consider that a cost blowout its just that the references you supplied do not have that information. The best that I can find is two rounds of financing:
The first one is this:
http://www.renewable-energy-sources.com/2009/11/17/gemasolar-2006-sau-secures-financing-for-concentrated-solar-power-plant-in-spain/
Which is an 80 million Euro loan and this:
http://www.renewable-energy-sources.com/2009/01/19/171-million-euro-secured-to-fund-gemasolar-the-worlds-first-solar-power-plant-with-central-tower-and-salt-receiver-technology-commences-construction-in-spain/
which is a separate 171 million Euro loan. If you want to interpret this as a cost blowout then go ahead however it is not – it is just two rounds of financing. One from the European Central investment bank and one from another consortium.
” Is this an example of the sort of anti-nuclear site you rely on for your information?
MANDATE: “To continue the quest for non-nuclear electricity production at Nanticoke and elsewhere in Canada,”
Enough said on this one!”
I guess then Peter you will not be posting any information from BNC, Nuclear Green or any other pro-nuclear website that disparage renewables. As a later poster said the person that wrote the letter is highly qualified and you would be well to take heed of what he says rather then dismissing it out of hand as it does not suit your mindset.
” I also pointed out that replacing 1400MW of baseload avoids more emissions at much lower cost that replacing peaking capacity.”
Only if you assume a very low cost for nuclear and an very high cost for renewables. The IEA report referenced earlier says that the LCOE of any low carbon generating source is highly sensitive to the discount rate. Nuclear has very high capital costs and long build lead times. These are things you cannot imagine away. A question I asked earlier is looking from an investor’s point of view how attractive is a FOAK nuclear power plant in this current financial climate? How much chance do you think there is of getting low interest finance to hold down your LCOE especially if load following modifications have to be done and the plant may only run at 25% CF sometimes? As you are the free market champion on BNC there will be no subsidies or loan guarantees as these are distortions of the free market and I am sure you will bitterly oppose such socialist handouts.
So just how do you pitch a nuclear power plant to investors in Western Australia?
Ender, on 28 September 2011 at 12:50 PM — To finance NPPs in the USA requires a federal loan guarantee that the invsetors won’t lose their capital. This secures 30 year loans @ 10.8%.
At those rates and on a pure LCOE basis NPPs are currently less expensive than nominally 30% CF wind even with the government subsidy for the later.
As for begin FOAK, don’t build one. Use a proven design which is actually running elsewhere in the world. If the UAE can do it, surely WA can do at least as well.
David Walters – “Ender, all, it’s not true the EPR is the only load following reactor. The AP1000 can load follow and is based on the same engineering as the French fleet AND the EPR:”
If you look carefully I actually said that the EPR is the only one with published and acknowledged load following capabilities. It is a French reactor and the French, as they use load following nukes. would of course ensure that their new design could do this. The point is that a conventional, “off the shelf” PWR design like the AP-1000 is not load following unless it is modified with the same modifications as the French designs. I also do not know if the required modifications would then require re-certification with the NRC. I am sure that Australia would copy and/or acknowledge the US NRC certification process and demand similar certification of any design. Additionally the load following capability varies with the fuel load age. The French nuclear fleet is large enough to have baseload and load followers. WA would only have a small amount of reactors by comparison. They would have to be mostly load following to ensure that two or more load following reactors were capable of matching demand at all times.
” Suppose instead of the reactor following the load, we have the reactors 100% out 2/47 but we divert some of the electricity generated to a desal.”
It is a question of ramp rates and starting and stopping the desal units. You would have to have a control that ramped down the desal tubes in response to demand and then if you did this how much are you shortening the desal tubes life? What desal operator would like the plant stopped and started several times a day potentially?
Current peak summer demand is 3GW in WA.
http://www.energy.wa.gov.au/cproot/603/2759/Air%20conditioning%20paper.pdf
Demand can drop to 1GW during the day at the lowest point. This is a 2 GW range that you would have to cover with desal. Our current desal plant that produces 17% of Perths water consumes 24MW of electricity.
http://www.water-technology.net/projects/perth/
2GW of nuclear power plants output at 90%CF = 15 768 000 MWhrs
Current requirement for 17% of Perths water = assume that 24MW is used 24X7 = 210 240 MWhrs
The requirement to cover the highs and the lows of energy demand in WA is 75 times as much as we currently have. We only need so much water not 20 times our current demand. Also if we are going to find make up work for inflexible nuclear plants to do we are getting on a increasing load spiral that is the exact opposite of what we require. We need to be increasing efficiency and reducing demand in the future not encouraging extra loads just for make up work.
Ender:
I can think of three or four ways to achieve increasing efficiency and reducing demand. First, let us have a short discussion about personal choice and allocation of resources. In a reasonably free world, purchasing decisions (eg, on electricity) are determined via a ranking of the marginal utility of the proposed expenditure on electricity against all other available options for expenditure. The winner gets the purchase.
If the person whose money it is decides that money spent on electricity has the greatest marginal utility – ie, is valued more highly than the alternatives which are available – then electricity is what the money is spent on. Ender’s personal opinion is entirely irrelevant for all other consumers apart from Ender.
Now, Ender may think that the amount of electricity purchased/consumed is greater than is optimal. In the current free-ish market, there are only a few ways in to drive changes to the many personal decisions to purchase and perchance to waste electricity.
Option 1. Increase the retail cost of electricity to promote efficiencies through high prices. This might work a bit, but is Ender suggesting that prices should double via taxation so that I and others will buy half as much with a given number of dollars? Even that might not work, because I might divert some discretionary expenditure from food, grog or cigs to electricity (short term) or even sell assets to fund purchase of electricity (longer term). My consumption, and that of others, will probably be somewhat resistant to change via pricing alone. Besides which, many of us might act together and forcably overthrow the government (short term response) or wait a while and vote into office a government which has a policy of not doubling the retail price of electricity through taxation (longer term response).
erhaps Ender does not envision using taxation to achieve this – he might instead choose to drive us back towards the Dark Ages by forcing PV, etc, onto the market via MRET’s, FiT’s, subsidies, handouts and other chicanery. In which case, see (4) below.
2. Education. Marvellous in theory, but can Ender support hopes of massive reductions of electricity consumption through education by reference to a similarly successful education campaign? I suspect not, otherwise obesity, diabetes and many other ailments would, through education alone, have been reduced below their current epidemic levels.
3. Induced shortage of supply. Japan is enduring just such an event right now. Which West Australian power stations does Ender propose to shut down, when, and by what means, in order to restrain the electricity supply market? As in Japan, this will require extreme action and is likely to fail in the long term due to new entrants emerging and constructing even more power stations in order to benefit from the community’s demand for electricity.
4. Replace capitalism by installing a command economy. Central planning and central edicts will ensure that electricity is rationed, strictly limited, and personal choice will no longer matter. Best of luck… Aussies tend to love our freedoms.
So, Ender, please stop worrying about setting goals for huge reductions in electricity demand, unless they are based on actual, rational, democratically supported mechanisms. Forget it. It won’t happen in the short term without massive social disruption.
Meanwhile, in the short term, some of us seek to respond to threats of climate change, others choose to search for ways to reduce the cost of electricity, or to improve safety outcomes or a number of other things. It is delusional to pretend that, by process of taking thought, consumption of electricity in the state of Western Australia, or anywhere else, will be affected either up or down.
The determinant is the balance between supply and demand at a given level of satisfaction.
Load following specification for AP1000:
http://www.nrc.gov/reactors/new-reactors/design-cert/ap1000/dcd/Tier%202/Chapter%207/7-7_r7.pdf
This is not the same this as transient performance.
David – ” Use a proven design which is actually running elsewhere in the world. If the UAE can do it, surely WA can do at least as well.”
I think Peter and I agreed given the total lack of nuclear expertise in Australia any nuclear plant would be a FOAK. The UAE is getting a turnkey unit. Basically Korea is building, fuelling and operating the plants for 20 years for 40 billion dollars. The UAE will only get electricity – no technology transfer or anything. If that is desireable then yes we could do it however I am pretty sure I would rather have my power generating capacity in Australian hands rather than South Korean.
It ain’t easy bein’ green, as Froggy would say to Miss Piggy.
http://www.world-nuclear-news.org/IT_Big_money_needed_for_German_energy_transition_2209111.html
Expenditure of $627B Australian is planned over 19 years, yet Germany will still slide backwards towards an energy drought. The plan includes new transmission, new fossil fuel plants and heaps more renewables yet still only targets a 20% reduction in gross consumption by 2022.
Abandoning nuclear is going to be environmentally disastrous, hugely expensive and very uncomfortable.
With a population of about 40 million adults below the age of 65 years, that works out to over $15k per adult of working age, to still go backwards.
If, like typical other Western countries, about 2/3rds total electrical demand is industrial, commercial or transport, that suggests significant contraction in their industrial base as well as domestic customer constraints.
It takes a certain kind of pig-headed resoluteness to close down functioning (nuclear) power stations while contemplating a self-induced energy constrained future. This is the kind of outcome which the ZCA2020 Plan would generate, unless nipped in the bud.
John Bennets – “I can think of three or four ways to achieve increasing efficiency and reducing demand”
Thats good – keep working on it. As you probably know I think that it is delusional to expect to have endless growth in a finite world. At some point we can either choose to reduce or have the choice taken away from us as we are in overshoot at the moment.
If you want to stick to your world view then that is fine.
“So, Ender, please stop worrying about setting goals for huge reductions in electricity demand, unless they are based on actual, rational, democratically supported mechanisms. Forget it. It won’t happen in the short term without massive social disruption.”
Interesting concept that – democratically supported mechanisms. Does that mean a group of lobbyists can hold us to ransom while they increase profits? Look how public energy policy in Australia is basically set by the coal and aluminium lobby. We only have the choice of a coal mining government or a coal mining union government. If anything they are holding up action on climate change more than anyone.
I just fail to see where the democracy comes into it. And you are correct about the massive social disruption. Unless action is taken to reduce our consumption the Earths systems will start to collapse which will cause massive social disruption. Rational people would try to change before this happens (if it happens).
Ender again – and no, I don’t want to play the man.
However, his claim that Australia would need the Koreans to build and operate the suggested power station in WA is a bit too glib to let pass.
Australia has some very good engineers and contracting corporations. UAE has much less reputation for this type of work.
I don’t want to underestimate the difficulties which will be encountered, but by no means does this mean that we are discussing FOAK.
Proven design.
Reliable and educated workforce.
Excellent construction companies – some with strong reputations in UAE itself.
Different, challenging, but not FOAK. Pull the other leg.
And again…
@ Ender, on 28 September 2011 at 4:59 PM.
What? Only more personal opinion and wishful thinking?
The future of the world is much brighter if we work together to meet demand, rather than work to reduce capacity, reliability, consumption and living standards.
I prefer an NPP Type IV future, plenty of energy for the western-style countries and the developing ones, military security instead of resource wars and a habitable climate. The alternative is too horrid to contemplate, when an energy rich future is so very achievable and practical.
Sorry, but planning for failure is not my idea of a plan or of a future.
Some people have been holding up post tsunami Japan as an example of how we can all use less if we all do the right thing. According to the latest IEA Monthly Electricity Stats (June), electricity supplied in Japan is down just 1.2% YTD compared to last year. In June 2011 it is actually up 0.6% over June 2010. This of course by significantly increasing fossil fuel consumption.
http://www.iea.org/stats/surveys/mes.pdf
Ender, the only nuclear power station we have here in the Netherlands was also FOAK PWR when it was built. Yet it was built on time and on budget. It still generates electricity reliably at 85-90% capacity factor.
http://en.wikipedia.org/wiki/Borssele_Nuclear_Power_Station
Our first nuclear plant before that was a FOAK BWR for a FOAK nuclear country. Again built on time and on budget.
http://en.wikipedia.org/wiki/Dodewaard_nuclear_power_plant
It was politics that forced the plant to close. It still is politics why we haven’t built another plant. It is the same in Australia. It is actually prohibited by law to build a nuclear plant. As if it was murder. How many solar panels would be built if it were against the law and without production subsidies? Very few I imagine! This is the situation with nuclear power.
Politics isn’t carved in stone. We can change it or at least try. But we can’t change the unreliable nature of the sun and the wind.
John Bennetts – “However, his claim that Australia would need the Koreans to build and operate the suggested power station in WA is a bit too glib to let pass.
Australia has some very good engineers and contracting corporations. UAE has much less reputation for this type of work.”
I actually did not say anything of the sort. I said that the UAE is getting a turnkey plant, fuelled and operated for 20 years. I also said that I would prefer WA not to follow that path as it concentrates too much control in foreign hands. If you are going to play the man at least quot him correctly.
“Australia has some very good engineers and contracting corporations. UAE has much less reputation for this type of work.”
And so do the Fins that have built NPPs before and yet they are still over budget and beset by problems. Even the French are having problems. I never said that Australia would have problems only on the balance of probabilities if two experienced nuclear nations have major problems building a reactor that a totally inexperienced nation would have a trouble free build.
“I prefer an NPP Type IV future, plenty of energy for the western-style countries and the developing ones, military security instead of resource wars and a habitable climate. The alternative is too horrid to contemplate, when an energy rich future is so very achievable and practical.
Sorry, but planning for failure is not my idea of a plan or of a future.”
However the models show that such a future with plenty of energy simply runs headlong into resource constraints, overshoots and collapses. Read “Chapter 7 Limits to Growth – The 30 Year Update”and see how that model works. That is not to say that computer models are perfect however they do indicate trends.
The military plan for the worst and hope for the best. This is completely different from planning for failure.
Ender, Australia does not produce wind turbines or solar panels in any amount to matter. It is imported, just like most coal and gas power plant technology is. Australia has good engineers but it does not have GEs or Siemenses. Welcome to a globalized world. I think we can all agree that it is better to import the generating technologies from reliable countries than import oil and gas from unreliable countries.
Wind and solar don’t actually work, so the choices left are coal or nuclear.
Moderator – I included a reference in my post – “Chap 7 of Limits to Growth – the Thirty Year Update” – I guess I should have put quotes around it. The infinite in, infinite out model is discussed in this Chapter.
MODERATOR
Thank you. I have added the quotation marks to your reference.Sorry I missed it the first time. My comment has been deleted.
Cyril R – ” Australia does not produce wind turbines or solar panels in any amount to matter.”
It used to until lack of Government support killed it:
http://www.areva.com/EN/solar-220/areva-solar.html – read where Ausra started – now a wholly owned subsidery of AREVA
How about Suntech:
http://en.wikipedia.org/wiki/Zhengrong_Shi
“Afterward, Shi went to the University of NSW’s School of Photovoltaic and Renewable Energy Engineering where he obtained his doctorate degree on solar power technology.[4]
He acquired Australian citizenship[5] and returned to China in 2001 to set up his solar power company – Suntech Power. According to Forbes Magazine, he is now one of the wealthiest people living in China, with a personal net worth of US$2.9 billion as of March 2008.[5]”
I could go on about the opportunities lost to Australia through lack of investment in Green Technology. We are good at setting dirt though.
“Wind and solar don’t actually work, so the choices left are coal or nuclear.”
So would you like to include references for this extraordinary statement or are you able to comment without references?
MODERATOR
References are not required where statements reflect in depth analysis already provided and linked to on BNC. The information is on this site already backed up with scientific references.
Actually, I think the onus is on renewable energy advocates to refute what is essentially a null hypothesis. There is not a single working example of non-hydro renewables making an appreciable dent in any nation’s greenhouse gas emissions. And it’s certainly not for lack of investment – just look at Germany. At least with nuclear there are examples of serious fossil fuel displacement in places such as France, Belgium and Sweden.
In this time of massive and rapid climate change, surely we should be going with what we know works – leave the visionary stuff for later.
Ender, I do not subscribe to a theory of endless growth. I never said that I do, so please avoid the straw man techniques.
It has been demonstrated elsewhere on this site, at least to my satisfaction, that societies which have plentiful supplies of food and energy and reasonable security will, as has happened in Japan and Germany, eventually achieve ZPG. Arbitrary and unnecessary constraints on energy do not foster achievement of this goal.
Previous articles on this site, eg http://bravenewclimate.com/2011/02/04/an-environmentally-sound-energy-rich-future/, explain fully why an energy-rich future is possible.
The alternative to an energy-rich future, it seems to me, involves famine and war to cull our herd, both of which are far less desirable than voluntary achievement of ZPG. This discussion has become circular because your reference to “Limits to Growth” is essentially a reference to apocalypse.
A pessimistic world view is an admission of personal despair and which can be expected to be self-fulfilling. On the other hand, I do not consider apocalypse to be inevitable.
Barry’s efforts, through BNC and his book “Why Vs Why – Nuclear Energy”, have illuminated my own thinking on the subjects of population and energy abundancy and, especially, the primacy of these two issues in the overall scheme of things.
Either one, by itself, is not sufficient.
You aren’t arguing that world-wide societal collapse is inevitable, are you? Perhaps, to be followed by some kind of slow, sorry wind+solar renaissance build on the ashes of the 21st Century? If not, then how exactly do you propose that human population can be brought to within sustainable limits and kept there?
To come back to the topic of this thread, the author states:
That conclusion, coupled with achievement of ZPG though peaceful means, is the only acceptable way out of the conundrum which we all face.
Agreed. This has been pointed out to Ender several times before, but has apparently been ignored.
@ Ender, on 29 September 2011 at 12:57 PM:
For goodness’ sake, man! Why lay private failures at the feet of government but not private successes?
What are the guidelines which you would place on governmental support for emerging industries? Where are the example of successful governmental cherry-picking of new technologies?
Australia has about 0.3% of the world’s population.
What share of the costs of commercialising all of the world’s best ideas do you expect our government to finance? Is there a role for private capital here? Has private capital been demonstrated, time and again, to be a better predictor of success of emerging technologies than government handouts?
If Zhengrong Shi failed to raise capital in Australia, why is that the government’s fault?
Unfortunately, analysis of a project’s prospective commercial risks and benefits must always be done without the benefit of 20/20 hindsight.
I think it’s quite telling and quite representative how nuclear energy advocates often publish their scientifically, academically respectable analyses of energy policy in academically respectable peer-reviewed publications such as the journal Energy… whereas the anti-nuclear activists such as Mark Diesendorf seem to prefer the high-impact peer-reviewed scientific journals such as Green Left Weekly and “Dissent” magazine
John Bennets – “You aren’t arguing that world-wide societal collapse is inevitable, are you? ”
No – there is clear way that seems to work in Chapter 7. It revolves around the concept of sufficiency rather than comsumerism. Strikingly similar to the Simpler Way – Ted Trainer.
The energy rich model, at least in the computer models published in peer reviewed work, does not work as it runs up against resource constraints. There is no modelling that I know of that models the energy rich future you advocate and comes out with a positive outcome. I would be very interested in such work if you have it.
Tom Keen – “Ender, I do not subscribe to a theory of endless growth. I never said that I do, so please avoid the straw man techniques.
Agreed. This has been pointed out to Ender several times before, but has apparently been ignored.”
So you fully agree with Steady State Economy models that do not rely on growth? If you don’t agree with endless growth when does it stop? We are not just talking about population growth here. The population can be static and the economy still growing and using more resources.
http://steadystate.org/
@ Ender
I have replied to your comment on the latest Open Thread, as I think it is getting off topic here.
Graham Parker wrote: “The only feasible means to overcoming coal dependence is to deploy mature technologies that can meaningfully displace coal. Only gas and nuclear are capable of this pivotal role for the foreseeable future.”
–
I get so much out of these threads a comment that might put something back in. Not only am I resident of Ontario, Canada, which received about 55% of it’s generation from CANDU’s last year, my childhood home was about 600m from the AECL head office. It’s nice to see there are proponents here!
I recently read a study out of Oxford, from a link on this site:
http://www.oxfordenergy.org/wpcms/wp-content/uploads/2011/08/NG-54.pdf
The options, in my opinion, are not renewables OR nuclear OR gas. The options are nuclear, or renewables AND natural gas. I’d suggest the reason for this revolves somewhat around intermittency, but also on the much more predictable capacity value. If wind has there, as it does here, a low output expected during peak demand (annual), obviously the system requires a second back-up. I won’t discuss solar as I don’t have data on it (in Ontario), but what I’ve seen indicates the output varies rapidly and significantly – and a reliable system therefore requires the extra cost of stabilization.
The LCOE (I use the term LUEC) calculation becomes quite different when put in the context of a supply mix – the lower the CF of the complimentary plant, the less likely it is to be designed with measures to mitigate carbon emissions.
From the figures I’ve seen bandied about this thread, if you have 1000MW of baseload, and you’ve guaranteed the purchase of 1000MW of wind capacity whenever it occurs – you won’t have baseload nuclear, or you have an altogether difference LCOE, which nuclear proponents will attribute to wind, and wind proponents will simply ignore.
My calculations for my province are summarized at:
http://morecoldair.blogspot.com/2011/09/this-is-fifth-and-final-post-in-series.html
I’ll note this post from a retired nuclear engineer in Ontario that touches on the flexibility of output from CANDU reactors: http://coldaircurrents.blogspot.com/2011/01/ontario-needs-more-than-2000-mw-of-new.html
Ender, @ 28 September 2011 at 12:50 PM
I’ll address that and your comment about UAE nuclear cost in a separate post.
Isn’t this like the ‘pot calling the kettle black’?
Yea, yea We all know all that. I used a consistent set of LCOE figures from the EPRI report for DRET. What figures do you suggest, what’s the source and what do you calculate the cost per tonne avoided is for the two options: nuclear versus solar thermal hybrid.
Please post the details of how you did the calculations so we can all follow your calculations, assumptions, sources. I’ll post mine too.
Ender, you have been repeatedly called for raising strawmen. I notice Tom Keen has also pointed this out to you in a recent comment. I’ve noticed in several comments on this thread, and many in the past, you’ve ‘put words in my mouth’, or made statements which mislead others about what I’ve said. In a previous comment I referred you to “Addendum Attachment 1” in this comment: http://bravenewclimate.com/2011/07/06/carbon-tax-australia-2011/#comment-136436 If you’d bothered to read that you’d understand what I am arguing for. Also read the other links references at the end of the Attachment 1 to see examples of what I’ve suggested in the body of Attachment 1. (The main submission is in the preceding comment. It would be better but not essential if you read it before reading the Addendum).
Ender, @ 28 September 2011 at 12:50 PM
The 2005 estimate for Solar Tres (later it was renamed “Gemasolar”) was €53 million
http://ec.europa.eu/energy/res/sectors/doc/csp/csp.pdf (sorry, I did provide only the following link originally). Plant details here: http://www.nrel.gov/csp/troughnet/pdfs/2007/martin_solar_tres.pdf
Note it is a hybrid with expected 15% to 17% gas proportion, and110,570 MWh/a generation.
The 2009 estimate, at start of construction, was €230 million
http://www.solarpaces.org/Tasks/Task1/Task%20I.pdf . This was for 17 MW capacity, 15 h storage, hybrid with 17% of generation from gas, 100,000 MWh/a generation.
Final cost is not yet known. NREL has updated its Gemasolar fact sheet on 7 September 2011. However, it is still reporting the plant is under construction and still showing the 2009 estimate of €230 million.
http://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=40
€53 million to €230 million is a 285% real cost increase in 4 years (using 3% p.a. escalation).
The capacity has been increased since the time of the 2009 estimate of €230 million, so there may be an increased capital cost yet to be reported. The capacity has been increased from 17 MW to 19.9 MW. It still has 15 h storage and expected generation is still 110,000 MWh/a. I’ve been using the 2009 estimate, capacity storage hours, hybrid factor and estimated GWhe per year generation.
Based on the 2009 figures, the capital cost per kW = $23,225/kW and the average cost per kW = $34,587/kW (average).
For comparison, the figures for the UAE nuclear plant are capital cost per kW = $3,650/kW and the average cost per kW – $4,300/kW (average). The solar plant is about 8 times higher cost per average kW
http://djysrv.blogspot.com/2009/12/south-korea-wins-uae-204-billion.html
The contract for $20.4 billion is for construction, first fuel load and commissioning. A second contract for about $20 billion is for joint operation and technology transfer.
http://www.world-nuclear.org/info/UAE_nuclear_power_inf123.html :
(Emphasis added)
Ender @ 28 September 2011 at 4:49 PM
The UAE is FOAK for UAE. It is the first nuclear power plant in UAE. The same would be the case in Australia. We will also build our first NPP when people stop pushing their nuclear phobia. Our contract arrangements could be similar to UAE’s for our first plant. We would also have a technology transfer agreement like UAE’s but it may take place over a shorter time, and transition to entirely Australian operation and maintenance may occur faster than in UAE, perhaps.
Where did you get that from? Is it an authoritative source? I read that the second contract is for operation, maintenance, technology transfer, and hand-over to UAE progressively over an estimated 20 year period, but the contract allows plenty of flexibility with the timing of final hand over and the rate at which hand over takes place. That all seems good to me. I’d imagine we’d do something similar.
UAE have also asked KEPCO for staff training, establishment of university courses, etc. http://bravenewclimate.com/2011/02/14/gas-aplenty-but-uae-opts-for-nuclear-a-lesson-to-be-learned/
David, this paragraph of yours is complete and utter nonsense:
If you compare this, to, say how nuclear propulsion systems work, which is somewhat classified, that can do zero to full load in about 4 minutes (also classified :), that don’t use control rods like this, they rely as much on temperature control of the steam generator to control neutron poisons like xenon.
Show me a low quality steam engine – like a nuclear power plant – of any description that can go from zero to full load and back again inside “4 minutes”.
Can’t be done. (And remember there’s been a lot of discussion here in the wake of Fukushima about decay heat which takes several months to a year to dissipate so I’d be careful about your use of the term “zero” if I were you.)
And saying it’s “classified” won’t get you out of this. If it’s classified it’s not commercial – by definition. And is out of scope for any discussion about future civilian power supply.
For a current civilian design with high cyclability, look into the ATMEA1 NPP.
@ Ender
What lessons are you learning from the problems with the 2 EPR projects so that you can not make the same mistakes in Australia?
What lessons are you learning from the Koreans, Americans, Chinese, Canadians, and Russians so that you can have a successful construction of your first unit?
@BJ:
1. Upthread a way, you will note the difficulties I experienced (not) getting information about performance of solar thermal power plants within Australia.
Your affirmation that classified = military doesn’t stand scrutiny. Areva obviously use a different phrase, akin to “commercial in confidence”, but the end result is the same.
2. The residual decay heat in a NPP is not related to the loading and unloading ramp times of the attached steam turbine. There is nothing secret or classified about turbine stop valves, bypass lines or blowdown tanks. These are but three of the possible ways to get rid of the surplus heat.
To avoid showing lack of knowledge I suggest that you avoid the blunt, accusatory approach which some would find rude and adopt a more questioning stance when seeking supplementary information.
For example: “David, those ramp times are amazing. I accept that some details of military applications are not publicly available, but can you provide a publicly available reference for times of that order?”
By the way, my experience with quite large turbines coming back on line during a hot restart with a live boiler is that ten minutes from zero to full load is not extraordinary. And no, I don’t have a reference for this. The key issue is the time needed for warm-through of the steam components. If the metal is still at or close to operating temperature, then very fast reloading is possible. Unloading to zero from full load can be instantaneous and often is, despite it not being the ideal shutdown procedure.
Peter Lang – “Ender, you have been repeatedly called for raising strawmen. I notice Tom Keen has also pointed this out to you in a recent comment. ”
OK however now for some reason we are discussing UAE nuclear and Gemasolar rather than the original question of how would you manage Western Australian demand with nuclear. I have added some additional comments that have grown into strawmen.
The Korean bid for UAE, which you have argued about was only a side issue as one of the possible contractors for WA nuclear.
So forget the strawmen that I have apparently brought up and address the question.
Since at least half of projected WA demand is slated as mid-term load or peaking how does a nuclear solution address this?
The other problem is that in your world how would you attract investors to build a nuclear power plant slated for mid-term load?
Additionally if you are going to call an initial estimate of project costs to final actual build costs a blowout then you are really stretching.
“Based on the 2009 figures, the capital cost per kW = $23,225/kW and the average cost per kW = $34,587/kW (average).
For comparison, the figures for the UAE nuclear plant are capital cost per kW = $3,650/kW and the average cost per kW – $4,300/kW (average). The solar plant is about 8 times higher cost per average kW”
And the Korean NPP is a completely new design using completely new technology? I think not.
http://world-nuclear.org/info/inf81.html
“Beyond this, the Generation III Advanced Pressurised Reactor-1400 draws on CE System 80+ innovations, which are evolutionary rather than radical. ‘
The Gemasolar plant is the first commercial plant in the world that uses molten salt as the working fluid and the storage medium. It is true FOAK plant and would be expected to be very expensive. You cannot possibly project costs based on this.
Again the capital cost is EUR230 million / 19 MW = EUR12 000 / kW. I am not sure where you are getting your figures from. I can’t see how you get $23, 224 from 12 000 Euros. Is that Australian dollars? Did you use the exchange rate from US to Euro in 2009? The average figure you are quoting is false as capital costs are solely on costs / nameplate.
If you want to play at that game then your mid-term APR1400 nuke would be 5 000 000 000 / 1 400 = 3741/kW divided by .25 which is a the lower end of the published range for a mid-term capacity plant. That is over $14 000 (av) per / kW. This just illustrates the stupidity of using average CF figures in this type of calculation.
Ender,
I’ve addressed your question at least four times, including pointing you to Appendix 1 here: http://bravenewclimate.com/2011/07/06/carbon-tax-australia-2011/#comment-136436 . No point discussing this any more because you have not read the comment I’ve pointed you to repeatedly.
However, despite me repeatedly answering your question, you have not yet answered mine; not even attempted to. You’ve just ignored it or dodged it. My question to you is (last asked @ 30 September 2011 at 7:41 AM):
If you attempted to answer this question, properly, you’d better understand why renewables are not a viable way to reduce emissions.
I notice you didn’t acknowledge that Gemasolar cost blew out by 300% – this was a response to your frequently repeated highlighting of the cost and schedule blow out of the Finnish EPR. I trust you will have the courtesy to acknowledge this and put the issue to bed so you don’t keep on raising it on this and other sites as one of your main pieces of anti-nuclear argument.
No, UAE nuclear and Gemasolar are not side issues. You continually point to the Finnish nuclear plant as running over cost. You do not acknowledge that renewables run over cost to a far greater extent than nuclear. The relevance of UAE is that it is a FOAK for a country, just as the first NPP in Australia will be FOAK for Australia. (I am using FOAK here to mean first implementation of a new technology in a country). The UAE cost for a FAOK gives us a current cost per kW to work with for the first nuclear plants in a country under similar conditions. This is highly relevant. It exposes your exaggeration.
The calculation of 285% blow out and A$23,225/kW for the 2009 and escalated to 2010 are correct. But you are diverting from what is important.
Now I’ve addressed, again, the points you have kept repeating and I have kept on answering. Now, let’s see if you will answer my question, properly.
What do you calculate the cost per tonne avoided for the two options: nuclear versus solar thermal hybrid?
Please post the details of how you did the calculations so we can all follow your calculations, assumptions, sources.
Ender:
No, it was not.
This thread is and was about the renewables paradox:
The attempt to reduce this general discussion to a specific proposal somewhere in WA was introduced at comment 57 by Ender, on 27 September 2011 at 12:21 PM, with an affirmation, since laid to rest by several contributors, that uclear power cannot load-follow, so nuclear can only supply 1.5GW baseload and the peak above that must be supplied by other sources.
Since then, we have been subjected to an ever-changing tapestry of affirmations that only the French can load-follow (not correct – examples have been provided of NPP’s load-following between 30% and 100% at load rates of 5%/min); only large 1GW-plus NPP’s are being build these days, too big for WA (Also countered with examples), and so forth.
I particularly like the suggestion that, in comparison with NPP’s which definitely can (at a price) load follow, renewables somehow can do so. Only at an extreme price and in people’s dreams is this true in any meaningful way – load following implies that the wind and sun are at the command of the power station operator, not as is truly the case, the opposite.
As for cost blow-outs of 300% or whatever… even if Ender is correct that certain projects have suffered blowouts of this magnitude, where does that leave PV? Still too expensive unless remoteness or other site-specific factors are operating.
Regarding FOAK costs, Australia need not, as one contributor stated, need to purchase FOAK designs. Further, reactors have been operating at Lucas Heights for decades, so Aussies are not entirely novices regarding reactor operation, only regarding power reactors. Australia has plenty of experience in steam turbine operation and is home to several world standard construction companies. So, I wonder whether any part of Ender’s concerns re FOAK remain unanswered.
Yet still, Ender comes back with:
Ender, there is not a “total lack of nuclear expertise in Australia.” That statement is ridiculous and untrue.
Ender’s next move was to say that we need to be increasing efficiency and thus reducing demand is exactly what is addressed to the contrary by experience and by Jevon’s Paradox. It won’t bring about reduction in demand, because it has been shown (eg in California) that human behaviour is simply not like that.
This brings us to comment 111 Ender, on 29 September 2011 at 12:57 PM:
Ender also tried to hijack the thread into consideration of economic theory of endless growth and more. This thread is not about economic theories of growth – it is about coal dependance and the renewables paradox. Talk about off topic!
We all love a free ranging discussion from time to time, but this conversation must at least occasionally return to the issue at hand, which is that introduction of renewables into coal fuelled systems has not resulted in removal of dependance on coal.
These side tracks appear to me to be an endless string of efforts to deny the obvious – somewhat analoguous to the tactics of the loudest public voices in the climate change debate. They are not fruitful.
So, Ender: what do you really think about the topic of this thread? “Does it make sense to deploy intermittent renewables, en masse, while we still remain dependent on coal?” I, for one, think that Australia and many other countries have wasted a lot of public money chasing a very elusive goal.
I need to clarify my use of FOAK with respect to first implementation of nuclear in a country. ACIL-Tasman and other consultant reports have consistently shown how the costs reduce as more NPPs are built in a country. I was using FOAK in that sense.
Abatement costs for CSP in China and India are discussed here with a current abatement cost of $90/tCO2eq declining to a projected $22/tCO2eq over a 60 year period (taking into account learning rate, technical potential, reduced costs from rapid deployment, etc.). Predominantly draws on peer reviewed research, averted emissions from inefficient coal power plants, and lifecycle emissions assessments for CSP by Piedmonte et al. 2010, and more.
In a more developed setting (and taking into account more efficient power plants), Areva is doing much the same on it’s solar boost project at Kogan Creek in Australia (but at a much higher initial cost of $3000 per ton of carbon). Current capital costs are estimated at $1500 – 2,000/kW for connected system (utilizing existing grid connection and power plant), or $3,000-4,000/kW for stand alone unit. Not anywhere near your faulty estimates for Gemasolar (and from a reputable source less). The Chinese and India study by Ummel suggests the clear benefits to CSP, investment in range of hundreds of billions to get started, and technical potential to exceed the production of coal by multiple factors and at a relatively low current and future carbon abatement cost in rapidly developing regions of the world (China and India) … and perhaps elsewhere when technology matures (and when escalating costs for fossil fuels, and nuclear Gen IV thermal and fast reactors are taken into account).
Why is CSP still being promoted as if it were a viable alternative given the disastrous figures for the Gemsolar plant and the Kogan Creek experience? How are the problems to be overcome?
Because everyone knows fuel costs are going to rise, and capital costs for larger, more efficient, easy to build, easy to regulate, and easy to insure renewable energy technologies like CSP will continue to come down over time. And easy to anticipate technological advances in energy storage, transmission, and consumer demand management will further enhance the cost effectiveness, reliability, deployability, and carbon mitigation outcomes of these technologies (and at relatively high levels of consumer and investment confidence). If Ummel is correct that a $22/tCO2eq abatement cost is achievable within 60 years (and at 16-23 times the technical potential to exceed current coal power output in places like China), that sounds like a pretty good future bet to me. With current setbacks and pull backs with nuclear, projected high future costs, regulatory and global security concerns, unresolved technological issues with waste storage and fast reactors, declining public confidence, slow (if not stagnate) built-out and development in Europe and US, political and financing obstacles (especially with large capital projects and global credit crunch), and more … I’d say the energy sector is trending towards small, quick, and easy (rather than big, long, and difficult), looking mainly to low hanging fruit in short run (cost effective and job creating energy efficiency), and likely with comparable cost, reliability, and emissions benefits over time to other non-renewable alternatives (such as nuclear).
@ EL:
What the energy sector is presently doing (in regions where nuclear is obstructed) is building fossil fuel capacity. There does not appear to be any discernable path to achieving sufficient cost reductions in CSP technology. This is not a failure of technology. The technolgy is mature. The problem lies with the underlying physics. It matters not how good your bucket is if it hardly ever rains. It is also simply not true that nuclear has irresolvable waste problems. The technology for safely disposing of nuclear waste is here now, and has been for some time. It’s only the success of obstructionist anti-nuclear activists which has obscured this fact in the public’s mind. Likewise with insurance. The present public backlash is no excuse not to proceed, and will likely not be a factor within a few short years. The only nations which are basing policy around the artificial public backlash whipped up in the wake of Fukushima are a few in central Europe which already had large, well-orgainised anti-nuclear movements able to daunt the present governments, and it is unlikely the policy can be sustained for long enough to have any real impact on the medium and long term future.
EL:
When you advocate picking the low hanging (energy efficiency) fruit, you are focused on the part of the tree which has been picked through repeatedly. You are guaranteeing low returns.
Why not look at the whole tree? 24/7 availability, reliability, baseload capability and at affordable instead of stratospheric costs?
Your assertion that low hanging, short term fruit, in an energy context, is either job-creating or cost effective has been put into perspective before. Remember Jevons’ Paradox. Reduction in electricity consumption for individual loads has been demonstrated to result in increased use of electricity and thus increased overall load. This is true not just for electricity.
A whimsical discussion of Jevon’s Paradox appeared a year back in SMH. Michael Leunig, once a very well respected left wing cartoonist, explains it much better than I can.
http://www.smh.com.au/opinion/society-and-culture/the-opposite-is-true-20101112-17qd2.html
So, increased efficiency or not, the question remains: “How will the demand be met?” Leunig and Jevons and whole squadrons of economists say that efficiency will bring with it increased demand. You apparently disagree, for no better reason than that you don’t want to agree.
You have, apparently no real world answer to meeting increasing demand, either in Australia or the world as a whole, short of draconian and undemocratic means – civilization crashes or despotic edict. How about proposing something that will work in the real world, with real humans, for at least, say, 200 years?
And, yes, I have replaced all of my incandescent light globes which are used once a month or more. Improved efficiency is a good thing – it just won’t reduce demand.
EL,
Wow. What a pile of misleading (uncomparable) information. You throw out a lot of unrelated figures, but do not answer the question you set out to answer. The question you set out to answer was:
So what is the answer? What is the cost per tone avoided for each option on a properly comparable basis? And where are your calcualtions? The answer is nowhere to be seen in your comment. That’s par for the course for the renewable energy advocates.
That’s worth highlighting! $3,000/tonne CO2 avoided
Please advise why the Gemasolar cost per kW is wrong in this comment: http://bravenewclimate.com/2011/09/25/coal-dependence-and-the-renewables-paradox/#comment-137209 . Also please advise why you find the NREL and EU sources provided for the total project cost figures are wrong? I’ll be very interested to hear your answer. I expect it will be “not to my liking”.
Dream on! Some will believe what they want to believe no matter what the evidence to the contrary. Once someone has a belief, it is hard to shake it.
Just to clear up the discussion about the Gemasolar capital cost per kW, I notoice that Ender and EL are saying its wrong but have not been able to show why. Thye simply say its wroong (i.e they don’t like it.
Firstly, note that the 2010 total project cost of EUR230 has not been updated since the estimate at the start of construction, despite the capacity being increased, Also notice that the estimated generation per year has not increased in the 2010 update.
So as I said, I used the 2009 figures for the calculaltion of cost per kW.
The inputs for 2009 were:
Capacity = 17 MW
Total Project Cost = EUR230 million
EUR/A$ = 0.6
Escalation rate: 3% p.a.
Capital Cost/kW = A$23,225/kW
I have just completed a first reading of Ummel, as cited by EL, on 3 October 2011 at 2:37 AM.
This article includes the most sweeping assumptions I have ever read, anywhere.
A few:
Suitability of land for CSP use can be determined from space on a 1km grid.
All land so assessed as being suitable can and will be available for CSP – no questions asked.
Compounding “Learning rate” dividends of 10%pa apply to CSP, but with not a whit of explanation as to what these supposed savings may derive from. Are mirrors and structures suddenly to reduce in cost at that rate endlessly? Are low pressure steam turbines suddenly going to become dramatically more efficient? Year on year? Says who? (Figs 14 – 17 plus subsequent text.)
These learning rates appear to have been selected carefully, as also the cost of capital (7.5%), to ensure that if the base line is extended sufficiently, then a claim can be made that parity will be reached as against coal, in 15 (India) or 20 years (China). This hides a supposition that the relevant governments and the populations that they represent will happily pour billions of dollars each year into a more expensive technology in the hope that at some future date the amount of subsidy needed to continue the charade will somehow have reduced to zero, after which time the (privately owned?) power generation will continue profitably, although probably not to the benefit of the general public. This smacks of a scam to privatise the profits and socialise the losses.
The derived LCOE figures, even after some truly heroic assumptions, are still 18 to 24 cents per kWh, ie not competitive with many competing technologies. (Figs 8,9)
Assumption that CSP will contribute 50% of capacity and will be preferentially loaded – minor things like load following are ignored. (Text above Fig 10… page numbers would be handy.)
Some of the multi-colour graphs don’t even bother providing a key for the various pretty lines. See, for example, Figs 15 and 17, which are meaningless without further explanation and keys.
Another heroic assumption is that 25% of all rainfall in the selected desert regions will be harvested as runoff and stored for generation of boiler feedwater. Even in eastern Australia it is common to find streamflows for whole catchments which approximate 30% of the annual rainfall, and this is no desert. No indication has been given as to how this could be achieved, at what cost, how stored, what allowance has been made for evaporation losses, etc. This is after simply assuming that condensers are dry cooled. Are the capital and operating costs of dry cooling accounted for? Apparently not.
I could go on, but this reference is an amateurish, skin-deep, certainly not peer reviewed, purpose written piece of greenwashing. As to whether the clear bias and skewed analysis amount to academic dishonesty or simply lack of rigor, I will leave for others to determine.
Reading it was, however, a waste of time and effort.
Peter Lang – “What do you calculate the cost per tonne avoided for the two options: nuclear versus solar thermal hybrid?
Please post the details of how you did the calculations so we can all follow your calculations, assumptions, sources.”
Sure:
http://beyondzeroemissions.org/zero-carbon-australia-2020
Unlike you I do not make superficial analysis devoid of any modelling and then call them authoritive. The BZE team did some comprehensive modelling and came up with a costed answer far better than I could.
Then perhaps you could answer the questions I posed about fitting current nuclear power into Western Australia.
(Deleted inflammatory comments/replies)
John Bennets – ” Does it make sense to deploy intermittent renewables, en masse, while we still remain dependent on coal, and are forced to use the least efficient peaking gas turbines to backup for intermittent renewables, rather than installing high-efficiency base-load gas turbines in the first place?”
Actually I posed the question to Peter Lang who glibly announced that WA would need one nuclear power station. I then posted a link describing the future power needs of Western Australia and posed the question of how nuclear is going to fulfil the requirements of 2014 when 50% of the capacity required is mid-term and peaking capacity.
In WA your statement is false. The demand requirements of a grid that only has a small amount of renewables demands a high proportion of peaking capacity. WA already has high-efficiency baseload generators at Kiwinana. The new breed of CCGT are flexible enough to cope with renewables and be efficient.
In the nuclear WA scenerio fully 50% of the demand in 2014 would not be able to replaced by conventional base-load only nuclear. I used real figures from WA to focus the discussion on a distinct entity rather than on generalities.
EL – “Abatement costs for CSP in China and India are discussed here with a current abatement cost of $90/tCO2eq declining to …..”
Thanks for the links.
(Deleted inflammatory comment)
(The comment to which you refer was deleted)
(Deleted inflammatory response/comments)
Moderator — Maybe this ‘he said’/’he said’ coud be brought to an end, at least on this thread? It has become tiresomely unproductive.
MODERATOR
I agree and I am in the process of editing the conversation between PL and Ender, which has become nothing more than a petty sparring match.
MODERATOR
I have just logged on to BNC today and am in the process of editing /deleting this unedifying conversation between you and PL.
(Deleted)
MODERATOR
See my remark to Ender.
(Deleted)
(Deleted)
@ Ender:
(Deleted inflammatory remark)
In the absense of clear indication just what parts of my contribution Ender is referring to at any given time, I am forced to guess.
So, E&OE:
Ender continues to avoid recognition that nuclear power plants are very much capable of load-following, in many cases over the majority of their range. Thus, anything else that Ender posits regarding the share of load which hypothetical nuclear plants can supply in a hypothetical future in WA is fatally flawed and should be disregarded.
I guess that we are now at para 3 discussing CCGT. Although, in actual fact, I wasn’t really discussing CCGT: Ender chooses to do so, and thus to remain blind as to the role of OCGT in a mixed generation scenario. OCGT is the tool of preference for quick-and-cheap load balancing. The existence of an individual CCGT plant at Kwinana does not negate the existence of other existing OCGT or proposed OCGT plant. It will be high-carbon, inefficient OCGT which is called up first and most often to provide rapid peaking and to back up unreliable renewables. Such CCGT as may exist will, due to its greater efficiency, already be fully loaded. OCGT will thus always be operated as baseload, regardless of whether or not it is capable of load following. That is unavoidable economic reality.
Last para, about nuclear baseload: Ender again relies on the fallacy that nuclear power is not capable of load-following. By so doing, he effectively denies that France exists, or the many other examples of load following nuclear power plant, given above by sundry contributors.
Ender’s contribution at 2:00pm today is thus quite stubbornly incorrect.
MODERATOR
Now that I have returned to BNC, as suggested by DBB, reinforced by yourself, and heartily endorsed by me, the uncalled for PL/Ender spat has been edited/deleted.
@ moderator:
Peter was responding to Ender’s repetitious nonsense, and doing quite well. He was performing a valuable service in the absense of the service which you are supposed to provide concerning repetative/innacurate rants. The characterisation of the exchange between PL and Ender as a ‘spat’ with both equally guilty is a gross disservice to Peter. Jumping in after an extended absence and blaming both parties as you have done with no attempt at even the slightest bit of analysis has greatly reduced your credibility, at least in my eyes, for whatever that is worth.
MODERATOR
It is not the job of the moderator to”analyse” comments or to judge whose “rants” are repetitive/inaccurate. To do that on a scientific site like BNC one would need to have a far greater depth of knowledge on climate change, biodiversity and energy systems than I can claim to have. I can, however, recognise when two commenters are “having a go” at each other and, in the process disrupting the thread. They were also veering off-topic. The fact that others on BNC perceived this to be the case and commented on the exchange would seem to support my perceptions. As to having “an extended absence” (if indeed less than 24 hours can be construed as such) from the blog, I make no apology, as a part-time, un-paid volunteer, for taking some time out. I rely on Barry to pass judgement on my credibility, and not on you, or any other commenter.
Moderator – “MODERATOR
Now that I have returned to BNC, as suggested by DBB, reinforced by yourself, and heartily endorsed by me, the uncalled for PL/Ender spat has been edited/deleted.”
Thank you – I heartily agree – none of the comment I made in response to PL were worthy of keeping.
John Bennets – “Last para, about nuclear baseload: Ender again relies on the fallacy that nuclear power is not capable of load-following. By so doing, he effectively denies that France exists, or the many other examples of load following nuclear power plant, given above by sundry contributors.”
I have NEVER EVER relied on the fallacy that nuclear power is not capable of load following. I posted the links to the article that discusses this and the limitations if you would care to look. I am fully and completely aware that specially modified or designed NPPs are capable of load following.
The question I asked in the context of Western Australian capacity planning and in a free market who is going to pay for expensive nuclear power plants to do load following?
However in the interests of all I am not going to post any further comments in this thread. We are in severe danger of Ender fatigue once again.
Finrod, do not attack the moderator — such behavior is as wholly inappropriate here on BNC as attacking an umpire in a cricket match would be. Stay polite, accept the referee’s adjudication, or go elsewhere. As I’ve said many times to other commenters, the choice is yours.
It’s because you’re using a lot of incorrect figures. We’ve gone over this once before. I don’t know why you continue to make the same mistakes, and to compare different sources (and different cost estimates from different time periods, different plant design proposals, even faulty exchange rates, in an effort to high ball the worst possible of all possible capital cost projections). The plant is 19.9 MW in size, and cost €230 million in 2009 dollars (as detailed in NREL and Torresol fact sheets, which you continue to read incorrectly). This calculation is rather simple to make based on available information.
Gamesolar: $14,614 USD/kW (Feb 27 2009 exchange rate $1 Eur to $1.2644 USD).
If we were to use this to calculate carbon abatement cost. Plant is estimated to “reduce carbon dioxide emissions by more than 30,000 tons CO2eq per year” (here). Assuming 30 year plant life (typical for CSP plant):
Carbon abatement cost: $61 USD/tCO2eq (and with none of the non-renewable fuel, financing, insurance, public confidence, investment risk, capital cost escalation risk, waste disposal, regulatory, global security, and other concerns of nuclear).
Ooops! My bad! I estimated carbon abatement costs for a single year. Assuming 30 year plant life (typical for CSP plant), this should be adjusted to $100/tCO2eq. This is certainly well within 2030 estimates for CSP using conservative assumptions in well-regarded McKinsey study, which come in under $60 USD/tCO2eq.
With only a handful of demonstration and early commercial plants worldwide … this technology is no where near “mature.” Here are a few sources indicating where technological development is likely to occur: optical efficiency of heliostatic fields, further innovation in collector design and materials, heat absorption and transport, power production and thermal storage (review article), mainstreaming regional land use, deployment, political and manufacturing concerns and economics (in places such as Germany, China, Africa and Europe, rural Australia, N. Africa and Middle East, etc.), innovation through new patents, and a great deal more. McKinsey research, likewise, talks about reduction of cost curves with CSP as a consequence of improved manufacturing processes, new technologies, and lower component prices (from 15-16 c/kWh $USD to 11-12 c/kWh by 2020 for parabolic trough CSP, or -3% compound annual growth).
If you have any evidence to the contrary, that CSP has reached full maturity, and has no further opportunities for cost reductions, please include it here. I would be interested in seeing it!
Yes John. You raise a number of excellent points. At risk of making this post far too long … I’ll only touch on two of them very quickly. 1) I never suggested the Ummel article was not ambitious (or speculative) in it’s assumptions. I would expect this for a piece that considers a topic “largely unexamined” (such as CSP in Asia), and also for a global development organization (that was intended as an action document to spur people to further research and study). But it does draw on peer reviewed research, and as I suggested is mainly applicable to developing regions with very low labor and land costs, and political regimes that allow for land-redevelopment without many of the major headaches we have in the West. I hope I have also provided enough other sources at this point to suggest that the current carbon abatement range of $60-100/tCO2, and much lower costs in the future are well documented (and with much fewer of the headaches of other non-renewable technologies … especially as regards global security, finance, insurance/investment risk, etc.).
2) I don’t really have a problem with Jevon’s Paradox (the main topic of this post). I’d promote energy efficiency for greater levels of energy intensity (and thus lower emissions per unit of work performed) any day. Yes, this may lead to greater overall consumption rates (or development of technologies that do more with far less energy), and this is a good thing, but we are getting far less emissions per unit of work performed than we would be getting otherwise (and I like this). Following Jovens, energy efficiency appears to lead to lower costs of energy, major advances in technology, and lower emissions per unit of work (or greater energy intensity) … all very good things. If we want to lower overall consumption rates, this is not a very hard thing to do, either. Just tax energy consumption, raising the retail price of energy to cover the lower cost of efficiency improvements, and use this “paradoxical” windfall for anything you want: higher wages for energy workers, health care or ecological restoration to restore adverse impacts from energy development, or put it back into the system to support R&D (as you would in a private corporation). If we want to lower overall consumption rates: greater energy efficiency, the right technology mix, free markets, better leadership and education, and intelligent (voter supported) public policies sound like the right combination to me!
Moderator,
This comment http://bravenewclimate.com/2011/07/06/carbon-tax-australia-2011/#comment-136436 by Ender has been allowed to stand, despite its content, while my reply has been deleted, so I trust you allow me to respond to it.
BZE’s ZCA2020 Plan does not provide the answer to my questions. Firstly, it has been totally discredited in numerous critiques. Secondly, it does not compare the cost per tonne of CO2 avoided by nuclear with solar thermal hybrid. Thirdly, even their estimated cost of electricity is far higher than with nuclear to do the same job. .
The technology BZE used for its analysis does not exist. However, even if we use highly optimistic assumptions about development rates, learning curves, the cost of electricity from such a system would be some ten times higher than current electricity costs.
Using high cost estimates for nuclear, based on current estimates for first NPP’s in Australia and with many of the current impediments to nuclear remaining in place, the ZCA2020 Plan electricity cost would be many times higher than with nuclear. If the impediments were removed from nuclear, which I am confident they will be eventually, the electricity cost for nuclear would be about 1/10th that from the ZCA2020 Plan.
Your question has been answered repeatedly by me and others upthread. I also pointed you to Appendix 1 in this comment http://bravenewclimate.com/2011/07/06/carbon-tax-australia-2011/#comment-136436
five times, and you have not acknowledging you’ve read it.
EL, @ 4 October 2011 at 5:52 AM
You’ve got oit all wrong. The foigures you quoted at the comment you linked to were all wrong which was explained to you in subsequent comments. Please read them. Your understanding of the calculation is also wrong. I provided all the correct figures from authoritative sources in comments that have now been deleted. But there is no point me explaining it all again.
.@ EL:
The linked article resides behind a paywall, but the abstract does contain the following information:
12-19% improvement in optical efficiency. That’s not going to make up for an electricity cost ten times or more that of conventional power. It’s nibbling around the edges, which is a characteristic of a mature technology.
This article is also befind a paywall, but there are no useful tidbits in the abstract this time (ie, no actual numbers). Given that the spin from CSP developers over the past decade has been that advanced materials are going to rescue it, it is a bit odd that the most recently constructed projects don’t incorporate these advances. Or do they?
Are you really counting those factors as revolutionary, or even evolutionary breakthroughs? Surely siting, land-use, political issues and the rest are all part of the basic negotiations to set anything up in the first place. If anything, wouldn’t such factors actually become more expensive once the first coddled pilot projects got through, and various authorities put their fingers in the pie (assuming this stuff can be made to work economically)?
Once again, the article is behind a paywall, but this time there is an interesting quote to be had from the abstract:
This comment hardly presages great news of innovation on the CSP development front, but perhaps there’s more hope to be had from the article itself. Perhaps EL could let us know the details, if he has actually read the article himself.
I’ve not yet read the McKinsey article, but I’ll see if I can get to it later today.
Finrod is wasting his time trying to find possible future revolutionary savings in CSP costings.
His main reference includes a wild guess that savings of 10% of capital cost, year on year for 30+ years, will be achieved. They are called “learning rate dividends”, but the context illustrates that this is counted as 10% off capital.
Now, 90% of 90% of 90%… over 30 years is a measly 4.24%.
There are certainly improvements to be made in automation of manufacture, refinement of structural design, innovative foundations, innovative approaches to earthworks and drainage, tracking mechanisms, steam cycle design, project layout and control systems and more, but these are likely to reduce the cost of each component or subsystem by perhaps 5 to 50%.
On this basis, I expect the real cost in 30 years’ time, of ST plant to be within the range 30 to 70% per square metre of reflector of the cost of equivalent plant today.
Indeed, I have witnessed substantial development in fabrication due to the use of robots for assembly. This has reduced the need for bolting and for welding to almost nothing.
Similarly, some modern solar arrays are installed on earth screws which do away with the need for concrete entirely.
When designers learn to fully integrate the skills of many trades, further substantial improvements will emerge. My experience has suggested to me that the lead designer tends to dominate the process and to freeze out the efforts of the remainder of the ST design professionals. This is understandable, because each ST plant tends to be a “one-off” design. The day has not yet arrived where designs are available across a palette of options to accommodate local wind and ground conditions and end uses (Storage? High temp? Low temp? Supplementary steam for an existing boiler? Gas supplemented? and so on.)
Each ST array and its associated plant tends to be custom-designed in order to comply with local conditions, applications and regulations.
However, the evolution of designs which will take place cannot approach the totally unjustified and fanciful number of 10% per annum for 30 years.
This selection of low discount rate (7.5%pa) and high “learning rate” (10%) are, effectively, a fraud, the purpose of which was to arrive at unrealistic financial projections in Years 15+, where positive returns on investment are predicted.
If reasonable discount rates and learning rates are substituted, then the learning rate will at all times be less than the discount rate. The projects will start out cash-flow negative and stay in the red for ever, all other assumptions staying unchanged.
There is absolutely nothing of value to take away from this reference – Ummel’s report is a fraud and a sham.
The statement that Ummel has referenced some peer reviewed work in no way suggests that the values of peer review are present in his own work. Reference in a bibliography is no guarantee that the contents of the referenced work have been read, understood or respected in the resulting paper.
No peer reviewer worth his salt would allow anything close to the cited work to be published. It really is a good example of shoddy work. It would be a good example of how NOT to prepare a paper and might thus make an interesting tutorial subject for aspiring first degree Honours candidates.
I suspected as much.
Moderator — Thank you.
The article is primarily interested in assessing the “temporal and geographic dimensions of innovation” in CSP technologies by way of reviewing patent development in European (EPO) and US (USPTO) patent offices. Why do they think it is important to do this, primarily because academic research on the topic has not kept up with commercial and technological development of CSP: “The sheer volume of industry activity around CSP in these and other projects is striking, but academic research on technological progress in CSP technologies has failed to keep pace” (p. 2441). They specifically recommend a method of turning to the “innovation literature” (empirical patent data) as one basis to address this issue, and predominantly leave open the question whether patent number and type are an accurate measure of “commercial” or “technological” advancement and viability in any particular field.
What are their reported findings: yes, indeed, they find that CSP has not kept pace with the growth rate of observed patent development for other renewable technologies (namely solar PV and wind), and specifically for the period 1985 – 1995, which they call the “lost decade.” For the more recent period, they see growth rates begin to improve, and see “stronger innovative output since 2000 particularly at the EPO” (p. 2453). Further, they see a geographic concentration of CSP patents in high-tech countries with relatively small market potential for CSP applications (namely Germany and Japan). This trend is just starting to be reversed, and they are recently seeing an increase in patent growth in countries with CSP applications (such as Israel, Australia, and Italy). They understand this largely as a function of active R&D support measures, expansion of research capacity, and human capital development. “What this analysis shows is that regions regarded as being innovative in general can apply this strength in the field of green technologies, though they often have limited natural potential for the use of CSP themselves” (p. 2453). As a consequence, they recommend initiatives and making a priority “technology transfer and knowledge exchange between countries developing the technology and [those] adopting it” (p. 2453). So, in terms of Finrod’s main question, one could say it is one of the primary conclusions of this study that CSP is actually “less mature” than other RE technologies (specifically solar PV and wind), particularly with respect to technology transfer and knowledge exchange (and requires further development of technical training, research capacity, and human capital supports to keep up the pace of rapid development of other competing renewable energy technologies).
Yes, these articles are behind a paywall. Such is the nature of a lot of academic research and peer review (I wish there was wider use of open access). I’m a university researcher, so I have access to these articles through my library. Since it seems there is actually some level of sincere interest in the state of materials research and technological development in CSP (from two contributors at least), I thought I would post a summary of one of the more relevant articles in the group (providing an overview of innovation in CSP over last decade). It’s a very concise and informative assessment of many of the technical problems and engineering developments for this technology.
Paper: Solar Energy Materials and Solar Cells, October 2011, “Innovation in Concentrated Solar Power” (by David Barlev, Ruxandra Vidu, and Pieter Stroeve). 95(10):2703-2725.
Authors provide an overview of technological development in four main CSP technologies: parabolic trough collectors (which they describe as “very mature,” low relative thermodynamic efficiency, low relative cost, and with 15-45 concentration ratio as factor of “suns”), linear fresnel (“mature,” low thermodynamic efficiency, very low relative cost, and with 10-40 concentration ratio), solar tower (“most recent,” high thermodynamic efficiency, high relative cost, and with 150-1500 concentration ratio), and dish-stirling (“recent,” high thermodynamic efficiency, very high relative cost, and with 100-1000 concentration ratio). I’ll provide a brief summary of their review (as they describe them) for each of the four main technologies. And it’s worth noting I’m not an engineer or materials scientist (my field is government policy, indigenous rights, public programing and communication strategies around climate action and adaptation in diverse and low income communities, and public education). I look at energy and technology issues, and participation on sites like this, more as a personal interest (rather than a professional concern).
Cost savings can come from many different factors (as described in intro): optimally matching collector type and design to technical, economic, and environmental factors; innovation in mirror/lenses, meeting important criteria for reflectivity and lifetime requirements; innovation in thermal collector materials, vacuum insulation, surface treatments, flow rates, inlet temperatures, concentration ratios, operation temperature, and receiver size, etc., contributing to minimal radiative losses, minimal heat loss, and maximal thermal efficiencies; and more. Most important are: “materials chosen for light concentration and absorption, heat transfer and storage, as well as the power conversion cycles used” (p. 2705).
Parabolic Trough Collectors (PTC):
Most mature, multiple large scale commercial farms, optimal temperatures for most industrial heating processes and applications (running below 300°C), HTF flows (water or oil) to boiler, turbine, or storage facilities with pressure and temperature controls for constant output of steam typically between 9 am and 6 pm, utilizes different recirculation schemes of feed and flow fluid to minimize stress, reduce corrosion, and boost tube lifetime (citing several studies maximizing this trend), test facility for thermal-chemical storage reporting up to 53% efficiency, summer has highest energy demand and maximum energy production (in most regions), several studies looking at tracking improvements and susceptibility of collectors to wind loads (and advantage of thin fiberglass layer), receiver design also has received a lot of attention (finding optimum temperature gradient, operating temperature, fluid type, tube length, dynamic modeling, use of heat pipe with 15 year lifetime, and one study reporting 17.5% improvement in heat transfer), several studies of hybrid designs (one utilizing hot water from geothermal sources, another solar PV to minimize solar flux and producing total efficiency of 69%). They conclude PTC “lends itself to easy storage schemes, as well as to simple integration with both fossil fuels and other renewable energy sources” (p. 2707).
Heliostat Field Collectors (HFC), Solar Tower:
Most recent, few examples (handful of small test facilities in CA and Spain), two axis tracking mounts, concave mirror segments increase production costs, large amount of radiation on a single receiver minimizing heat loses and maximizing heat transport and storage, uncomplicated integration with hybrid plants, large plants that benefit from economies of scale, very high concentration ratios operating at high temperatures (over 1500°C) enabling higher energy cycles, studies looking at optics, minimizing losses at receiver surface, transport losses with height of receiver, proximity of turbine, solar reforming to methane or syngas for combined cycle, optimization of operation temperature, heliostat field density and power conversion across many energy cycles, integration with solar PV, studies of dual receivers of different materials and fluids (demonstrating “numerous benefits” and 27% gain in annual output), huge challenge laying out heliostat field (several approaches are considered), liquid flourid salt as heat transfer fluid improves heat-to-electricity conversion efficiency by 50% (this study by ORNL, “the efficiency boost reported by the authors can greatly reduce electricity costs,” p. 2709), study of novel high-temperature air receiver (modular and promotes easy scaling and continuous production of steam at 485°C and 27 bar, air is “free” and significantly reduces cost), studies examining heliostat materials (“large mirrors make up about 50% of the total system’s cost,” 2710), consideration of PVC composite plastic steel (but has problem of low heat resilience), different heliostat cleaning methods, size to torque ratios, decreasing wind deflection, minimizing moving parts, low cost of mini-mirror arrays (but at significant performance drop), studies to improve site planning and matching solar flux to heliostat pattern. They conclude high capital investment is an obstacle, “and further technological advancements in efficiency must be accompanied by low cost materials and storage schemes for this CSP method to become more economical” (p. 2711).
Linear Fresnel Reflections (LFR):
Similar to PTC, one or two axis, tower receiver (saves on receiver costs), mirror design (more cost effective than PTC), more accurate and efficient tracking, challenge of light blocking between adjacent reflectors (requiring more land or increased tower height adding to cost), Australian work on two receiver design (improving performance when land is limited), consideration of cavity receiver and direct steam generation (with different absorbers), consideration of wave shaped platform to minimize shading (with reported 85% increase in solar concentration), lots more research on receiver design and absorbing surfaces, use of phase change materials for storage in large plants, consideration of latent heat storage, LFR easily coupled to molten salts transport system. Authors conclude: “Innovation in receiver design and reflector organization has made LFR relatively inexpensive in comparison with other CSP technologies” (p. 2712).
Parabolic Dish Collectors (PDC), dish-stirling:
Point focus collectors, high light concentration ratio, high temperatures (utilizing more efficient energy conversion cycles), receivers mounted close to central generating station or to the focal point of a single receiver (more common), simple to match with fossil-fuel hybridization, does not lend itself to thermal storage, high cost devices, studies looking at more inexpensive micro-mirror design (trading off cost reduction for performance), innovative alkali metal thermal-to-electric converter reports 20.6% conversion efficiency, studies looking at fiber optics to carry solar radiation to central receiver (a “paradigm shift”), fiber optics can achieve 80% efficiency at “incredibly high concentration ratios of up to 30,000 suns,” p. 2714), off the shelf prototype performed well, promising technology with respect to efficiency and cost (but not well adapted to year round power production or thermal storage).
Discussion and Conclusion:
Remaining portions of paper look at research on 1) concentrated photovoltaics (“rapidly becoming a dominant player in the solar power production market,” 2714), small systems for private homes (boosting performance of solar PV from 10-20% to 50%), small dish systems that reach 60% efficiency, main drawback of higher costs; 2) concentrated solar thermoelectrics (very recent, use in heating or cooling applications), 3) thermal energy storage (managing solar flux and achieving constant flow of electricity), discussed some above; 4) energy cycles … Rankin, Brayton, magneto-hydrodynamic, and combined cycles discussed (“improvement of well-understood energy cycles and development of new ones greatly extend the potential of nearly all concentrated power production regimes,” p. 2720); 5) applications, use of CSP for “industrial heat processes, chemical production, salt-water desalination, heating and cooling,” (p. 2720), and 6) discussion, basically suggesting no single approach stands out, but multiple approach to different applications, design constraints, locations, and budgets. Article makes no predictions on scope or speed of design innovation or cost reductions for the future (but only notes “improvements in every element of each concentrated solar power production regime” towards “more efficient, robust, economical, and environmentally safe facilities” over the last decade, p. 2723). Hope this was helpful to some. As a possible significant baseload source of sustainable, carbon free, and domestic source of renewable energy generation, we can all easily understand the potential and opportunities that CSP may one day present (for centralized production and transmission, industrial processes, heating and cooling, chemical production, or small scale home production or to maximize solar PV performance, which is already being produced at $2-3/Watt).
(Deleted attack on a person’s credibility.)
(The comment to which you refer has been deleted for violation of BNC Comments Policy.)
EL,
No definitely not. Other criteria are covered in previous threads and comments on BNC: security of supply, power quality, reliability, loss of load probability, safety, risk, CO2 emissions, capital cost, cost of electricity, suitability for fitting into an existing grid, cooling requirements, water requirements, land area needed, material quantities, locations for power plants, construction and maintenance costs in remote areas, transmission costs, cost per tonne CO2 avoided, etc.
To try to tackle one point at a time and get agreement on that one point, we have been comparing the cost per tonne CO2 avoided between two options: nuclear or solar thermal hybrid.
It is clear to me that nuclear is by far the least cost way to reduce emissions (while also meeting all the other requirements).
Keeping the argument simple and high level as a first step, consider these two points.
First, we can point to the example of France. Nuclear produces 75% of France’s electricity (non-hydro renewables produce just 1%). France, meets all the requirements of a good electricity system, has near the lowest cost electricity in Europe, and its emissions from electricity are just 8% of Australia’s.
Second, compare the cost per tonne avoided from the BZE ZCA2020 plan and the nuclear alternative.
Supposedly the “best” renewable energy scheme for Australia, Beyond Zero Emissions’ (BZE)’s “Zero Carbon Australia by 2020 – Stationary Energy Plan” (ZCA2020), claims that Australia could replace all its electricity generation with renewable generation by 2020 for a cost of $370 billion dollars and electricity cost of $120/MWh.
However, critiques have shown the plan is built on unrealistic and wildly optimistic assumptions. This critique http://bravenewclimate.com/2010/08/12/zca2020-critique/ concludes:
The cost of electricity from such a scheme – based on highly optimistic assumptions about the rate of development and learning cost curves for the technologies assumed to be available – is estimated to be $500/MWh (up to $1200/MWh for the high end of the cost range).
“For comparison, nuclear would cost about $240 billion capital cost” (at $4,000/kW) and around $100/MWh (could be lower if we remove the impediments to low cost nuclear as no doubt we will once we got over nuclear phobia). The cost of electricity from the ZCA2020 plan is about 5 times higher than with nuclear to do the same job.
Since both the ZCA2020 plan and the nuclear option would avoid the same amount of emissions, the cost per tonne CO2 emissions avoided with the ZCA2020 Plan would be five times higher than with nuclear.
Even if you niggle about the details of figures used you are not going to close a gap of a factor of five.
@EL,
solar PV performance, which is already being produced at $2-3/Watt
Is that the factory floor price or ‘installed price’, or have i misread.
The current ‘installed’ price of solar PV in the US is closer to $7/watt.
Windora Queensland, is a recently commissioned PV power station.
http://ecogeneration.com.au/news/windorah_solar_farm/011780/
The capital cost = $34,615/kW
Cost per average kW = $109,500/kW (av)
LCOE – $1,445/MWh
Cost per tonne CO2 avoided = $1,872/t
This is claied to eb a state of the art solar PV station, commissioned just 2 years ago.
Nuscale states their small modular NPP is significantly lower cost than, say, the Westinghouse AP-1000. Actual cost estimate not given.
My view is that you have to start somewhere. Sitting back and discussing “pie in the sky” perfect solutions will get us no where (especially when the time frame for nuclear is so long and requires so much active coordination and active government support and direction), and we need to still do a great deal more public education to bring people along to why sustainability, reliability, and carbon reduction are good things (and will need to be paid for). Paying for this will require additional policy supports for low income households or developing regions already at their limit regarding electricity costs (and these will need to be carefully planned and adapted to free market, deregulated, liberalized electricity markets). We have a lot of work to do, and arguing over the low costs of nuclear in 40 years (with current stalemates, pull backs, investment and insurance risks, global security concerns, waste issues, low public acceptance, all the rest), and the high cost of renewables (which will most certainly come down over 40 years, if not some day match legacy technologies) is just one of a long list of ways to maintain the status quo (because it assures that we do nothing in the meantime).
From what I understand (and these are all debatable points), France does not have a “good electricity system” (as you describe it). They basically dump a great deal of energy on their neighbors at a loss (and thus heavily rely on a distribution system for an inflexible technology that can’t currently match demand loads, which keep getting steeper and steeper). I have serious questions about the logic of shifting to ever greater sources of baseload generation, when it’s load following sources that are most needed (and increasingly so in deregulated and liberalized energy markets). Nuclear makes good sense in places like China and India, and countries undergoing “rapid” industrialization, but here in the developed West, I see the niche for nuclear as being small and primarily focused on replacement of current baseload generation (which is to say, it fills a very specific niche). We are unlikely to see a massive transformation to a single energy source (a la France) anytime soon, if ever again (our current crippled governments seem increasingly unfit for the task). I don’t agree with you that the cost for new nuclear is $4,000/kW (you will likely disagree with me, and we can have this argument for the next 40 years, here, here, here). Utility companies (such as Exelon in the States … the largest provider of nuclear power in my country), knows what these costs and trade-offs are, and they also know the headaches of finance, regulation, time scale, waste disposal, manufacturing constraints, and inflexible load following, and they don’t appear to like it very much anymore (especially when there is flexible and affordable natural gas around). Exelon is building a 10 MW solar farm on a brownfield site just south of my location (and has 36 wind projects underway partnering with local landowners, manufacturers, and electricity providers). France is also jumping head first into the RE section of the pool in a big way, and is looking to get to 20% with wind, biofuels, feed-in-tariffs, all the rest in a fairly short time. So “cost” is only one small driver of these things, and it’s a relatively small one to me because there are many different ways to mitigate these rising costs (we do it all the time, and with nuclear power no less). Add back in some of the externalized costs for nuclear (in global security regimes for fuel and waste management. power plant inspections, technology sharing, subsidization of international mining and uranium development, technical training for engineers and industry specialists, oversight regarding health impacts, transportation of materials, and more), and one might also think your low carbon abatement cost for nuclear is pretty optimistic. But this argument will likely be seen as an activist screed by some, and you would probably be correct in suggesting so (because none of the energy technologies are assessed on the basis of their externalities).
It might sound like I am opposed to nuclear, and I am not. I am opposed to (for lack of a better term) energy dogmatism (that simply contributes to the further entrenchment and continuation of an unsustainable and very costly status quo). We can do a great deal to boost the future prospects for nuclear (to my mind). Here are what I see as some of the more significant challenges for nuclear expansion: massive up front financing costs (which private entities have a great deal of difficulty meeting), diminishing share of baseload generation (for countries with mature energy and transmission infrastructures), energy market deregulation and liberalization (which promotes rapid response energy speculation, something akin to pork bellies, and leaves little room for dependable 24/7 baseload source generation with relatively low marginal costs), public opinion (which is very low at the moment), and a kind of dogmatism among nuclear proponents (which inhibits relationship building and managing alliances with others who have common interests, but is a “go it alone” approach). Nuclear has the most ground to make by actively responding to and addressing any of the above concerns (to my view), and it has the least ground to make though active opposition to other low carbon sources of energy (and re-directing public attention away from it’s own intrinsic challenges and placing it onto something different).
I think Voltaire had some useful insights into this : “Le mien set l’ennemi du bin” (the perfect is the enemy of the good). Others have called it the “self-limiting future of nuclear power.” No energy alternative is perfect (nuclear among them, and renewables too). But we have to start somewhere. Shooting down everything else but your own “perfect” alternative, simply because costs have not come down enough, the technology is not yet mature, or more innovation is needed … I think is short sighted. And further, I don’t think it helps you get to where you want to go (dealing with current or future policy constraints, short term risk taking, intelligent allocation of scarce resources, investment in human capital, capturing energy and excitement of private markets and public attention, obtaining positive relationship building and mutual support, and presenting a unified front against conventional thinking, entrenched interests, and the deep seated normalization of the status quo). I actually believe nuclear has the most to gain from the active pursuit of an any or all of the above approach to low carbon sources of energy, and not less.
This is my view … you can take it or leave it.
You are correct, factory production at $1-2/watt (which is why Solyndra couldn’t keep up with Chinese competition). Installed costs, inspection, insurance, maintenance, etc., typically have a payback period of under 20 years (with current incentives in place).
So how does this compare to trucking out and burning diesel (the town’s previous main energy option), and what would it cost to build a transmission infrastructure to Windorah (say from the nearest nuclear power plant)? This is an off-grid facility, and sounds pretty interesting to me. Several other sources suggest 180kW installed capacity, operating 9 to 10 months of year (or $25,000/kW capital cost).
Plant is said to reduce diesel fuel consumption by some 100,000 liters/year. Over 20 year plant life, that’s a saving of $2.9 million (at current diesel fuel price of A$1.48/L in Queensland). With diesel fuel prices surely to rise over twenty years, reduced operational costs at diesel power plant, plant life surely to exceed 20 years, and also significantly reduced carbon emissions … I’d say that’s a pretty good deal.
@El,
Utility companies (such as Exelon in the States … the largest provider of nuclear power in my country), knows what these costs and trade-offs are, and they also know the headaches of finance, regulation, time scale, waste disposal, manufacturing constraints, and inflexible load following, and they don’t appear to like it very much anymore
The complete Exelon presentation is here-
http://www.exeloncorp.com/assets/newsroom/speeches/docs/spch_Rowe_ANS_110815.pdf
You might want to review the slide labeled 2010 Supply Options. Exelon doesn’t view new nuclear in their market as currently viable considering the price of gas(low) and the likelihood of demand growth(none).
The Exelon speech makes it pretty clear the cheapest replacement for baseload coal is baseload nuclear.
The justification for the expense of nuclear is eliminating emissions.
I’d suggest the justification for the expense of renewables is eliminating nuclear.
For that, CSP isn’t as good as PV.
CSP projects are being dumped for PV in the US.
Just today: http://www.powermag.com/POWERnews/4078.html?hq_e=el&hq_m=2297764&hq_l=10&hq_v=dcd2d59726
Also here:
http://www.powermag.com/POWERnews/3985.html?hq_e=el&hq_m=2269044&hq_l=8&hq_v=dcd2d59726
EL
You are dodging the issue under discussion. You are attempting to divert the discussion to a mass of other things you want to discuss. All those issues are well covered on other threads on BNC. Click on the “Renewable Limits” tab and the “Sustainable Nuclear” tab to see lists of the threads.
You say you are an academic. So, if you are, you should be able to focus on the issue being discussed: “The cost per tonne CO2 avoided“.
Right now, because you have avoided the issue, I am assuming you accept the points I made in the previous comment, and now want to move on to other arguments. If that is the case, be man enough to admit you are wrong.
By the way, it is the renewable dream that is “pie in the sky”. (Deleted personal opinion of another.)
EL,
(Deleted personal opinion of other’s motives)
Firstly, you can only compare technologies on the basis of LCOE. So your comparison is amateurish and wrong.
Secondly, (deleted inflammatory remark) Ask yourself: “Why does it need massive government subsidy if it is a good deal?” You should recognise that if it was economically viable, it would be justified on the basis of the financial analysis alone, without subsidies. You can’t use CO2 emissions avoided as a justification for subsidies since the cost per tonne avoided is $1,872/t.
MODERATOR
Please do not attack an individual – stick to analysing their comments.
harrywr2
Thank you for the link to the CEO Exelon presentation. Lots of valuable, hard-headed information and advice in this.
I suggest BNC would benefit if there was more focus on the economics of the options being proposed for cutting emissions.
His 2010 slide shows nuclear would require $100/t CO2 to be competitive in the current market. That’s just not going to happen.
It also shows CCS and solar would need about $500/t to be viable.
We either need to focus on getting the cost of nuclear down or recognise that, at the moment, making deep cuts to CO2 emissions is not viable.
I’d suggest we should focus on adaption to whatever climate changes occur and on cutting the cost of nuclear. I’ve explaind how that could be done here: http://bravenewclimate.com/2011/07/06/carbon-tax-australia-2011/#comment-136436
@Scott Luft,
CSP projects are being dumped for PV in the US.
CSP at least in the forms proposed for the Southwestern US all have ‘water rights’ issues. The fruits and vegetable farmers argue that any water that is available be used for irrigation to grow food. The farmers haven’t been getting their full allocation in recent years. So to be fair to CSP..part of the reason for abandonment is the near impossibility of getting a water permit for any thermal plant.
A study on water issues and CSP done by the US DOE.
http://www1.eere.energy.gov/solar/pdfs/csp_water_study.pdf
Be Fair to a technology?
Theory is not the only avenue for exploration.
One could actually look at evidence of what is occurring.
The one link I provided claimed “favorable conditions in the PV and commercial lending markets in the United States.” I saw no references to water, but people seem remarkably free to theorize on all things.
I think the reason PV subbed for CSP is the renewable portfolio standards reward total production, and don’t account for the the likelihood CSP would provide more valuable generation (with some ability to supply demand when demand existed). The cost, even the LCOE, isn’t the relevant concept – value is the relevant figure, and value should be related to the ability to meet demand when demanded.
In the programs to boost renewables, at least where I live, value isn’t a consideration.
The impact of introducing intermittent generation into a system is to devalue baseload sources – so that should also be accounted for in a proper evaluation of value of doing so. CSP would score higher, and PV lower. I have no idea what those figures would be.
I should correct the first statement in my previous post – the cheapest low/no emission source to replace baseload coal is nuclear (gas being the cheapest source).
This article says the switch from thermal was motivated by plummeting PV costs
http://peakenergy.blogspot.com/2011/08/worlds-biggest-solar-power-plant-shifts.html
I recall at first the promoters said it was all about storage. Apparently not. Bling for the buck is what counts.
EL — Please provide evidence for your assrtion that France dumps excess electricity on their neighbors at a loss. I doubt this is so as the EU policy on transnational electric power trading is rather complex and will mislead the naive.
Scott Luft, on 6 October 2011 at 11:25 AM said:
Be Fair to a technology?…. I saw no references to water, but people seem remarkably free to theorize on all things.
Here is a long saga of all the reason’s CSP projects have run into LEGAL trouble in the Southwestern US by the NY Times –
http://www.nytimes.com/2011/02/24/business/energy-environment/24solar.html?pagewanted=all
Two excerpts –
Photovoltaic projects are also not subject to extensive environmental review by state regulators, but are instead approved by local officials.
a union group sued the Interior Department in Federal District Court in Los Angeles, saying that the agency had not adequately evaluated if the Genesis project would divert water from the Colorado River.
Obviously, if CSP is running into legal troubles then that would make ‘market conditions’ less then favorable.
My broader point is that drawing conclusions on what may or may not be a viable solution outside of California based on what happens in California can lead to misleading conclusions. Almost everything ends up being challenged in court in California. If I do my sums and compare the financial viability of new nuclear in California and the Southeastern US they come out about the same. New Nuclear is progressing in the Southeastern US. It is not progressing in California.
France operates many of it’s power plants at low capacity values (not particularly economic) and exports a great deal of it’s off-peak surplus electricity to it it’s neighbors (up to 18% of total production): Italy, Netherlands, Belgium, Britain, and Germany. Lawrence Solomon (perhaps not the best source) documents some of the early economic challenges of this approach, and reliance on non-nuclear neighbors and subsidized (below-market) domestic industrial contracts to “soak up” surplus electricity (while EdF simultaneously continues to run a massive deficit).
“even with it’s mammoth EU market to tap into, France must shut down some of its reactors some weekends … In effect, France can’t even give the stuff away … [in addition, it] must import high-value peak power from it’s neighbors … overbuilding effectively bankrupted Electricite de France (EdF) … To dispose of its overcapacity and stay afloat, EdF feverishly exported its surplus power to its neighbors … At great expense, French homes were converted to inefficient electric home heating. And EdF offered cut-rate power to keep and attract energy-intensive industries — Pechiney, the aluminum supplier, obtained power at half of EdF’s cost of production, and soon EdF was providing similar terms to Exxon Chemicals and Allied Signal”
EdF is still running a net debt of €34.4 billion in 2010, which exceeds it’s present market cap of €30.4 billion.
Opps … forgot original source. I’m loath to include any reference to Solomon, but the main point of running outstanding deficits is pretty objective (so I don’t see the harm). Originally, my source was a Der Spiegel interview, but I can’t seem to find it at the moment. I suppose there might be some academic research on this too (subsidized exports, subsidized domestic industrial contracts, high cost of peak-energy imports, wasteful electric home heating, and very large and long lasting deficits), but this didn’t come up in a quick search either.
harrywr2, thank you for that.
I see your point.
The costs will be different from one jurisdiction to another, but I also note the value will be too — and with the value, so too would the CO2 emissions reductions.
For instance, Bavaria will apparently receive about 8% of it’s total supply from solar this year, but that level is causing, at times, excess supply to the grid. Their goal is 16% from solar – so clearly the next 8% will be of value far less often (and thus reduce emissions less often).
http://www.germanenergyblog.de/?p=7409
The 8% devalues the baseload sources demoted below PV in the grid priority – ie. it makes nuclear more expensive, or altogether inappropriate.
EL, on 7 October 2011 at 1:06 AM said:
EdF is still running a net debt of €34.4 billion in 2010, which exceeds it’s present market cap of €30.4 billion.
From the article you linked to –
http://business.timesonline.co.uk/tol/business/industry_sectors/utilities/article6843584.ece
Its debt swelled after several deals, including the £12.5 billion acquisition of British Energy in September 2008 and the $4.5 billion purchase of 50 per cent of Constellation Energy, an American utility.
Two deals which had nothing to do with the French nuclear power industry account for more then 1/2 of Edf’s debt.
As to your broader point…in any investment the choice between high capital expenditures and high variable O&M costs comes down to utilization rates.
In ‘energy’ there are significant time of day and seasonal load variances that impact the utilization rates of various technologies.
In most places in the world there is a discussion of ‘energy mix’.
I.E. What’s the most inexpensive combination of technologies to deliver reliable electricity 24/7 accounting for time of day and seasonal load variances.
LCOE is only useful in determining what’s optimal for base-load.
A far more sophisticated model has to be employed to determine what technology is most cost-effective for the the time of day and seasonal load variations.
Changing the ‘load profile’ in some circumstances ends up being cost effective.
I.E. Replacing gas heat with electric heat or entering into an agreement with an aluminum smelter to pay reduced rates for power in exchange for shutting down production lines during high seasonal loads or some problem in generating capacity.
In the US Pacific Northwest we have a similar situation as the French, except our energy ‘mix’ is overwhelmingly Hydro. In the spring we sell power to neighboring regions at ‘rock bottom’ prices and occasionally we have to import ‘peak capacity’.
Bonneville Power Administration sells power to the Aluminum Corporation of America at reduced prices in exchange for a ‘service interruption’ agreement.
http://www.piersystem.com/go/doc/1582/432783/
Washington State has the 4th highest proportion of homes heated with electricity.
http://apps1.eere.energy.gov/states/residential.cfm/state=WA
Our power rates are below the US average and our primary energy provider engages in load management techniques similar to the French. Does that make ‘Hydro’ a poor choice ?
EL, here’s a source you might have had (at Solomon’s EP)
http://probeinternational.org/library/wp-content/uploads/2011/05/WorldNuclearIndustryStatusReport2010-2011-V3.pdf
“France has a huge overcapacity that led to dumping of electricity on neighboring countries and stimulated the development of highly inefficient thermal-applications electricity. A historical winter peak-load of 96.7 GW (in December 2010) is to be compared with an installed capacity of 123.5 GW. Even a comfortable 20 percent reserve leaves a theoretical overcapacity, which is the equivalent of 20 of the 34 units of 900 MW. It is no wonder that the equivalent of about 10 reactors operate for export, and that France remains the only country in the world that operates over 40 units on loadfollowing mode.
Meanwhile, France’s seasonal peak electricity load has exploded since the mid-1980s, due mainly to the widespread introduction of electric space and water heating. About 30 percent of French households heat with electricity, the most wasteful form of heat generation because it results in the loss of most of the primary energy during transformation, transport, and distribution. The difference between the lowest load day in summer and the highest load day in winter is now over 60 GW. Shortterm peak load is covered not by nuclear power but by either fossil fuel plants or expensive peak-load power imports. Globally, France remains a net power exporter, but in 2010 it imported 16.1 TWh of peak power from Germany for an undoubtedly high price. Having exported only 9.4 TWh, France remains a net importer of German coal-based power.”
Sounds damning – but with a little thought and some follow-up…
it seems to me Germany’s 80 million people had about 900 Tg CO2e when last inventoried, while France’s 65 million had well under 400 Tg CO2e (UNFCC filings).
I’ve looked at hourly figures in my Canadian province, and they indicate the expected. Baseload nuclear will receive about the average market price over a period of time – who could it not? The market price will be lowest when intermittents are most productive, and highest when peaking sources are most productive.
I’ve graphed Germany’s monthly net exports against Germany’s monthly wind production. It’s more likely France took the excess off of Germany when paid to do so. The reference to negative prices when windy is on pages 41-42 of the same source, in a section called “Are Nuclear and Renewables Compatible?” The implication is they are not.
I should point out there is a site showing the European grid exchanges:
entsoe.net.
You can go back and check any hour this summer.
France is rarely a net importer
That looks like an interesting report, and thanks for the commentary on my posts. I can anticipate several useful findings on the basis of what you are suggesting: looking at seasonal and daily load variability, resource mix, managing baseload overcapacity (a la France), merit orders for renewables, efficiency losses on operational reserves, even ancillary services, etc. And it may very well show the challenge of integrating very high levels of intermittent sources, relationship to costs, emissions impacts, need for storage and transmission upgrades, and as you suggest (a possible devaluation of baseload sources). I appreciate comments looking at resource mix and energy balance, technical opportunities for improving our energy infrastructure (towards more cost effective, sustainable, and efficient outcomes), rather than just tacking on more baseload to an already broken (and increasingly inflexible) system. I’m heading out of town today on vacation for the long weekend, but I’ll look at the report in more detail when I get back.
I was actually planning on linking to same article in a comment, and bringing up the environmental hurdles facing CSP (which are not the same as currently face solar PV). Apparently, environmentalists are also standing in the way of important transmission corridors going into the area (here and here). I haven’t looked into these legal challenges very closely (and would appreciate any other informed perspectives), but it’s my sense that environmentalists standing in the way of big development projects often result in better engineering and siting characteristics being considered (rather than total loss of development opportunity). I also have a sneaking suspicion that oil and natural gas interests may be behind some of the well funded opposition (which has long been the case in California). I definitely plan to watch these legal challenges more closely (and generally believe the more perspectives that feed into an energy proposal, even when highly critical, the better).
EL, on 7 October 2011 at 1:06 AM — Thank you. I must point out that electrical resistance heating is 100% efficient (nothing goes up the chimney) and results in no CO2 when derived from nuclear or hydro. [51% of my electricity is from those two sources, mostly hydro. It turns out that the next rate change will lower electricity rates sligthly while raising natgas rates a bit. Under the new arrangement it will be to my financial benefit to use a bit more electic heating and a bit less from the natgas fired furnance.]
Pleased to see that a couple of you bloggers have made comments on Ockhams Razor. Following my Sept 4th offering I’ve been asked to prepare a second talk. I’ve decided to use it to correct the commonly held misconceptions about nuclear power as promoted by the anti-nuclear ideologues. I’ll let you know when it’s going to air.
Cheers, Terry Krieg