Nuclear Waste Part 1: The elephant (shrew) in the room

This is the first in a four part series on nuclear waste which will run on BraveNewClimate.com over the next four days.

Geoff Russell, July 2013

(Geoff is a computer programmer, vegan, environmentalist, and more generally, a ‘by-the-numbers’ polymath. For a list of all of his posts on BNC, click here. He also has collections here and here).

Abstract: The nuclear industry used to dispose of nuclear waste in a safe and environmentally benign way. It’s a trivial technical problem compared to many other much larger waste problems that kill and sicken thousands of people daily. But they stopped. Not because of any problems, but because people who understand reactors and medicine and isotopes and engineering discovered that nuclear waste is far too valuable to simply throw out … it is already being used to kill cancer … and it has many other uses. So the policy changed from disposal to “retrievable storage”: don’t put it anywhere you can’t get it back from.

That abstract will surprise more than a few people who talk about nuclear waste as if its some kind of elephant in the room. “But they can’t even solve the waste problem!” they shout, or “I wouldn’t mind nuclear if only there was a solution to the waste problem”. If it really is an elephant, then it’s incredibly small. Just a little shrew scurrying along hoping to hell somebody doesn’t decide to make its habitat collateral damage underneath tonnes of concrete, steel and mirrors for a solar farm.

The smallest of the elephant shrews weighs 50gm

The smallest of the elephant shrews weighs 50gm

This is a four part series about nuclear waste designed to make the abstract blindingly obvious.

  1. What’s the fuss about?
  2. The nuts and bolts of waste
  3. Case studies, ocean dumping (safe and benign … yes, really) and Finland’s repository
  4. The choice … nuclear “waste” OR renewable wastelands

Part I: What’s the fuss about?

When you compare the nuclear waste problem with other waste problems, it quickly emerges as one of the easiest to solve safely and completely. Globally, another of our waste problems kills 3.5 million people annually. Which one? No, it’s not waste from coal fired power stations. Human sewage would be a good guess; it certainly kills millions. But the one I have in mind is a renewable energy source. Which one? Please read on.

What exactly are the problems relating to nuclear waste?

Here’s a quote from the Greenpeace website:

Most of the current proposals for dealing with highly radioactive nuclear waste involve burying it in deep underground sites. Whether the storage containers, the store itself, or the surrounding rocks will offer enough protection to stop radioactivity from escaping in the long term is impossible to predict.

Currently no options have been able to demonstrate that waste will remain isolated from the environment over the tens to hundreds of thousands of years. There is no reliable method to warn future generations about the existence of nuclear waste dumps.

The page in question cites no accidents, no injuries, no illnesses, no deaths, no untoward radiation leaks. Not a single relevant adverse incident. The same is true of other anti-nuclear websites (e.g., the Friends of the Earth website).

Back when I was anti-nuclear, these paragraphs would have been persuasive. It’s a simple argument: Nobody’s perfect, therefore stuff will always go wrong and nuclear stuff is dangerous. It’s a no brainer. These days my response is multi-layered.

Continue reading

Advertisements

Worrying about global tipping points distracts from real planetary threats

In a paper published last week in Trends in Ecology and Evolution, I (Barry Brook) and my colleagues argue against the idea of an ecological global-scale “tipping point”. Here, I outline the paper’s core argument, while Professor Corey Bradshaw (not an author on the study) explains what it means for conservation practice.

Locally, tipping points are real, but it’s unlikely the whole globe will go at once. (Truthout.org)

NOTE: For some counter arguments, see this HuffPo piece: Tipping Points: Can Humanity Break The Planet? What strikes me is that many of the critics apparently did not read the original article, because they’ve confused/conflated what we’ve said about ecological tipping points with those observed or forecast for the climate system. Because of the inherent global interconnectivity and physical couplings of the latter, tipping points are plausible and indeed likely for some elements, such as Arctic sea ice. Not so for biomes, we argue. If you want a PDF copy of the TREE paper, email me.

Barry Brook

We argue that at the global-scale, ecological “tipping points” and threshold-like “planetary boundaries” are improbable. Instead, shifts in the Earth’s biosphere follow a gradual, smooth pattern. This means that it might be impossible to define scientifically specific, critical levels of biodiversity loss or land-use change. This has important consequences for both science and policy.

Humans are causing changes in ecosystems across Earth to such a degree that there is now broad agreement that we live in an epoch of our own making: the Anthropocene. But the question of just how these changes will play out — and especially whether we might be approaching a planetary tipping point with abrupt, global-scale consequences — has remained unsettled.

A tipping point occurs when an ecosystem attribute, such as species abundance or carbon sequestration, responds abruptly and possibly irreversibly to a human pressure, such as land-use or climate change. Many local- and regional-level ecosystems, such as lakes,forests and grasslands, behave this way. Recently however, there have been several efforts to define ecological tipping points at the global scale.

At a local scale, there are definitely warning signs that an ecosystem is about to “tip”. For the terrestrial biosphere, tipping points might be expected if ecosystems across Earth respond in similar ways to human pressures and these pressures are uniform, or if there are strong connections between continents that allow for rapid diffusion of impacts across the planet.

These criteria are, however, unlikely to be met in the real world.

First, ecosystems on different continents are not strongly connected. Organisms are limited in their movement by oceans and mountain ranges, as well as by climatic factors, and while ecosystem change in one region can affect the global circulation of, for example, greenhouse gases, this signal is likely to be weak in comparison with inputs from fossil fuel combustion and deforestation.

Second, the responses of ecosystems to human pressures like climate change or land-use change depend on local circumstances and will therefore differ between locations. From a planetary perspective, this diversity in ecosystem responses creates an essentially gradual pattern of change, without any identifiable tipping points.

This puts into question attempts to define critical levels of land-use change or biodiversity loss scientifically.

Why does this matter? Well, one concern we have is that an undue focus on planetary tipping points may distract from the vast ecological transformations that have already occurred.

After all, as much as four-fifths of the biosphere is today characterised by ecosystems that locally, over the span of centuries and millennia, have undergone human-driven regime shifts of one or more kinds.

Recognising this reality and seeking appropriate conservation efforts at local and regional levels might be a more fruitful way forward for ecology and global change science.
Continue reading

Dietary Guidelines Committee ignores climate change

Guest Post by Geoff RussellGeoff is a mathematician and computer programmer and is a member of Animal Liberation SA. His recently published book is CSIRO Perfidy. His previous article on BNC was: Feeding the billions on a hotter planet (Part III).

He also wrote a brilliant recent piece for The PunchFukushima was no disaster, no matter how you spin it

——————

IPCC calls to reduce meat consumption

Back in 2008, head of the IPCC Rajendra Pachauri told the world to eat less meat because of its large greenhouse footprint.

At about the same time the National Health and Medical Research Council appointed a committee to update Australia’s Dietary Guidelines … last issued in 2003. The preface from the 2003 document is clear:

“The Australian Food and Nutrition Policy is based on the principles of good nutrition, ecological sustainability and equity. This third edition of the Dietary Guidelines for Australian Adults is consistent with these principles. The food system must be economically viable and the quality and integrity of the environment must be maintained. In this context, among the important considerations are conservation of scarce resources such as topsoil, water and fossil fuel energy and problems such as salinity.”

The Terms of Reference give no instructions about what the committee should do other than to update the documents with the best available science. Environmental issues were clearly worthy of lip-service in 2003, if nothing else. Any reasonable update to the 2003 document should see those issues front and center.

Our impacts on the climate will flow on into most other environmental issues, whether we are concerned with other species, or more narrowly focused on the habitability of the planet for our own. If food choices have a significant impact on climate forcings, then documenting and explaining the extent of those impacts to the public should have been front and centre in the workings of this committee. In addition to the head of the IPCC, no lesser scientific authority than NASA climate scientist James Hansen said in 2009:

If you eat further down on the food chain rather than animals, which have produced many greenhouse gases, and used much energy in the process of growing that meat, you can actually make a bigger contribution in that way than just about anything. So that, in terms of individual action, is perhaps the best thing you can do.

He made an equivalent statement to me in 2008 and advised that he was changing his own diet and was “80-90% vegetarian“.

We shall see later that Hansen’s claim is easily supported.
Continue reading

Feeding 10 billion in 2050’s sauna (Part III)

What future for agriculture on a hotter planet?

Guest Post by Geoff RussellGeoff is a mathematician and computer programmer and is a member of Animal Liberation SA. His recently published book is CSIRO Perfidy. His previous article on BNC was: Feeding the billions on a hotter planet (Part II)

——————

Welcome to Part III of my still presumptuously titled series on feeding the world in 2050.

I spent the first two parts of this series looking at global authorities like the FAO (United Nations Food and Agriculture Organisation) with its predictive obsession and its policy associate IFPRI (International Food Policy Research Institute) with its meat obsession. Writing in a similarly obsessed country with far more cattle than people, I felt compelled to add a special section on protein and to also quantify the place of meat, particularly sheep and cattle meat, on the world food stage. Cattle are a major player in climate change, biodiversity loss and general environmental destruction but both they and sheep are globally irrelevant to food security. But worse than being irrelevant, their net contribution may well be negative. Here are some of the negative impacts:

  1. Reductions in the productivity of the land that produces real food. These reductions are via physical soil damage, consumption of crop residues which protect the soil, the deliberate burning of areas that are croppable to maintain them as pasture.
  2. Fouling water. Lack of clean water is the second biggest cause of malnutrition.
  3. Acting as disease generators. I mentioned Cryptosporidium in the last post, but livestock are also major generators of novel rotavirus strains. Rotavirus kills a million children annually, with vaccination not always available in the developing world. We don’t need new strains.
  4. The direct sickening and killing of children and women via the use of animal dung as a fuel.
  5. The reduction in the global food supply by making feed production more profitable than food production. The last impact doesn’t always apply to sheep and cattle but is more general. People with the perspicacity to easily recognise this problem in the context of biofuels are almost universally blind to its existence elsewhere.

Today, in the last of the series, I want to look some standout scientific work that breaks the predictive meat obsessed mould. This is work by Jonathan Foley and Navin Ramankutty and a sizeable group of associated researchers. I’ll call this the “FR” work, but keep in mind that there are many other researchers involved.

This work breaks the mold because it isn’t concerned with mere prediction, like that of the FAO. Nor is it obsessed with meat as a food but rather it recognises meat’s central role in reducing global food Calories.

Continue reading

Feeding 10 billion on a hotter planet (Part II)

Guest Post by Geoff RussellGeoff is a mathematician and computer programmer and is a member of Animal Liberation SA. His recently published book is CSIRO Perfidy. His previous article on BNC was: Feeding the billions in 2050’s sauna (Part I)

——————

Welcome to Part II of my presumptuously titled series on feeding the world in 2050. Before concluding where we left off with the analysis of the foods which the International Food Policy Research Institute (IFPRI) thinks are globally important, we need a short prologue on protein.

Protein prologue

Any suggestion based on Calorie counts that the net contribution of beef or other meats to global food security may be trifling or even negative brings instant feedback about protein. The presumption is that it is adequate protein, particularly animal protein, which is the key requirement for beating malnutrition. This is inevitable for two reasons: first, the absence of medical malnutrition literature from the best seller list, and second, we have all spent our entire lifetime swimming in meat industry propaganda … much of it focused on protein.

We need some historical perspective on protein.

There’s nothing quite like being the first, and protein can lay good claim to being the first critical nutrient discovered in the early days of modern chemistry. Nitrogen is protein’s key chemical component and one of the first to be accurately measured. Consequently, quite precise measurements of protein utilisation in people have been around for almost 200 years.

Early investigators fed dogs pure sugar diets and watched them die. Absence of protein was the explanation they eventually settled on. What else could it have been? In 1815, vitamins (in any measurable sense) were well beyond the knowledge horizon, so there was really only one candidate. By 1842, protein was pronounced the only true nutrient and the sole provider of energy to the muscles. It mattered not that measurements on prison work gangs showed no differences in protein utilisation on rest days and hard treadmill days. The history of protein spin is a picturesque tale of arrogant opinionated people holding fast to beliefs in the face of overwhelming data. Not everyone was fooled. US Yale University researchers in 1907 took athletes and halved their protein intake during a mammoth 5 month piece of live-in research. Over the 5 months, far from fading away, the subjects got stronger by 35%. The protein myth charged on regardless, pushed by the then head of the US Agriculture Department who thought (seriously) that when people could choose food without regard for cost or availability, they would choose an optimal diet. i.e., the rich must know best.

Continue reading