The Left vs The Climate

I’m still in the process of moving house (I’ve now arrived in Tassie, but my furniture is still in transit…). But I have my Notebook computer, so I’m set, right?

Anyway, on the weekend I had time, over a large coffee, to read through Will Boisvert‘s essay on pastoral fantasies and the alternative ‘high energy planet’ (a critique of Naomi Klein’s new book). It is absolutely brilliant, and I immediately thought it was a perfect exposition of the philosophy that developed on BNC over the last 5 years, in reaction to the global sustainability challenge.  Anyway, I asked Will, and Michael Shellenberger from The Breakthrough Institute (who published the original article) if I might reproduce it here on BNC, and they graciously agreed. So here it is.

Read this (please!), and think carefully. We must all think and act rationally to tackle this challenge. There is no room for cognitive dissonance or denial, whatever ‘side’ you feel you are on.

Why Progressives Should Reject Naomi Klein’s Pastoral Fantasy — and Embrace Our High-Energy Planet

Liberal and progressive politics used to embrace energy, technology, and modernity for human liberation and environmental quality. Today it embraces a reactionary apocalyptic pastoralism epitomized by Naomi Klein’s latest, This Changes Everything: Capitalism vs. the Climate. As such, Klein’s book is symptomatic of the Left’s disturbing turn against progressive, pragmatic action for people and the environment.

Ever since Marx’s day, leftists have been straining to spy the terminal crisis of capitalism on the horizon. It’s been a frustrating vigil. Whatever the upheaval confronting it — world war, depression, communist revolution, the Carter administration — a seemingly cornered capitalism always wriggled free and came back more (and occasionally less) heedless, rapacious, crass, and domineering than before.

Now comes global warming, a cataclysm seemingly so dire that it cannot be finessed with reformist half-measures, so all-encompassing that capitalism would have to leave the planet to dodge it. For many on the Left, capitalism is at the heart of climate change: the crisis of over-combustion stems from the capitalist dynamic of overproduction and overconsumption, all driven by the logic of over-concentration of profits in the hands of the wealthy few. And nothing will resolve the crisis, the Left hopes, but the transformation of every aspect of the world capitalism has made — to pull consumerism, waste, hierarchy, competition, trade and alienation up by the roots and replace them with a political economy of sufficiency, recycling, egalitarianism, cooperation, localism, and nature.

It was almost inevitable that Naomi Klein, the Left’s preeminent celebrity journalist, would make herself the mouthpiece of this mind-wave. The Canadian writer-pundit and Nation columnist is a master of broad frameworks and far-reaching implications. She has already written two books — No Logo, on the corporate takeover of culture, and The Shock Doctrine, on the neoliberal take-over of economies — that crystallized huge clouds of progressive discontent into catchy memes. Her trademark blend of light wonkery, sardonic prose, sharp-eyed reportage and fist-waving militance appeals to every left constituency from academics to Occupiers. Most important, her penchant for tying absolutely anything she can think of into her thesis du jour feels tailor-made for climate change, the most omnipresent and multifaceted of subjects.

Her new manifesto, This Changes Everything: Capitalism vs. the Climate is a wide-ranging synthesis of Left-green doctrine on the entwinement of ecology and economy. It’s about belching smoke-stacks, thickening carbon dioxide, melting icesheets, acidifying oceans, shattering hurricanes, and searing droughts. It’s also about callous oil companies, preening billionaires, corrupt politicians, environmental groups subborned by corporate cash, hard-pressed farmers, desperate workers in dirty jobs, and downtrodden natives defending their land. This is all of a piece to Klein: the fight for a sustainable economy is also the fight for a fair and humane one, a furtherance of struggles for labor rights, civil rights, welfare rights, and land reform, for grassroots democracy against elite power.

By aligning these immediate struggles for justice with the collective battle to save the planet, she writes, climate change can “bring together all of these still living movements” and “right those festering wrongs at last — the unfinished business of liberation” [459].

For Klein, that alignment will spark not just programmatic clarity and mass mobilization, but spiritual redemption as well. Coal, in her view, is the dark heart of industrial capitalism and its mania for “total domination of both nature and people,” [173] and has turned us into “a society of grave-robbers” feeding off buried fossils. In abandoning it we will forge a new bond with the natural world and “[derive] our energy directly from the elements that sustain life” [176].

Even more than in her previous books, Klein advances a grand vision of “changing how we live, how our economies function, even the stories we tell about our place on earth,” [4] along with a sensibility that combines apocalyptic dread with utopian yearning to stimulate revolutionary determination.

Unfortunately, the result is a garbled mess stumbling endlessly over its own contradictions. Her understanding of the technical aspects of energy policy — indispensable for any serious discussion of sustainability — is weak and biased, marked by a myopic boosterism of renewables and an unthinking rejection of nuclear power and other low-carbon energy sources. Having declared climate change an “existential crisis for the human species,” [15] she rules out some of the most effective means of dealing with it.

Continue reading

The Catch-22 of Energy Storage

Pick up a research paper on battery technology, fuel cells, energy storage technologies or any of the advanced materials science used in these fields, and you will likely find somewhere in the introductory paragraphs a throwaway line about its application to the storage of renewable energy.  Energy storage makes sense for enabling a transition away from fossil fuels to more intermittent sources like wind and solar, and the storage problem presents a meaningful challenge for chemists and materials scientists… Or does it?


Guest Post by John Morgan. John is Chief Scientist at a Sydney startup developing smart grid and grid scale energy storage technologies.  He is Adjunct Professor in the School of Electrical and Computer Engineering at RMIT, holds a PhD in Physical Chemistry, and is an experienced industrial R&D leader.  You can follow John on twitter at @JohnDPMorganFirst published in Chemistry in Australia.


Several recent analyses of the inputs to our energy systems indicate that, against expectations, energy storage cannot solve the problem of intermittency of wind or solar power.  Not for reasons of technical performance, cost, or storage capacity, but for something more intractable: there is not enough surplus energy left over after construction of the generators and the storage system to power our present civilization.

The problem is analysed in an important paper by Weißbach et al.1 in terms of energy returned on energy invested, or EROEI – the ratio of the energy produced over the life of a power plant to the energy that was required to build it.  It takes energy to make a power plant – to manufacture its components, mine the fuel, and so on.  The power plant needs to make at least this much energy to break even.  A break-even powerplant has an EROEI of 1.  But such a plant would pointless, as there is no energy surplus to do the useful things we use energy for.

There is a minimum EROEI, greater than 1, that is required for an energy source to be able to run society.  An energy system must produce a surplus large enough to sustain things like food production, hospitals, and universities to train the engineers to build the plant, transport, construction, and all the elements of the civilization in which it is embedded.

For countries like the US and Germany, Weißbach et al. estimate this minimum viable EROEI to be about 7.  An energy source with lower EROEI cannot sustain a society at those levels of complexity, structured along similar lines.  If we are to transform our energy system, in particular to one without climate impacts, we need to pay close attention to the EROEI of the end result.

Continue reading

Nuclear energy: the debate Australia has to have

On July 28, I (Barry Brook) was an invited participant in a public discussion and Q&A session on the future of nuclear energy for electricity generation in Australia. It was organised and hosted by the Inspiring Australia initiative, and ran at the National Library of Australia in Canberra. The moderator (who did an excellent job) was ABC radio 666 presenter Genevieve Jacobs. The two other panel members were Prof. Ken Baldwin (ANU) and Ian Hore-Lacy from the World Nuclear Association (who writes and maintains their excellent information archive).

Below is the video of the event — a high-quality professional recording.

The session starts with about 30 minutes of direct discussion among the panellists, led by the moderator. This is followed by an hour of Q&A with the audience — over a dozen questions covered overall I think, typically with in-depth answers by multiple participants.

I hope you enjoy it, and if you have feedback or further questions, please comment below! (I know that quite a few regular commenters from BNC were in the audience, because they either asked questions or came and spoke to me after the event).

 

Battery electric vehicles in Australia

Graham Palmer, author of the recent book “Energy in Australia: Peak oil, solar power and Asia’s economic growth” (reviewed on BNC here), has just done an excellent ABC radio presentation on Robyn William’s “Ockham’s Razor” show.  This is Robyn’s intro:

Robyn Williams: Now I wasn’t in the room at the time, but it is claimed that George W Bush once complained about the Arabs: “Why is our oil under their sand?” Well, whether he said it or not, the question has become even more stark as the Middle East gets even more fractious. Would you really want to depend much longer on secure oil supplies from the region? As for coal: As more and more coal mines close in Australia and disasters recur from China to Turkey, you’d have to ask whether that technology is also about to hit the ashcan of history. Perhaps, but not yet, says Graham Palmer in Melbourne. He’s an engineer and has done research in the field of energy futures. And by the way, bear in mind that PV stands for photovoltaic.

You can download the audio and read the transcript (with supporting references) here.

But there’s more! Graham has just written a new analysis on electric vehicles for BNC. On this topic we can find opinions ranging from “EVs are great because they’ll mop up daytime solar!” through to “EVs are great because you can charge them cheaply on overnight off peak!”. Confusion reigns…

The take-up of electric vehicles in Australia – rethinking the battery charging model

Graham Palmer, July 2014

Between 2007 and 2013, the global motor car fleet grew by 3.6% annually, reaching 1.1 billion [1], but during the same period, the annual growth of crude oil including total liquids averaged only 0.9% [2]. Driven by demand in China, but also Russia, India, and Brazil, the growth is projected to continue indefinitely [3], but given a crude oil price of around USD$100 bbl, we have already entered a prolonged period of inelastic supply, and regardless, capital investment in the oil supply industry has tripled in the past 10 years [4].

It is obvious that there simply isn’t the ready supply of conventional liquids to accommodate the growth of motorcars. Further, any discussion of the sustainability of motorcars should encompass a broader discussion of urban planning [5], public transport, and a re-examination of the travel task [6]. Comprehensive assessments of the life-cycle analysis of EVs shows that they can be better than internal combustion engine (ICE) vehicles, but still a long way from “sustainable” [7,8]. But whether we like it or not, the egg has been scrambled, and motorcars will continue to be the primary mode of transport in Australia for the foreseeable future.

Continue reading

The clock is ticking on the drive for sustainable energy

The below is a (short) chapter I wrote for the recent book “The Curious Country“, published by the Australian Office of the Chief Scientist.

This excellent and well-illustrated book can be downloaded for free here. The blurb:

During 2013, The Office of the Chief Scientist asked Australians what they would like to know more about; what scientific issues concern them and what discoveries inspire them.

The results shaped this book – a collection of essays about the scientific issues affecting Australians today.

The Curious Country is available as a free download from ANU E Press. It is currently available as a pdf, so can be downloaded and read on your e-book reader, tablet, computer or mobile phone


POWERING THE FUTURE – The clock is ticking on the drive for sustainable energy

(Download the PDF for this article and the other energy-related chapters, here)

ACCESS to cheap and reliable energy has underpinned Australia’s development for decades. Fossil fuels — coal, oil and natural gas — provided the concentrated energy sources required to build our infrastructural, industrial and service enterprises. Yet it’s now clear this dependence on carbon-intensive fuels was a Faustian bargain and the devil’s due, because the long-run environmental and health costs of fossil fuels seem likely to outweigh the short-term benefits.

In the coming decades, Australia must tackle the threats of dangerous climate change and future bottlenecks in conventional liquid-fuel supply, while also meeting people’s aspirations for ongoing increases in quality of life – all without compromising long-term environmental sustainability and economic prosperity. Fortunately, there are science and technology innovations that Australia could leverage to meet these goals.

Seeking competitive alternatives to coal

How can Australia shift away from coal dependence and transition to competitive, low-carbon alternatives, and what role will science and engineering play in making it happen? To answer these questions, a key focus must be on electricity generation technologies — electricity is a particularly convenient and flexible ‘energy carrier’— and to consider the key risks and advantages with the alternative energy sources that will compete with fossil-fuel power.

In 2012, the majority of Australia’s electricity was generated by burning black and brown coal (75 per cent), with smaller contributions from natural gas (13 per cent), hydroelectric dams (8 per cent) and other renewables (4 per cent). The nation’s installed capacity now totals over 50 gigawatts of power generation potential, with stationary energy production currently resulting in the annual release of 285 million tonnes of carbon dioxide, about 52 per cent of our total emissions.

CurCountry_Box1

Clearly, the non-electric energy-replacement problem for Australia would also need to consider transportation and agricultural fuel demands. In a world beyond oil for liquid fuels, we will need to eventually ‘electrify’ most operations: using batteries, using heat from power plants to manufacture hydrogen from water, and by deriving synthetic fuels such as ammonia or methanol.

Under ‘business as usual’ forecasts produced by Government energy analysts, electricity use in Australia is expected to grow by 60 to 100 per cent through to 2050 with hundreds of billions of dollars of investment needed in generation and transmission infrastructure just to keep pace with escalating demand and to replace old, worn out power plants and transmission infrastructure. At the same time carbon dioxide emissions must be cut by 80 per cent to mitigate climate-change impacts, via some combination of enhanced energy conservation and new supply from clean energy sources.

An uncertain mix of future options

Although there are a huge number of potential energy options now being developed that might one day replace coal in Australia not all alternatives are equally likely.

Continue reading