The Case for Near-term Commercial Demonstration of the Integral Fast Reactor

I’m currently in Dubai at the 2012 World Energy Forum, as part of a delegation from the Science Council for Global Initiatives. Tomorrow (24 Oct) we will run symposium on “New Nuclear”, which will be chaired by Tom Blees and feature talks from Dr Eric Loewen (GE), Dr Alexander Bychkov (IAEA), Dr Evgeny Velikhov (Kurchatov Institute) and me (Dr Barry Brook, University of Adelaide). I will also chair a session later in the afternoon on “Vision for a Sustainable Future”, just before the closing address.

Tom and Nicole Blees of SCGI stand in front of the World Trade Centre in Dubai, during the World Energy Forum, Oct 2012. The sign behind them makes for some interesting reading…

In preparation for this meeting and as a result of a focussed conference at University of California Berkeley in early October, a white paper on the Integral Fast Reactor was prepared by Tom and me, on behalf of SCGI, and has garnered signatories from 8 key countries, including prominent people not attending the Berkeley meeting, such as climatologist Jim Hansen. The white paper is given below.

——————-

The Case for Near-term Commercial Demonstration of the Integral Fast Reactor

Demonstrating a credible and acceptable way to safely recycle used nuclear fuel will clear a socially acceptable pathway for nuclear fission to be a major low-carbon energy source for this century. We advocate a hastened timetable for commercial demonstration of Generation IV nuclear technology, via construction of a prototype reactor (the PRISM design, based on the Integral Fast Reactor project) and a 100t/year pyroprocessing facility to convert and recycle fuel.

1. Synopsis

We propose an accelerated timeframe for realizing the sustainable nuclear energy goals of the Generation IV reactor systems. A whole–system evaluation by an international group of nuclear and energy experts, assembled by The Science Council for Global Initiatives, reached a consensus on the synergistic design choices: (a) a well-proven pool-type sodium-cooled fast reactor; (b) metal fuel, and (c) recycling using pyroprocessing, enabling the transmutation of actinides. Alternative technology options for the coolant, fuel type and recycling system, while sometimes possessing individually attractive features, are hard-pressed to be combined into a sufficiently competitive overall system. A reactor design that embodies these key features, the General Electric-Hitachi 311 MWe PRISM [1] (based on the Integral Fast Reactor [IFR] concept developed by Argonne National Laboratory [2]), is ready for a commercial-prototype demonstration. We advocate a two-pronged approach for completion by 2020 or earlier: (i) a detailed design and demonstration of a 100 t/year pyroprocessing facility for conversion of spent oxide fuel from light-water reactors [3] into metal fuel for fast reactors; and (ii) construction of a PRISM fast reactor as a commercial-scale demonstration plant. Ideally, this could be achieved via an international collaboration. Once demonstrated, this prototype would provide an international test facility for any concept improvements. It is expected to achieve significant advances in reactor safety, reliability, fuel resource sustainability, management of long-term waste, improved proliferation resistance, and economics.

2. Context

When contemplating the daunting energy challenges facing humanity in the twenty-first century in a world beyond fossil fuels, there are generally two schools of thought [4].

(more…)

Is Japan’s nuclear-free pathway an environmentally friendly choice?

The Fukushima crisis sparked protests and prompted a move away from nuclear energy for Japan

Below is an essay I co-wrote with one of my current Ph.D. students, Sanghuyn Hong. In it, we take a critical look at the current national energy policy of Japan, and highlight the unfortunate implications of a strategy that preferences fossil fuels over nuclear energy.

San, in the first year of his studies, is from South Korea, and is researching current and future energy policies in South Korea, Japan, Australia and New Zealand.

Read or leave your comment the original article here.

—————

On 14 September 2012, the Japanese Government considered a new policy that excited many self-proclaimed environmentalists and anti-nuclear power protesters. Following intense political wrangling, they proposed phasing out the use of nuclear power in Japan by 2040, replacing it with renewable energy (and fossil fuels). This decision, if carried through, has important environmental and financial implications that may come as a surprise to many.

The Fukushima Daiichi nuclear accident on 11 Mar 2011, caused by an earthquake-triggered tsunami, consigned the established Japanese electricity-generation plan to the dustbin. Along with it went Japan’s Kyoto-protocol commitments for greenhouse-gas mitigation.

Originally, the Japanese government had planned to increase nuclear power to 45% and renewables (including hydro) to 20% by the year 2030, up from 26% and 10% respectively in 2010. After the accident, the National Policy Unit in Japan hinted that the original plan was likely to be scrapped in favour of a new scenario, whereby the nuclear target was to be reduced to somewhere between 0–35% and the renewables target increased to 20–30%. Even with an increased share of renewables, the shift away from nuclear under any of the proposed scenarios will lead to greater use of fossil fuels.

To compare the proposed options fairly, we argue that it makes sense take a holistic view of their relative sustainability. To do this, we need to account for a range of environmental and socio-economic factors, including greenhouse-gas emissions, water consumption, land transformation, health and safety issues, and cost of electricity. One should use an evidence-based auditing method like multi-criteria decision-making analysis (MCDMA), which is transparent and relatively objective.

Our recent research (currently submitted to the journal Energy) uses MCDMA to show that even when the negative consequences of using nuclear power are properly factored in (and costs assigned to waste management, accident consequences, and so on), those scenarios with reduced nuclear power result in a less sustainable future in Japan.

In particular, the greenhouse-gas emissions of the nuclear-free scenario can reach up to about 430 kg per megawatt hour. By comparison, in the 35% nuclear-power scenario, it is only 267 kg per megawatt hour, in spite of the higher renewable energy share of the former. Except for the differing nuclear capacity, in all scenarios the ratio of coal to gas power had the largest influence on greenhouse-gas emissions.

Unfortunately, a high dependency on renewables without ongoing support for nuclear in Japan cannot cut the electricity generation sector’s greenhouse gas emissions unless some currently undeveloped alternative forms of cheap, large-scale energy storage are deployed in the future.

(more…)

Follow

Get every new post delivered to your Inbox.

Join 3,798 other followers