Critique of ‘A path to sustainable energy by 2030’

The November 2009 issue of Scientific American has a cover story by Mark Z. Jacobson (Professor, Stanford) and Mark A. Delucchi (researcher, UC Davis). It’s entitled “A path to sustainable energy by 2030” (p 58 – 65; they call it WWS: wind, water or sunlight). This popular article is supported by a technical analysis, which the authors will apparently submit to the peer-reviewed journal Energy Policy at some point (or may have already done so). Anyway, they have made both papers available for free public download here.

So what do they say? In a nutshell, their argument is that, by the year 2030:

Wind, water and solar technologies can provide 100 percent of the world’s energy, eliminating all fossil fuels.

Big claim. Does it stack up? Short answer, no. Here I critique the 100% WWS plan (both articles).

The articles are structured around 7 parts: (1) A discussion of ‘clean energy’ technologies and some description of different plans for large-scale carbon mitigation. (2)  The amount and geographic distribution of available resources [wind, solar, wave, geothermal, hydro etc.] are evaluated, globally. (3) The number of power plants or capture devices required to harness this energy is calculated. (4) A limit analysis is undertaken, to determine whether any technologies are likely to face material resource bottlenecks that risk stymieing their large-scale deployment. (5) The question of ‘reliability’ of energy generation is discussed. (6) The projected economics of this vision are forecast. (7) The policy approaches required to turn vision into reality are reviewed.

In this post I want to concentrate on (5) and (6) — what I consider to be “The Bad”. But first, let’s look quickly at “The Good” (actually, more like the “Okay”) and then the really “Ugly” parts.

The majority content of the twin papers is focused on making the banal point that there is a huge amount of energy embodied in ‘wind, water and sunlight’ (“Plenty of Supply”), and that a wide diversity of technologies have been developed to try and harness this into useable electrical power.  No critic of large-scale renewable energy would argue any differently, and the size of these resources has been covered in detail by David Mackay. In that context, I wonder what they hope to add to the literature? There’s nothing wrong in this section, and well explained, but it’s just standard, rehashed fare.

Continue reading