Counting the hidden costs of energy

When comparing power sources, we have to take the costs of system effects into account.

By Martin Nicholson and Barry Brook. This article was first published on The Conversation. A response was then published on Business Spectator. It is worth reading both pieces, and the comments that followed them (for instance, Martin’s reply).

A recent Bloomberg press release got wide coverage with its claim that wind power is now cheaper than coal. But a new report from the OECD shows that when you cover the full cost to the grid, variable renewables like wind don’t add up as favourably.

It is often claimed that introducing variable renewable energy resources such as solar and wind into the electricity network comes with some extra cost penalties, due to “system effects”. These system effects include intermittent electricity access, network congestion, instability, environmental impacts, and security of supply.

Now a new report from the OECD titled System Effects of Low-Carbon Electricity Systems gives some hard dollar values for these additional imposts. The OECD work focuses on nuclear power, coal, gas, and renewables such as wind and solar. Their conclusion is that grid-level system costs can have significant impacts on the total cost of delivered electricity for some power-generation technologies.

All generation technologies cause system effects to some degree. They are all connected to the same transmission and distribution grid structure and deliver electricity into the same market. They also exert impacts on each other, on the total load available to satisfy demand, and the stability of the grid’s frequency control. These dependencies are heightened by the fact that only small amounts of cost-efficient electricity storage are available.

Any electricity generation technology can cause grid instability and price fluctuations if it goes offline unexpectedly. But a key finding of the OECD report is that renewables that are particularly variable, such as wind and solar, generate system effects that are at least an order of magnitude greater than for “dispatchable” technologies such as coal, gas, and nuclear.

These renewable sources require no fuel, and so have very low operating costs. This allows them to enter the market at low prices (or even negative prices if production subsidies or generation mandates are in place).

As a consequence, with the current power-generation mix in the OECD (including Australia), dispatchable technologies will suffer due to lower average electricity prices and reduced capacity factors when a significant quantity of low-cost renewable energy is available. (That is, dispatchable units will more often be forced to ramp down their output when there are high flows of low-cost renewable energy, yet will still need to be ready to ramp up again when the output from variable renewable generators is not sufficient to meet the total demand across the grid.)

The report defines grid-level system costs as the total costs (on top of plant-level costs) to supply electricity at a given load and given level of security of supply. These additional costs include the extra investment to extend and reinforce the grid, plus the costs for increased short-term balancing and for maintaining the long-term adequacy of electricity supply in the face of intermittent variable renewables.

(more…)

81,000 truckers for solar!

Guest Post by Geoff Russell. Geoff is a mathematician and computer programmer and is a member of Animal Liberation SA. He has published a book on diet and science, CSIRO Perfidy.

What’s a solar atlas?

The World Wildlife Fund (WWF) recently released its World Solar Atlas report reckoning that the world’s entire projected needs in 2050 of something beginning with “e” could be met with solar panels on less than one percent of the planet’s surface. Pundits covering the report suffered some confusion about whether the ‘e’ was ‘electricity’ or ‘energy’, but none bothered with the obvious implication that covering one percent of Australia, for example, in solar power stations would require trucks as well as panels and land. Extrapolating from the proposed Moree Solar Farm project shows that this “one percent solution” would keep our entire 81,000 strong articulated truck fleet busy lugging stuff out into the bush for a minimum of four years and involve some 50 million round trips. That’s right, all the semi-trailers, all the B-Doubles, and all the road trains. All diverted from goods transport, food harvests and whatever else they do and all doing nothing else but carting solar stuff for four full years. Allocating 8,000 of the fleet to the build would see it stretch out to four decades. Read on for the details…

I didn’t see any mainstream media coverage of the WWF report, but then again, the Lance Armstrong soapie broke at about the same time and didn’t leave much room for other news. So coverage was left to the renewable energy bloggies.

Here’s a sample of the headlines: “… Solar power could serve all the World’s Energy Needs”, and “… solar panels in harmony with nature”, and “…land requirements insignificant”, and “solar could power entire world with less than 1% of land mass”.

“Bloggie” is a neologism related fairly clearly to “groupie” and I’m expecting it to go viral.

Here’s a couple of typical paragraphs that illustrate the coverage:

Highlighting the fact that a global switch to renewable energy is not just necessary, but doable, a new report released by the WWF concludes that the solar arrays necessary to meet all the world’s projected energy needs in 2050 would cover under one percent of global land area. Obviously this is a theoretical exercise, and 100 percent of the planet’s electricity needs are not actually going to be filled through solar.

and

The report illustrates that PV technology, when well-planned, does not conflict with conservation goals and clarifies that no country or region must choose between solar PV and space for humans and nature.

Electricity? Energy? Both start with ‘e’

What’s the problem? Well the problems begin with the letter ‘e’. Globally, electricity is only about 18 percent of energy use (IEA). So meeting all the world’s energy needs is very different from meeting all the world’s electricity needs.

Both needs begin with ‘e’ but getting them confused is no minor matter.

(more…)

Worrying about global tipping points distracts from real planetary threats

In a paper published last week in Trends in Ecology and Evolution, I (Barry Brook) and my colleagues argue against the idea of an ecological global-scale “tipping point”. Here, I outline the paper’s core argument, while Professor Corey Bradshaw (not an author on the study) explains what it means for conservation practice.

Locally, tipping points are real, but it’s unlikely the whole globe will go at once. (Truthout.org)

NOTE: For some counter arguments, see this HuffPo piece: Tipping Points: Can Humanity Break The Planet? What strikes me is that many of the critics apparently did not read the original article, because they’ve confused/conflated what we’ve said about ecological tipping points with those observed or forecast for the climate system. Because of the inherent global interconnectivity and physical couplings of the latter, tipping points are plausible and indeed likely for some elements, such as Arctic sea ice. Not so for biomes, we argue. If you want a PDF copy of the TREE paper, email me.

Barry Brook

We argue that at the global-scale, ecological “tipping points” and threshold-like “planetary boundaries” are improbable. Instead, shifts in the Earth’s biosphere follow a gradual, smooth pattern. This means that it might be impossible to define scientifically specific, critical levels of biodiversity loss or land-use change. This has important consequences for both science and policy.

Humans are causing changes in ecosystems across Earth to such a degree that there is now broad agreement that we live in an epoch of our own making: the Anthropocene. But the question of just how these changes will play out — and especially whether we might be approaching a planetary tipping point with abrupt, global-scale consequences — has remained unsettled.

A tipping point occurs when an ecosystem attribute, such as species abundance or carbon sequestration, responds abruptly and possibly irreversibly to a human pressure, such as land-use or climate change. Many local- and regional-level ecosystems, such as lakes,forests and grasslands, behave this way. Recently however, there have been several efforts to define ecological tipping points at the global scale.

At a local scale, there are definitely warning signs that an ecosystem is about to “tip”. For the terrestrial biosphere, tipping points might be expected if ecosystems across Earth respond in similar ways to human pressures and these pressures are uniform, or if there are strong connections between continents that allow for rapid diffusion of impacts across the planet.

These criteria are, however, unlikely to be met in the real world.

First, ecosystems on different continents are not strongly connected. Organisms are limited in their movement by oceans and mountain ranges, as well as by climatic factors, and while ecosystem change in one region can affect the global circulation of, for example, greenhouse gases, this signal is likely to be weak in comparison with inputs from fossil fuel combustion and deforestation.

Second, the responses of ecosystems to human pressures like climate change or land-use change depend on local circumstances and will therefore differ between locations. From a planetary perspective, this diversity in ecosystem responses creates an essentially gradual pattern of change, without any identifiable tipping points.

This puts into question attempts to define critical levels of land-use change or biodiversity loss scientifically.

Why does this matter? Well, one concern we have is that an undue focus on planetary tipping points may distract from the vast ecological transformations that have already occurred.

After all, as much as four-fifths of the biosphere is today characterised by ecosystems that locally, over the span of centuries and millennia, have undergone human-driven regime shifts of one or more kinds.

Recognising this reality and seeking appropriate conservation efforts at local and regional levels might be a more fruitful way forward for ecology and global change science.
(more…)

Follow

Get every new post delivered to your Inbox.

Join 3,798 other followers