Climate Change Emissions Nuclear

Counterpoint ABC radio debate – Does being green mean going nuclear?

The Australian Broadcasting Commission (ABC) has now broadcast my debate with Ian Lowe over nuclear power, on Radio National’s Counterpoint program. The discussion lasts 50 minutes, and includes various questions and answers from the Why vs Why: Nuclear Power book, moderated by Paul Comrie-Thompson. We cover issues of waste management, weapons proliferation, adequacy of renewable energy alternatives, reactor safety, deployment rates and costs, cognitive dissonance. There is an audience Q&A session at the end, which includes some questions by BNC commenter Luke Weston. Details below — enjoy!


Does being green mean going nuclear?


A substantial amount of the world’s known deposits of uranium are under the ground right here in Australia.So what are do we do with it all? Ian Lowe wouldn’t touch it with a barge pole. He says ‘No’ to Nuclear Power. Barry Brook says ‘Yes’ to Nuclear Power. Two passionate environmentalists debate this vital issue.

Duration: 50 minutes (.MP3 audio file)


Ian Lowe —  President of the Australian Conservation Foundation and Emeritus Professor of Science, Technology and Society at Griffith University. Adjunct Professor at Flinders and Sunshine Coast Universities.

Barry Brook — Sir Hubert Wilkins Chair of Climate Change: Environment Institute, University of Adelaide

Further Information and

PresenterPaul Comrie-Thomson;  Producer: Ian Coombe


Finally, on the climate change front, some interesting facts sent to me by Blair Trewin of the Bureau of Meteorology:


• NCDC have updated their global analysis to April 2010. For the year-to-date, the global combined land and ocean surface temperature of 13.3°C was the warmest January-April period. This value is 0.69°C (1.24°F) above the 20th century average.

The combined global land and ocean average surface temperature for April 2010 was the warmest on record at 14.5°C (58.1°F), which is 0.76°C (1.37°F) above the 20th century average of 13.7°C (56.7°F).

• This was also the 34th consecutive April with global land and ocean temperatures above the 20th century average.

• The worldwide ocean surface temperature was 0.57°C (1.03°F) above the 20th century average of 16.0°C (60.9°F) and the warmest April on record. The warmth was most pronounced in the equatorial portions of the major oceans, especially the Atlantic.

• The April worldwide land surface temperature was 1.29°C (2.32°F) above the 20th century average of 8.1°C (46.5 °F)—the third warmest on record.

Southern Hemisphere:

• Two of the last 6 months have had the warmest SH temperature anomaly by month (since 1880); the other 4 were second warmest on record.

Ten of the past 11 months were warmest or second warmest on record.

• SH Mar 2009-Feb 2010, Apr 2009 to Mar 2010 and May 2009 to Apr 2010 were the warmest on the NCDC records for their respective Mar-Feb, Apr-Mar and May-Apr.


Both Victoria and Tasmania have recorded their warmest 12 month period since records began. [Interestingly, many people felt that we did not get much of a summer- which goes to show that our perception and memory of climate is probably influenced by the presence of extreme events (such as 46 degree days)- rather than a string of warmer than average days, or an absence of cold days- such as was experienced.]

• Victoria’s mean temperature during the 12 months to the end of April was 15.36°C, passing the previous record of 15.25°C set between February 2007 and January 2008. Likewise, Tasmania recorded a mean temperature from May 2009 to April 2010 of 11.43°C, passing its previous record of 11.34°C set between May 1988 and April 1989.



This transcript was typed from a recording of the program. The ABC cannot guarantee its complete accuracy because of the possibility of mishearing and occasional difficulty in identifying speakers.

Paul Comrie-Thomson: Welcome to a special edition of Counterpoint which examines in depth the question ‘Does being green mean going nuclear?’

Michael Duffy: Last week at Readings bookshop in Hawthorn, Victoria, Pantera Press launched the first of a series of what are literally two books in one that are about contemporary issues. The first volume contains two essays, ‘Why We Should Say No to Nuclear Power’, that’s by Ian Lowe, and ‘Why We Should Say Yes to Nuclear Power’ by Barry Brook. The two authors got together to debate one another at Readings bookshop. Radio National was there to record it and Paul was the moderator.

Paul Comrie-Thomson: Let’s start with a fact. A substantial amount of the world’s known deposits of uranium are under the ground right here in Australia. So what are we going to do with it all? Ian Lowe wouldn’t touch it with a bargepole. He says advocating nuclear power as a response to climate change is like promoting smoking as a cure for obesity. He says no to nuclear power.

Barry Brook says if climate change is the inconvenient truth facing our fossil fuel dependent society, then the inconvenient solution staring right back is advanced nuclear power and not renewable energy sources such as solar and wind. He says yes to nuclear power.

But both Ian and Barry are passionate environmentalists. Ian Lowe is president of the Australian Conservation Foundation and emeritus professor of science, technology and society at Griffith University, and he’s adjunct professor at Flinders and Sunshine Coast Universities. Barry Brook holds the Sir Hubert Wilkins chair of climate change at the University of Adelaide’s Environment Institute.

Both Ian and Barry have argued their case in print and online, and in Melbourne they were there to defend what they see as key propositions supporting the case for yes and no regarding nuclear power. To get the debate rolling I asked Barry Brook what made him such a passionate advocate of nuclear power.

Barry Brook: When I was initially looking at this problem of replacing fossils fuels, I looked very hard at renewable energies and was promoting them strongly, and I’m still a supporter of renewable energy, I should say. But I quickly came to the conclusion based on the systems analyses that it wasn’t going to be enough, and if we’re going to fundamentally solve the energy and the climate crisis we have to make sure that we have enough.

If I could characterise my argument as briefly as possible it would be that you don’t need to favour nuclear energy or renewable energy, you just need to ensure that they have a level playing field to compete against.

Paul Comrie-Thomson: Ian Lowe, one of the objections you’ve made to Barry’s position here, it centres around this thing called base load power. This is mentioned a lot when we talk about solar or wind or geothermal. You say the need for base load electricity is exaggerated. Why is that?

Ian Lowe: There are some applications that require electricity around the clock, like aluminium smelters that we regard as so important that we provide them with huge public subsidies since it otherwise would not be economic to use coal fired electricity to melt aluminium in competition with Icelandic geothermal or Canadian hydro. And there are some steel works, there are traffic lights that have to operate at 3am, and there are insomniac writers trying to meet Pantera Press’s unreasonable deadlines. But apart from that, there are relatively few applications that require power at four o’clock in the morning.

The need for base load electricity has actually been artificially inflated in the last 20 years because coal fired power stations are very difficult to ramp up and down to follow demand, so the electricity industry has encouraged us to use energy wastefully in the early hours of the morning, for example by heating water which then radiates heat slowly away before we need it during the day. And these off-peak tarrifs were brought in to encourage people to use electricity at night.

I remember when I was in Britain studying, the electricity industry actually marketed a space-heating technology called storage heaters, and the idea was basically that you had a pile of bricks in your living room with a heater in the middle of it and the heater ran between midnight and 7am and the bricks then slowly radiated for the rest of the day. It was a very inefficient means of heating but it was very good for the electricity industry because it evened out the load.

My view is that the current so-called base load has been artificially inflated and that the reduced real base load could easily be met by some renewables, and in particular geothermal and wave energy are basically available 24/7.

Paul Comrie-Thomson: Barry Brook, if you could just reply to that, because one of your principal positions is renewables won’t work because we’re going to need so much power and they just won’t deliver, but Ian Lowe is saying the amount of power we actually need has been exaggerated. How would you reply to that?

Barry Brook: The strict definition of base load is it’s the lowest amount of power that we would use during the middle of the night, and you could certainly get rid of some of those loads that Ian has talked about. Of course you still have to generate that energy at some time, so it’s like the impact on the amount of energy we’re going to have to generate during the day. But the hard fact is there will be times during the day when neither solar nor wind is generating any electricity either, and these problem periods, these minimum delivery periods, are what we’re going to have to cover if we’re going to stop the electricity grid collapsing.

And not only has it not been demonstrated anywhere worldwide that this is possible to do, even if you look at the problem theoretically, the way in which you’d have to do it by overbuilding capacity, having a huge number of additional solar power plants and wind power plants and a huge amount of additional storage to do that, means that very quickly renewables become grossly uneconomic, and so that even if technically you could do it, economically you never would.

But I would again revisit this point that if it’s an argument of economics, then that’s an argument that you can quite easily sort out in the real world by removing any particular impediments to one power source or another and allowing them to compete on an equal basis. One of the fundamental problems we have in Australia right now is we’re not allowing nuclear energy to compete on any sort of basis.

Paul Comrie-Thomson: Let’s explore that. We’re talking about whether renewables can or cannot do the job, and there’s a debate about how much power we actually need. So, Ian and Barry, let’s pitch it forward to a fundamental point of disagreement between you. Barry Brook says the renaissance is happening with generation III reactors. Ian Lowe says fast breeder reactors, can they really be made to work? Ian Lowe, let’s start with you; what’s your worry about generation III and fast breeder reactors? What’s your worry?

Ian Lowe: Paul, in 1968 I went to the UK to do a doctorate in physics and my research was funded by the group in the UK Atomic Energy Authority who were building the prototype fast breeder reactor at Dounreay on the north coast of Scotland. The UK Atomic Energy Authority spent 30 or 40 years working on the prototype fast breeder reactor before they gave up. The USA has also essentially given up on the liquid metal fast breeder reactor. And the technical problems are really quite intimidating.

Barry and I would agree, I think, that there are in principle other possible designs of breeder reactors that might avoid those technical issues, but the technical issues are so serious that quite a lot of rabidly pro-nuclear people who are very happy to support the building of nuclear power stations when I was in the UK and in the US were quietly terrified of the prospect of the fast breeder reactor and its inherent complexity.

The other issue about the breeder reactor which is currently occupying discussion in the US where the Obama administration is agonising about whether to approve research into the breeder reactor is concern about what it might do for weapons proliferation and the availability of plutonium in particular.

So I think there are two problems. One is that technically, despite more than 40 years of research, we don’t have a proven design for the breeder reactor. But even if the breeder reactor could be made to work (and the only way you could make the uranium resource appear adequate for the long distance future is by assuming that the breeder reactor will work), you would be putting into circulation about every three weeks about as much plutonium as the entire global weapons stockpile at the moment. So you would be dramatically increasing the amount of plutonium in circulation, and my view is that it really beggars belief to think that you could increase the amount of plutonium in circulation that dramatically without some of it being misused.

Paul Comrie-Thomson: We’ll address that safety issue in a minute but, Barry, I think I should give you the right of reply. Generation III reactors…Ian Lowe says, look, dream about it, they’re not happening.

Barry Brook: If Mark Twain was in my place he might say that rumours of the death of the breeder reactor have been greatly exaggerated. In fact it was killed in the US due to a political decision, not a technical one. The exemplar program for the liquid metal fast breeder reactor called the integral fast reactor was an astounding success. It was developed between 1984 and 1994 at the Argonne National Laboratories in the US and went to the point where it resulted in a blueprint that had been developed by General Electric Hitachi called the S-PRISM.

The step that is required now is to commercialise that. The technical problems have been solved, the problems that existed in the 1950s when this was a very new technology have been solved by that development program, so it’s time to build the things. But a political decision was made by the Clinton administration in 1994 to kill that technology, which was a bitter disappointment to almost everyone in the research aspect of the nuclear industry, and it’s led to the continued building of coal fired power stations that we see today.

There are some other nations which continue to deploy these fast reactors and continue to try and develop the technology, but the hard fact is the very best technology was developed in the US and is still awaiting commercialisation. We know how to do it, we know we can do it successfully, we are simply waiting, much like the renewable energy advocates are waiting, for a government with the guts to actually go ahead and do this.

Paul Comrie-Thomson: Ian Lowe, you alluded to the Obama administration and that Barack Obama, Gordon Brown, Mr Cameron in the UK were all pro-nuclear. The Obama administration is weighing up matters at the moment, but you say this weapons proliferation, it remains a problem. The more nuclear power, the more potential for weapons out there. But Barry Brooks says, surprisingly for some, ‘nuclear power is the safest energy option’. I’d like, Barry, for you to defend that, and then Ian I’m sure will have something to say. Nuclear power is the safest energy option; why do you say that?

Barry Brook: If you look back at the history of energy, then any form of energy we’ve developed has caused people to be killed, it has caused accidents. If you want to look at that on an apples and apples comparison, so on a fair basis, then you need to look at the number of people who have been killed per megawatt hour, which is a measure of energy generated. On that basis the safest energy sources are nuclear power and solar power. More people are killed falling off repairing wind turbines, for instance, than are killed or have ever been killed in the nuclear power industry.

But there’s a broader issue of safety as well which I think is important for people to appreciate. If you’re concerned with climate change or you’re concerned with peaking fossil fuel supplies such that our society that has developed today will run out of energy, then that’s a safety issue as well, because if we don’t deal with those in an adequate, comprehensive and immediate way then it doesn’t matter what else we do, it will all be swept away.

If you are deploying a solution which doesn’t fix that problem or which runs a high risk of not fixing that problem, that’s a very dangerous strategy to take if you put credence, as Ian and I both do, in the importance of climate change caused by anthropogenic carbon emissions.

Paul Comrie-Thomson: There is one issue that Ian addressed, it’s not just the safety of working with nuclear material, it’s the stuff getting into the wrong hands. That is, the more nuclear power stations you have, the more possibility for nuclear weapons perhaps in rogue hands. How do you address that?

Barry Brook: It’s very difficult to establish any link between commercial nuclear power and the development of nuclear weapons. Today we have about eight states that we either know or suspect has nuclear weapons, and we have well over 30 who have commercial nuclear power. Those 30-plus nations (and there’s more coming each year) who are embracing nuclear power for the first time are not going to abandon nuclear power under any circumstances, so I do wonder what the goal of people who oppose nuclear power on the basis of weapons proliferation is. Do they expect that countries like China and India will forgo nuclear power and therefore that the world can be entirely rid of nuclear technology? I don’t think that’s a practical ambition at all, and certainly not in the time frames we’re talking about to replace fossil fuels.

So I would say that if Australia was serious about weapons proliferation then we should go ahead with our nuclear power industry, we should take better responsibility for our fissile material, we should lead the way by showing how we can safely use nuclear power and we can be involved with weapons non-proliferation treaties in a more active way, be involved in the whole of the management of fissile materials. But be very clear that the development of commercial nuclear power is a decision that’s very different to one where a desperate nation state might decide to build nuclear weapons.

Paul Comrie-Thomson: Ian Lowe, a follow-up question to you. Barry Brook talked about Australia taking a lead, and let’s remind ourselves that we have a large proportion of the world’s uranium under our ground, a large proportion of the world’s thorium. What are we going to do with it? Nuclear waste…you and Barry have quite different ideas. Barry says technology can solve the waste problem, you say there are no credible strategies to prove waste is not or will not be a problem. Ian Lowe, tell me about the problem of nuclear waste.

Ian Lowe: The problem is that the current nuclear power stations produce waste which has a mix of highly radioactive materials which has to be isolated from the biosphere for hundreds of thousands of years. That’s not just a technical challenge, it’s also a social challenge because we’re talking about periods longer than any human civilisation that’s ever endured by orders of magnitude. So if we are to be confident that that waste isn’t a threat to future generations, we need to be confident that it is secured in ways that are both technically sound and also proof against whatever social changes might occur over what is geological time.

The current arrangements certainly don’t meet that goal. In most cases the radioactive waste is still sitting around in ponds of water at nuclear power stations, and most authorities say we are working on developing a final solution (dare I use that phrase) to the problem of radioactive waste.

Paul Comrie-Thomson: Just as an aside, your training was in physics; whatever happened to Synrock?

Ian Lowe: That’s a point I was going to make, that I think the old adage ‘nature knows best’ is correct, and as a material scientist I was horrified to see nuclear authorities in the northern hemisphere talking about putting radioactive waste in glass, because glass isn’t really a solid that’s stable over geological time, it’s actually a super-cool liquid and it’s not stable over geological time even in the absence of heat and radioactivity, so I think it’s pure fantasy to think that you can safely immobilise radioactive waste in blocks of glass for geological time.

The late professor Ted Ringwood had a bright idea that nature knows best, there are naturally occurring granites in which radioactive elements are locked up for geological time because they’re the ores that are mined to obtain uranium. He said if we could produce an artificial granite, a synthetic rock which he called Synrock (it sounds like music for a house of ill repute but it’s actually quite a nice concept), we could in principle immobilise the radioactive waste for geological time.

It’s an interesting comment on what I was saying about it being not just a technical issue but also a social issue that 30 years after that invention and more than 20 years after a group of scientists at Griffith University showed that Synrock is orders of magnitude better than glass at resisting leaching of elements by hot groundwater, we still don’t have one instance anywhere in the world of Synrock being adopted as a waste technology. My view is that the nuclear authorities, having argued to politicians for decades that glass is quite acceptable, are reluctant to admit that they’re wrong and embrace what’s clearly a better technology.

Paul Comrie-Thomson: Just to be clear here, you’re suggesting that Synrock could perhaps be a way of containing nuclear waste?

Ian Lowe: In principle you can immobilise radioactive isotopes in Synrock, and if the Synrock was then sealed in a responsible place you could immobilise the nuclear waste that we’ve produced up until now. My view is that it doesn’t make a lot of sense though to expand the amount of nuclear waste by factors of ten or factors of 100 by building still more nuclear power stations. I think we’ve got a big enough problem with the waste that’s here now.

Paul Comrie-Thomson: Barry Brook, Ian Lowe was talking about hundreds of thousands of years…I know you’re going to mention the figure of 300 years and, again, you’re talking about new technology solving the waste problem. Talk us through it.

Barry Brook: Yes, you can certainly have technology to reduce the lifetime of that waste, but let’s first consider the consequences of current waste. We’re actually talking about a miniscule amount of material here. If you appreciate that nuclear power is over a million times more concentrated than the chemical energy in coal, which is already a very concentrated form of energy compared to solar and wind energy, then you can probably logically work out the amount of waste is a million times less.

So if you took all of the waste that had been generated by all the nuclear power plants around the world, you’re covering a football field about a metre high, we’re talking about a tiny amount of waste, whereas one coal fired power station of about 1,000 megawatts is going to produce close to 10 million tonnes of carbon dioxide each year, as well as a whole bunch of fly ash. And it will release through its smokestack more uranium and thorium than a nuclear power plant would consume in one year. So we’re talking about a huge difference in the amount of waste.

So the waste that’s remaining, if you do nothing with it you can either dilute it such that it becomes more radioactive than uranium ore, or you can encapsulate it in glass or Synrock, or more sensibly you can reprocess the waste in a safe way so that it’s not available for building nuclear bombs and it is available for generating huge amounts of energy. We’ve mined enough uranium already that through fast reactors we could supply the whole world with electricity for about 700 hundred years and we could consume all of the spent fuel that’s been produced to date, and we could also then tap all the depleted uranium stockpiles that are sitting around just waiting to be used for energy.

So technically we know how to consume all of this waste so that we don’t have to manage it for 100,000 years, and I would argue that the reason we’re not building repositories today that could handle waste for 100,000 years is that anyone who knows a lot about nuclear power understands that this will always be a silly dream that no-one is going to pursue because there’s no point in ever doing it when we have better technical solutions available.

What’s holding it back right now? Almost certainly it’s economics. Right now uranium is cheap to mine, it’s cheap to run third generation reactors which only burn about six-tenths of 1% of the energy in uranium rather than over 99% like we know technically how to do. And so we’re essentially just sitting on the problem, and indeed if you talk to some people who have recently assessed this issue in the US, their recommendation is to just sit on the problem for another 20 or 30 years because there’s no hurry in solving it. I would argue that there is a hurry because one of the two biggest public perceptions against nuclear power is the misguided belief that we don’t know how to do anything about once used nuclear fuel, which is actually the proper definition of what people would consider nuclear waste.

Paul Comrie-Thomson: Ian, Barry is talking about people sitting on their hands in terms of thinking about nuclear waste. If you were the Australian prime minister, what would be the first policy you would initiate right now in terms of energy?

Ian Lowe: I’d be announcing in tonight’s budget a mix of measures that would produce a clean energy future for Australia. I would say in the absence of an emissions trading scheme that we’re starting with a modest carbon tax of $30 a tonne and give notice that we will increase it by $10 a tonne each year until there is an emissions trading scheme in place. I would increase the renewable energy target. I would pick up the report to the Howard government, the 2003 report ‘National Framework for Energy Efficiency’ that showed that we could reduce our emissions by 30% by measures that pay for themselves in less than four years, and I would adopt that commitment to a clean energy future for Australia.

I would take the $1.7 billion that we subsidise the mining industry by applying the diesel fuel rebate to them and the $5 billion or $6 billion dollars that we spend each year subsidising the coal fired smelting of aluminium, and I would use that as a fighting fund to build renewable energy in Australia. And I would take the money that’s now being used to develop export coal infrastructure so that we can contribute more globally to the problem than we do at home and use that money to develop public transport in Australia.

That would be my integrated package of measures, which I assume by now Wayne Swan would have announced.

Paul Comrie-Thomson: Barry Brook, how much of our hypothetical treasurer/prime minister’s agenda would you support? One thing of course, if we have a carbon tax, that makes nuclear more economically attractive.

Barry Brook: Except that it’s illegal in Australia right now, so it can’t compete on that levelised basis. So the fundamental argument, the underpinning behind a carbon price is that it will drive innovation and deployment of clean energy technologies. But if clean energy technologies turn out to be uneconomic then it’s inevitable it will also increase the cost of energy and therefore potentially slow the deployment rate.

No-one can know for sure, when you really start to have a decent carbon price, what technologies will be driven fastest and what will turn out to be cheapest. But I think if we’re taking nuclear power off the table, when almost any other developed nation that you could imagine, apart from New Zealand, and one would argue whether they’re a developed nation or not, have nuclear on the table. I’m joking about New Zealand, they’ve got enough renewable energy resources that they can depend largely on hydro, which is something that we can’t do, and they’ve probably got enough sheep that they could depend on methane from them as well. Whereas Australia hasn’t got that sort of option, and Australia has got an abundance of uranium.

There are countries around the world which are deploying nuclear power now, are choosing to do so from a purely economic reason, and China is the best example right now. The audience may not realise that China is currently building at this very moment 24 new nuclear power stations. Sure, they’re building wind turbines and they’re building hydro dams as well, but if you add up the amount of electricity that’s going to be generated in the next decade by those 24 nuclear power stations, they vastly outweigh the amount generated by any wind turbines being built in China. China is making an economic decision here.

Paul Comrie-Thomson: Ian, a lot of us talk about China, they’re spreading their bets, so why can’t Australia do that; invest in solar, invest in nuclear, what we used to call ‘two bob each way’ in the old days?

Ian Lowe: Well, I’d have two bob each way, I’d invest in solar and wind and geothermal, and I’d put significant research resources into wave energy. But most of all I would look at efficiency measures that could dramatically reduce demand for energy. I remember Amory Lovins famously said, ‘People don’t want energy, they want hot showers and cold beer.’ And if you think about it, energy is a means to an end, we want energy because it allows us to see in the dark, it allows us to process information, it allows us to fly interstate and so on.

There are quite respectable studies, like the book Factor Four, that suggest that we could reduce by a factor of four the amount of energy needed to accomplish the same task. I don’t know any serious analysis that has concluded that there’s less than a factor of two available in cost effective measures that exist today. The significance of that is that it makes any task easier if you reduce demand for energy. People aren’t going to reduce demand by turning off the lights and freezing in the dark, but if you give them technologies that allow them to keep the beer cold using half as much energy…

For example, a typical Swedish refrigerator of the same size uses half as much electricity as a typical Australian refrigerator. In fact a significant number of the refrigerators on sale in the high street here could not legally be sold in Western Europe because they don’t meet minimum efficiency standards, and that’s dissipating people’s money as well as heating the planet unnecessarily. So I think we should spread our bets. In fact if you’re serious about renewables I think you’d accept Al Gore’s idea that there isn’t a silver bullet but there is silver buckshot, there are lots of little things we can do that add up to solving the problem.

I think I’d also take Barry’s point that you probably shouldn’t, in the short term at least, look at achieving 100% self-sufficiency from renewables. Studies like Mark Diesendorf’s conclude that it makes sense to have 5% or 10% of your power from gas, and that it’s probably sensible to have gas turbines as a stand-by measure for those times when there are extended periods of unavailability of renewables, and that would dramatically reduce the cost.

Paul Comrie-Thomson: Barry Brook, a follow-up to you. We’ve discussed this before in terms of new technologies and new energies, but you’ve made a point that if we’re going to move to electric cars we’re going to need a lot of energy, and you see nuclear as being important there.

Barry Brook: We’re going to need energy in a different form. Right now cars are driven by oil, which is a convenient carrier of energy, but it’s also a source of energy, and if we’re going to have cars in the future that are powered by batteries or some form of synthetic fuel that we create, then we’re going to need to use electricity to create that because we’re no longer able to mine oil to the degree that we’ve had. And if we want to decarbonise our economy then we can’t use oil at all.

So the total amount of electricity demand is almost inevitably going to rise as a result of needing to replace transport fuels. And then if you look more broadly that beyond Australia the world electricity demands can go nowhere but up, and that’s because the vast majority of people on the planet use much less electricity than us, a huge amount less electricity than us, but aspire to use even a little bit more. Places like China, for instance, per capita they use about a tenth of the electricity we use. Even if we could reduce our electricity use by half, which I think would require extraordinarily heroic efforts, then China has got to increase five times to get up to that level. So we’re talking about worldwide supplying a lot more electricity. And I can only see that being delivered by a concentrated form of energy that’s cheap.

Ultimately if we’re looking to replace fossils fuels as quickly as possible, then I think the fastest route to that is to have electricity generated by clean energy sources that is cheaper than coal. If you can get that, then all these arguments about imposing an international carbon price and difficulties in getting multilateral agreements, they become less important because people will choose to do that anyway. I would argue we’re almost at that point with nuclear power already. It’s the reason places like China and India have got such grand deployment plans for nuclear power and are pursuing them vigorously because they can see that if you look at the environmental damage caused by burning coal, the limited supply and the fact that China, which is the world’s largest coal producer, is already a net importer of coal and that’s only going to increase, they’re looking for ways to reach clean energy independence. And, as you quite rightly pointed out, they’re looking at a range of energy sources to do that.

I find it philosophically difficult to understand how someone could be so concerned about climate change like Ian Lowe is and still be willing to rule out a viable energy source like nuclear power on the basis of what seems to me to be very minor arguments about miniscule amounts of waste that we know how to deal with technically anyway. It just seems like a crazy example of cognitive dissonance.

Paul Comrie-Thomson: We’ve got two passionate environmentalists here, two passionate greens, and they have diametrically opposed views on nuclear power. Questions from the audience…if anyone would like to pop up to the microphone and ask a question…I do stress, if you could ask a question rather than a speech because the gentlemen are here to answer questions. Anyone got a question?

Audience member 1: Both of you are environmentalists and I applaud you for that, but I feel that our present stand on mining uranium and not developing nuclear power is totally hypocritical. Would you like to comment on that?

Ian Lowe: I think we’d probably be in furious agreement that it’s hypocritical. My view is that we should neither mine uranium nor develop nuclear power, and Barry’s is that we should mine uranium and develop nuclear power. But I agree we have hypocrisy on stilts in the extreme example of the South Australian government which waxed indignant about the possibility of a low-level radioactive waste dump in that state which would have been used to store slightly radioactive gloves from hospitals and quite minor items that aren’t much more contaminated than the radioactive dial on a watch. But they’re delighted to be championing digging the biggest hole on the face of the Earth so that we can export more uranium than everyone else put together, and there’s clearly no logic in that position. I think both Barry’s position and mine are logically consistent. I think if you’re in favour of nuclear power, you have to be in favour of mining uranium. If you’re opposed to nuclear power, you have to be concerned that mining uranium is creating in other places problems that we wouldn’t be happy to have here, like the problems of radioactive waste and the potential for fissile material to be misused.

Audience member 1: As a second question, we are 22 million people. Really on a world scale we are fairly insignificant, to put it mildly. There are 1.3 billion Chinese and at least a billion Indians. Do you really think they’re not going to look at our uranium resources and thorium and not wish to have them?

Barry Brook: I think there’s almost no chance that Australia is going to pull back from uranium mining. We have too valuable a resource there. And it is indeed, ironically, by far Australia’s biggest contributor worldwide to releasing greenhouse gas emissions. If you add up the amount of emissions that are effectively mitigated by Australia’s uranium exports to date already, they add up to more than all of our carbon emissions put together. So they are already important, and if we pull the rug under from that then we’re already contributing…we’re actually increasing the burning of fossil fuels and the use of coal-fired power.

So I don’t think it’s a credible or realistic scenario for us to forgo uranium mining, especially in polymetallic mines like Olympic Dam where we’re going to mine the copper anyway, to try and leave the uranium in the ground just seems like crazy stuff to me and I just don’t think it’s going to happen. But Ian and I are in agreement that if you are going to go down the path of following a mining boom to boost our economy, and that includes uranium energy, then we need to ensure that we are a responsible global citizen and are willing to make use of that energy and manage it ourselves.

Ian Lowe: I think the argument isn’t really an economic one. My understanding of the economics of Roxby Downs is that it would reduce the profitability by about 1% if they regarded it as a copper and gold mine and didn’t extract the uranium. And in overall terms I think we earn less from exporting uranium than we do from exporting cheese, and my view is that since radioactive waste is more unsavoury than an old gorgonzola and the non-proliferation treaty has more holes than a Swiss cheese, I’d rather we expanded our cheese exports.

Paul Comrie-Thomson: Well, you get the extended metaphor award for the night Ian! Another question?

Audience member 2: Hi, I just have two question for Barry Brooks. One would be obviously with the waste issue, I don’t know if you’re aware there’s currently an issue in Australia about a national radioactive waste repository which has been planned for the Northern Territory, obviously politically vulnerable at the moment. And it’s quite contested against the Indigenous people that live there, they don’t actually want the waste but it seems like the Labor government with the help of Martin Ferguson want to push that waste on the Indigenous community. Are you proposing that the waste that’s created from nuclear power, we’ll just dump that on Indigenous communities throughout the world?

Barry Brook: I’m not making a decision as to where the waste would go, but of course the waste repository that you’re talking about here is one to make use of our medical waste. So if you want to forgo radiotherapeutics, that’s the only way we’re not going to have responsibility for that sort of waste, given that Australia doesn’t currently have a commercial nuclear power station. So we’re going to have to put it somewhere, and whether that be forcing it onto some Indigenous land that the people don’t want, that seems like a bad decision to me, or you can do what they did in Sweden which was provide financial incentives for communities to do this and they had a number of communities bidding vigorously to be the site of that nuclear waste repository, and in the end the Forsmark community, which is near one of Sweden’s nuclear power plants, won the contract. They were actually after it. And I’m sure if you’d had a similar situation in Australia then there would be people hungry to manage these sorts of issues.

Audience member 2: Yes, hungry for housing and medical help and schooling. The other question for you, that you dodged quite well, with the weapons…how are you going to protect yourself from a nuclear war? Was it in a glass container or Synrock?

Barry Brook: I think the issue of conflating nuclear power and nuclear weapons is completely wrong, and if you imagine that the only way you’re going to eliminate nuclear weapons is to eliminate commercial nuclear power then you first have to explain the way in which you’re going to eliminate commercial nuclear power worldwide. If your view is that Australia shouldn’t go into commercial nuclear power because of nuclear weapons proliferation then you have to mount an argument as to why that will make any difference whatsoever to nuclear weapons worldwide.

Ian Lowe: I’d be happy to make that argument. If you think about why Iran’s neighbours are nervous, they see a country that has plentiful resources of oil and gas and renewable resources like solar going down what I see as the difficult and expensive route of building nuclear power stations. And they’re understandably nervous that their real motivation might be to build nuclear weapons. So their neighbours are nervous and the world is a bit nervous.

Imagine if you lived in Indonesia or Malaysia and you saw Australia which appears to have so much gas that we’re desperate to export it, which has so much renewable resources we could power all of Australia from solar or wind three or four times over, in my view, if you saw us embracing nuclear power, wouldn’t you be worried that our motivation might be to get the bomb, and if you were inclined to paranoia you would find plenty of statements from nuclear technocrats like the late Sir Philip Baxter and the late Sir Ernest Titterton who actually championed the idea of nuclear energy because it would allow us to have nuclear weapons to fight off the Asian hoards. So I think it’s incredibly likely that if Australia developed nuclear energy, that would spark paranoia and the development of nuclear weapons in countries to our north, and give the nuclear arms race a real tweak in our region.

Barry Brook: I think the fact that it hasn’t happened worldwide and many countries are embracing nuclear energy for the first time mounts a strong argument that people in Indonesia and other countries surrounding us would look at Australia’s move into nuclear power and think, well, they’ve woken up to a form of cheap energy at last.

Audience member 3: I just have a couple of questions for Ian Lowe. You mentioned the Mark Diesendorf work and Mark Diesendorf saying we can use natural gas back-up for renewables. Isn’t that basically saying that we don’t need nuclear power because we can just burn fossil fuel natural gas instead?

Ian Lowe: It is true that if you have natural gas backup you’ve only reduced by 95% the amount of carbon dioxide you’re putting into the air. The current goal is for the world to reduce its emissions by 60% by 2050, for the developed countries like Australia to reduce by between 25% and 40% by 2020, and by between 80% and 90% by 2050. My view is that it’s quite reasonable to allow a transitional period in which we make limited use of natural gas, and if the aim is to ease the economic impact of the transition…because whether you embrace nuclear energy or renewable energy, what’s clear is that electricity is going to be significantly more expensive. We’re not getting an artificially low price because we’re not paying the cost of the carbon dioxide and the impacts it’s imposing on future generations. So I accept that easing the transition means making limited use of natural gas in the short-term where the short-term is the next 50 years.

Audience member 3: You mentioned that the advanced liquid metal reactors like the IFR are not really a good idea because we’re putting into circulation huge amounts of plutonium, but you can’t really just say plutonium without saying which plutonium, what nucleides of plutonium. What I have heard discussed from people like Barry Brook with regards to the initial start up of IFRs, we’re going to take light water reactor used fuel and just strip off all the transuranics, so we’re getting plutonium as well as reactor grade plutonium and americium, neptunium and the like. And that material is perfectly useable as the start-up for the IFR, and there’s no way you can weaponise that material. Would you comment on that please?

Ian Lowe: That’s true, but if you look at the study by the Oxford research group of how you could scale up nuclear so that it made a significant contribution to the global target of reducing carbon, that would involve reprocessing enormous amounts of nuclear fuel, and their calculation was that if you were reprocessing nuclear fuel on a scale that would allow you to have breeder reactors powering the ten terawatt future that Barry talks about, you would be reprocessing about every three weeks as much plutonium as the entire current weapons stockpile. Of course not all of that is in a form where you can easily make it into a bomb…

Barry Brook: None of it is, is it? None of it is in a form where you can make it into a bomb.

Ian Lowe: None of it is plutonium-239?

Barry Brook: It’s not separated from uranium or from americium or curium or from plutonium-240 or all of the other contaminants that would make it a weasponisable material. So you would have to have a completely different process for any of that plutonium to be useable as a weapon. You’d have to run these reactors on a short cycle, you’d have to have an aqueous form of reprocessing where you very carefully separated out those plutonium-239 isotopes and that action would certainly ring the proliferation alarm bells because you would have to invent a whole new infrastructure to try and reprocess that. So sure, there’s a lot of plutonium that would exist in the planet but it wouldn’t be in circulation but it would be bound up with all of this material that made it totally unsuitable for nuclear weapons.

Ian Lowe: But the current reprocessing plants…

Barry Brook: But we’re not talking about PUREX and aqueous plants, we’re talking a pyro-processing, a dry reprocessing method that cannot separate different isotopes of plutonium or indeed separate plutonium effectively from contaminants such as curium or americium and indeed uranium.

Barry Brook: The issue is what do other countries do if one country decides that it’s going to adopt a reprocessing technique that would allow them to produce weapons materials, and I would say the lesson of India, Pakistan, Israel, North Korea is that other countries say ‘you naughty people, you’ve built nuclear weapons’ and that’s it. Because the fact that a country has nuclear weapons means that physical sanctions become impossible. In a sense Saddam Hussein was rolled in three weeks because he did not have weapons of mass destruction. No-one dares attack North Korea because it probably does have weapons of mass destruction. My concern is that even if other nations knew that Australia was separating plutonium with a view to making a bomb, what would be the sanctions? What effective sanctions can there be against that spread of nuclear weapons?

Audience member 4: I think the most effective sanction is the mutually assured destruction which I was very familiar with in my youth. In fact I would like to meet any sort of dictator who would put himself in a position where he would be wiped off the face of the Earth instead of sending hundreds of thousands of his subjects to be mown down in conventional war. The reason that we have not seen the use of a nuclear bomb since WWII is that it works, it acts as a deterrent. You can’t tell me that Saddam Hussein or Kim Jong-il is any less scared of being wiped off the face of the Earth. Mutually assured destruction works. Can you tell me there’s been another bomb set off since WWII?

Ian Lowe: One of my cynical colleagues said that since everyone now knows that no sane person can use nuclear weapons because of the inevitable consequences, the nuclear deterrent is only credible if your leader is palpably insane. He called this the Reagan effect…

Audience member 4: Reagan didn’t push the button.

Ian Lowe: He didn’t, he did joke about the bombing starts in 45 minutes…

Audience member 4: I don’t think you’d find someone who is really insane would end up in a position of power.

Ian Lowe: No, I was making a joke. But the point is that mutual assured destruction is a deterrent against the leaders of nation states, it’s not a deterrent against Osama Bin Laden…

Audience member 4: And how is he going to get hold of the material? Sure, it might be a dirty bomb, but that’s available everywhere. How is having more nuclear power going to make it easier for rogue states to get hold of the material to make a conventional weapon?

Audience member 5: It goes missing all the time. That material goes missing all the time and in fact the nuclear power industry, they have material unaccounted for which is factored in to the whole scenario with transport of uranium and using it for nuclear power. They can’t account for it. The safeguard system is tragically inadequate. So I think it’s disingenuous to purport that you can make this safe.

Barry Brook: Sorry, so what material has gone missing?

Audience member 5: There’s bits of plutonium…you only need a tiny amount of plutonium to make…

Barry Brook: But what sort of plutonium are you talking about? Are you talking about weaponisable plutonium, are you talking about..? [unclear comment from audience] So where has it gone missing?

Audience member 5: There are lots of different examples where it has gone missing but…

Barry Brook: I don’t know of any examples where weaponisable plutonium has gone missing. It’s many more times valuable than platinum.

Audience member 6: Also very hard to explode, you’ve got have a lens of explosive that crushes it onto a neutron source and it’s a very difficult thing to do…

Barry Brook: That’s right, the credibility of a terrorist building a bomb…

Audience member 6: …because you just have to fire two subcritical assemblies together.

Barry Brook: Well, even that is a more challenging task than many would believe. I’m not aware of any plutonium that has actually gone missing apart from the hyperbole of anti-nuclear groups claiming that it has. It’s an extremely valuable resource and if it had gone missing it’s not weaopnisable plutonium, it’s plutonium that comes out of reactors which is contaminated with different isotopes of plutonium which means that even if you had all of the facilities available to you that the Manhattan bomb designers had, you still wouldn’t be able to use it to create a nuclear bomb. So what are you going to do with it?

Ian Lowe: Could I refer to somebody who could not conceivably be described as an anti-nuclear zealot, Mohamed ElBaradei, the former head of the International Atomic Energy Agency, and I refer in this book (which I urge you to buy) to the fact that he recently noted that the agency had in the past decade recorded more than 650 attempts to smuggle nuclear materials. We know that people are attempting to smuggle nuclear materials, and I assume they’re not doing it because they want paperweights that glow in the dark. The obvious reason to smuggle nuclear materials is that people are intending to misuse them.

Paul Comrie-Thomson: Ladies and gentlemen, Barry and Ian will still be here for a little while longer signing books, but the formal proceedings have to end now for time reasons. So once again if you could tank Barry Brook and Ian Lowe. Thank you.

Barry Brook and Ian Lowe are co-authors of the book entitled WHY vs WHY: Nuclear Power, the first in a series of titles by a new Australian publisher Pantera Press.

Add to FacebookAdd to NewsvineAdd to DiggAdd to Del.icio.usAdd to StumbleuponAdd to RedditAdd to BlinklistAdd to TwitterAdd to TechnoratiAdd to Furl

By Barry Brook

Barry Brook is an ARC Laureate Fellow and Chair of Environmental Sustainability at the University of Tasmania. He researches global change, ecology and energy.

67 replies on “Counterpoint ABC radio debate – Does being green mean going nuclear?”

Well I had to listen to that in segments so as to give my blood pressure time to go down between them. Prof. Brook, you have the patience of a saint, your opponent’s obvious lack of basic research in this matter is an embarrassment for someone styled as a professor emeritus. The other options explaining his position being less savory.

I have always had a hard time understanding how anyone could spend the time to examine the subject of nuclear technology in any depth, and not come to the same conclusions I have. I have no special knowledge gained from working in the nuclear industry. My education and employment background, while certainly in science and technology, were far removed from the nuclear field, yet within no more than a few months of study, I was able to see that most of the arguments used against nuclear were false, as were those in favor of renewables. I may not have a degree in power engineering, but the fundamental natural laws that govern the conversion and trafficking in energy that I learned as a chemistry undergraduate were more than adequate to draw a firm conclusion.

I have written and said on many occasions that the technology and engineering behind nuclear fission is actually a good deal more simple than most people assume. In fact just about all aspects of the field are accessible, and well within the capabilities of a advanced high school student, or a general science collage student’s grasp. This is also true of most other energy technologies, at least on an empirical bases. How anyone can not look at these fields more than superficially and not come to the same conclusions I have, is hard for me to understand. And indeed much of what I see in the way of objections clearly shows that those making them have not examined these things in any depth at all.

While one cannot expect all members of the general public to bother to study these subjects, as I have, at the very least I would expect it from someone like Ian Lowe, particularly if he was going to publish, and hold forth publicly on the matter. Given the man’s academic status, it defies explanation, except to assume the existence of another agenda.

I will not speculate on what his underlying reasons for rejecting nuclear energy might be – only that I strongly doubt that they are the ones that he is stating.


I listened to the podcast Barry and, speaking as someone who had been a longstanding opponent of nuclear power, I thought you pitched the right points and di them well.

I thought the point about stopping uranium export was especially telling. Australia, as a contributor to GHGs through export of carbon based fuels is something that the enemies of uranium will find hard to deal with. So too were the arguments about U and Th from coal plants.

It’s a pity more wasn’t made of thorium though. Here we can see that opposition to nuclear is a fear of the technology rather than its application. It’s a good one to exploit to pick away at the rationale that the anti-nukes adopt and to wedge them, IMO.

I thought the “dirty bomb” fear could have been more comprehensively addressed as a great many cite this one in their talk about security of waste.


According to a 2005 ABARE report the contained energy in Australia’s uranium exports is about 80% that of coal exports. In CO2 terms exported coal now generates over 600 million tonnes (262 Mt X 2.4) while perhaps uranium could be said to save 500 Mt. It seems like the rest of the world wants thermal plant of some kind. Therein lies the dilemma for religious greens like Lowe; the longer renewable energy fails to displace coal the more emissions are generated.

Within a fortnight I expect BoM to announce Tasmania has had the warmest autumn ever recorded. Extrapolating the recent warming trend even a decade suggests problems for horticulture and forestry. Even if rainfall holds up some key plant species may not get the winter chill and mild summers they need. I think this is a cause for alarm. I will blame religious greens for prolonging the reign of coal.


Well, if you want a really stomach-churning moment, head over here and listen to the latest podcast on the “Radioactive Show”. For some reason, the hosts were happy to phone up Ian Lowe and chat, but never bothered to contact me.

Radioactive Show | 16 May 2010
We talk to Ian Lowe, President of the Australian Conservation Foundation, about a new ‘flip-book’ publication in which he is debating the issue of nuclear power. Ian Lowe is providing the the ‘NO’ argument and is pitted against the oxymoronic ‘pro-nuclear environmentalist’ Barry Brook! Download (28:10 min / 13 MB)

Listen from 14 min 20 sec for real doozy


It is officially documented that miners in this nation are incapable of protecting humans and in fact the biosphere from the hazards they dig up or manufacture.

Officially documented calamities which have occurred in this nation in the 21st century include the poisoning of humans by lead and the mortalities of 9 thousand native birds (Esperance), mercury (Kalgoorlie), cyanide spills (Kalgoorlie and NT), polychlorinated dioxins (Sydney Harbour & beyond), 100,000 (est.) contaminated sites (Australia), Ranger uranium mine (contaminated workers – 400 times in excess of “safe” guidelines), 100,000 litres contaminated solution from tailings, leaking each day (Ranger) , the criminal dumping of exploration waste in the outback (uranium tenement), Oil spill, Timor Sea, Oil spill, Queensland, An est. 8-24 million snakes killed each year by the drillholes at Coober Pedy, the massive exploitation of water from the GAB (Olympic Dam) and much more.

Man remains an ass!

Show us an ISL uranium mine which has not contaminated the aquifers.

Show us an open cut uranium mine that has not contaminated the environment and the public may be interested.

In the event of nuclear energy for this nation, prove to the community that the numbers of reactors, economically viable by 2050, could make a fig of a difference to the state of the environment, because by 2050, I predict it will be every nation for itself.


Sight Impaired, show us a coal mine that does a better job of controlling its waste or protecting its workers. Show us a rare earth mine (for wind turbine generators or solar panel production) that controls its heavy metal waste better.

It takes about 3 million tonne of coal per year to drive a 1 GW coal reactor, compared to about 1 tonne uranium in a closed fuel cycle to drive a nuclear reactor.

If you really care about mining impacts, your best strategy bar none is to transition the energy infrastructure to nuclear power.


sight impaired, equally relevantly, what the F do you think wind turbines and solar power plants are made from? Pixie dust? No, they’re from mined products. Really quite stupendously large amounts of mined products, if we were to ever try and replace our coal with those technologies.

Unless you’ve got a better solution you haven’t mentioned?


Oh, I just emailed 3CR regarding giving you a right of reply, politely goading them to let you speak.

I suspect it’ll go nowhere, they’re closed to new ideas.


“Ian Lowe is providing the the ‘NO’ argument and is pitted against the oxymoronic ‘pro-nuclear environmentalist’ Barry Brook!”

Hmm, that doesn’t sound the least bit like they’re intrinsically biased.


I wonder if building a new coal fired power station is a necessary step to focus the public’s attention
Both the Federal Energy Minister and the Origin Energy CEO say it’s gonna happen. As in Kingnorth UK there will be the usual protesters. However it may establish the notion of needing controlled power output rather than renewables. Later after lots of weird weather and high coal prices due to Asian shortages the public may twig to the alternative. In ten years time perhaps.


Just listened to this debate. What a decent, civilized, well moderated discussion! What a contrast to the appalling Diesendorf/Noonan engagement.

Thought you handled the questions really well, particularly the lost plutonium one, which I don’t recall really coming up in discussion here before.


I learnt a few things. For instance I didn’t know that on a per MWhr basis wind power kills more people than nuclear. Is there any online work that outlines these kill rates for the different sources of electricity.


On the topic of missing plutonium. So far all of it has been classified as “material unaccounted for.” (MUF) All of it from reprocessing operations.

Keeping track of just how much material is present during reprocessing at any one time is tricky, and subject to errors. At each stage of the process the material is weighed and calculations made of the amounts of plutonium it contains. All this has to be done remotely behind shielding because of the radioactivity involved.

At the end of the process the weight of the plutonium recovered ought to balance with the estimates of the amount put in; in reality they seldom do. Small measuring errors can accumulate to produce large discrepancies.

The IAEA has rules covering the permitted levels of MUF, which must not exceed about 3 per cent of the plutonium throughput. No IAEA safeguarded reprocessing facility has had levels much above 0.1% annually. Most of the media excitement comes when for one reason or another, a particular batch has a significant discrepancy. However this does not mean material is lost or has left the plant. It is just the result of occasional measuring error.


It’s worthless trying to get a right of reply from that radio show. They’re full blown nutty no-nukes activists, not journalists.

Here is some information on the rates of fatal accidents, specifically for wind energy.

In regards to PV, this is interesting reading:

Of course, the mortality rate associated with fossil fuels is orders of magnitude higher than that of wind, solar, nuclear etc.


On Debate format.

The following quote is from Stewart Brand’s book, Whole Earth Discipline: An Ecopragmatist Manifesto. This is similar to Barry’s preferred mode of exchange, though there may be some tweaks:

“whichever debater goes first holds forth for fifteen minutes [obviously no hard and fast rule about time limit] and then is interviewed for ten minutes by the second debater, who has to conclude by summarizing the first debater’s argument to the first debater’s satisfaction: ‘You got it.’ Then they reverse roles.” (232)

brand then notes that there is “no good venue for honest debate about environmental issues.”


greg meyerson – The style of debate Brand is describing is referred to as ‘cross-examination’ or cross-ex. It is a very powerful form of debate if both sides really want to find a resolution. And while that is not always possible, this form does get all of the cards on the table.

It’s only real drawbacks are that it does take more time, and anyone who knows their case is weak, will never agree to this format.

Many (many) years ago, CBC had a program where some particular issue of the day was ‘put on trial’ by having two lawyers taking turns questioning supporters from both sides of the issue at hand. I do not recall who the winner was determined, (if one was at all) but I do remember, even at a relatively young age, i found it was riveting TV. It goes without saying that I would love to see nuclear vs, renewables get this treatment.


I just tried again, thanks Scott for the email address:

Hi there,

I was interested that Radioactive interviewed Ian Lowe in relation to a recent book he had out where he and Barry Brook had a debate. But, it’s the obvious question, where’s Barry Brook? Otherwise it’s a completely unbalanced story. I happen to know that he’s very contactable, would be very happy to do a phone interview. He can be contacted via here:


a listener

Wil B


G’Day all. DV82XL you are right about Lowe. I challenged him in a letter two years ago to defend his claims about the dangers, costs, safety etc of nuclear power. He did not reply. You are right to a certain extent Barry. Lowe certainly comes across as more of gentleman than the likes of Deisendorf etc. The problem with all of them including some beauties from Europe [the German Greens especially], the UK [Polly Toynbee] the US, Ralph Nader and of course the great Australian, Helen Caldicott who was going to close down nuclear power in the US is, that despite being highly intelligent, articulate people,they have always had, and will always have a irrational aversion to nuclear power. They have never been, and will never be persuaded by fact or reason. They are quite determined to hang on to out of date Cold War, Proliferation concerns and to continue to make fatuous statements about the usual nuclear suspects[costs,safety,waste etc]. They have chosen to ignore the truth about nuclear power and are happy to perpetuate the myths and fictions of the anti-nuclear brigade to a largely uninformed populace. For this,they deserve condemnation. They have been totally irresponsible in their opposition to nuclear.And they should be told as much. Had they been ignored 30 years ago by saner heads, the planet would by now have probably 35% instead of the current 16% nuclear and the world wouldn’t even be talking about ETS, CPRS etc. At every opportunity, we pro-nukes must expose them to the people for the dishonest sods that they are. And we might have to become a bit terse with them. Next time you speak to Lowe Barry, point out that he is out of date, illogical and hypocritical in his opposition and off with the fairies if he thinks that the renewables and efficiencies which will require decades more time than the earth has to get these alternatives to the appropriate level for greenhouse abatement. As I write this, I’m looking out over Boston Bay and the sea is absolutely dead flat, as indeed it was yesterday and the day before. Three days of NO WIND. That’s why the local wind farm at Cathedral Rocks 20 km south of where I’m sitting, has produced No power over three days. Next time you’re in anti-nuclear company, ask them why so many new countries [20 at last count] are joining the other 33 countries already generating 16% of the world’s electricity. There is a rapid uptake of nuclear going on around the world and it’s happening because energy authorities have said things like “any country serious about global warming will be serious about including nuclear power in their energy mix” 53 countries will have nuclear power within a few years. They’ve decided to go the nuclear way because they want a secure energy supply and without greenhouse emissions. It’s as simple as that. Just keep on telling the people that. Write a letter to your local paper or to your local member, or the PM and Tony Abbott and insist that they seek out the truth about nuclear power and get on with introducing it in Australia. Nuclear is the energy of the future and most countries are saying as much.


Terry Krieg,

I like your post, and want to highlight this sentence:

Had they [the anti-nukes] been ignored 30 years ago by saner heads, the planet would by now have probably 35% instead of the current 16% nuclear and the world wouldn’t even be talking about ETS, CPRS etc.


My email:

For a radio station that prides itself in providing “a voice for those denied access to the mass media” which presents “alternative current affairs, news and views”, I find it highly disingenuous that you decided to call Professor Barry Brook an “oxymoronic ‘pro-nuclear environmentalist”, all while deciding to only interview only one side of the nuclear debate – a view that is neither alternative nor denied media access. In effect, the aforementioned one-sidedness is the exact polar opposite of what 3CR is all about. In the interests of living up to your reputation, how about inviting Barry Brook (one who has an alternative view, and one that you have denied media access to) for a rebuttal peice on 3CR? That would only be fair. And it would be the only way that 3CR can live up to its reputation.


Terry Krieg & DV8,
You are dead right about nuclear power but reason may not win in the short term given that the public has been scared witless by the hysterical media.

Fear not! No matter what fantasy world our “Main Stream Media” creates, reality will eventually prevail. As you point out, besides being absurdly expensive, “Renewables” are not capable of coping with the base load when the wind won’t blow or the sun won’t shine. While “Hydro” is both cheap and renewable there simply is not enough of it to maintain our industrial civilisation even at today’s levels.

Thank you, Denmark, Germany and California for doing such a wonderful job demonstrating the shortcomings of “green” energy! When the lights start to dim, the Germans and Danes can buy electricity from France at reasonable prices but California may have problems if they carry through with their sanctions against Arizona.

The base load will continue to be provided by fossil fuels and nuclear power. Fortunately, Australia, the UK, the USA and the People’s Republic of China have plenty of fossil fuels so they will keep using them while supplies last. Perhaps another 300 years? Reserves keep increasing so my guess may be pessimistic.

Five hundred years from now it is a safe bet that nuclear power will dominate, most likely based on sophisticated fission reactors. Using the Thorium cycle there should be enough fuel to last at least 10,000 years and that should be long enough for mankind to develop inexhaustible energy supplies based on fusion reactors (and real space travel too).

Then there is the possibility that another “Fleishman & Pons” team will find a short cut to fusion power.


I’m more optimistic about fusion of late. The laser based compression of nuclear fuel pellets is not a new idea but they seem to be making some headway. At least according to recent headlines.


Barry – do you do guest posts on other blogs? I’m sure that collectively we could organise several Australian blogs to publish an article by you and host a discussion on the topic. It would seem like a pretty obvious way to broaden your readership and promote your ideas. Do you want us to organise invitations for you?



It’s very hard to see how a laser inertial confinement fusion facility like NIF can be used as a useful energy generator, or a significant step towards one.

It’s designed as a laboratory model of the physics of nuclear weapons, and it’s perfectly good for that. Everything else is basically just political marketing.


gallopingcamel – In East and South Asia, there are currently 112 nuclear-power reactors in operation, and 37 are under construction, according to the WNA. There are firm plans to build a further 84, while many more are proposed. Even Indonesia, and Myanmar, are looking to build their first power reactors, and there will be other Asian countries tripping over themselves to sell them one.

Nuclear is now. The only question is if Western nations are going to follow or wait until these countries overtake us economically to the point where they are in a position to demand that we stop burning fossil fuels because we are damaging their environment.

The West must shake itself loose of the hubris that attends this issue; we are no longer in a position to dictate terms to the rest of the world on nuclear matters. In particular we must stop this hand wringing over making our own fuel-cycle proliferation proof, as this will have no impact at all on how countries like India and China behave, and only adds unnecessary expense.

The only choice now is is get on the train or be left behind. There are no others.


DV82XL. You are absolutely right. Would you please send a letter [email] to that effect to our PM and Leader of the Opposition and all state premiers in Australia. It’s time we started using our world’s biggest uranium supplies and world’s best waste disposal site [there won’t be very much of that anyway] for our own benefit as well as the rest of the world’s. We are well and truly on track to miss the train.


Terry Krieg – Yes I can see it now, the blanched faces, the hushed conference calls between state capitals, all because some unnamed French-Canadian from Quebec has written a letter….


As you point out the race is not over even though the hare is taking a nap. The hare may have built ~130 NPPs and have more than 100 in use today but by the end of the century China alone will have at least five times that number.

Personally I don’t like to see the USA losing its leadership in nuclear power and in other fields as well. However as risk taking goes out of fashion here, other nations will pick up the baton that we have dropped.

Ooops! Sorry about the mixed metaphors but you probably get my drift.

As you say, the USA can no longer dictate nuclear policy to anyone whether in power generation or in weapons development. The genie is out of the bottle and who knows where it will pop up next. Ouch, those pesky metaphors!


Terry Krieg:

Kakakhstan is already enthusiastically adopting the role that you espouse for Australia. Furthermore, it is doing so with US and Russian backing and permitting international (IAEA) control of its sites and international ownership of the stored/reprocessed materials. However, there may still be room for Australia and the precedent being set might even help.


Yeah DV8, a bit much to ask I admit. You could tell Rudd that Terry Krieg sent you in the hope that he [Rudd] would at least respond to your letter. It might just work.
Douglas Wise, fancy Australia being left behind by Kazakhstan. thanks for pointing that out. I think most of the rest of the developed world look on us with bemusement and wonder why we’re still living in the mid last century with our out of date, illogical, hypocritical nuclear attitude. It’s really embarrassing for this Australian.


I’m sure it is staring me in the face but what does NTL stand for?

Jarrah suggests in the comments section of my article that deaths due to Chernobyl may be as high as 1 million. Can anybody confirm or refute his source?


TerjeP – LNT stands for Linear No Threshold is a model of the damage caused by ionizing radiation which presupposes that the response is linear (i.e., directly proportional to the dose) at all dose levels. Thus LNT asserts that there is no threshold of exposure below which the response ceases to be linear.

The LNT Model stands in contrast to theories in which below a certain level, radiation exposure is harmless – in other words that there is threshold for radiation damage such as the threshold model. The radiation hormesis model, also in contrast to the LNT model asserts that radiation is beneficial in very low doses, while still recognizing that it is harmful in large doses.


I am intrigued by william tucker’s reversal of amory lovins’ quip that using nuclear power for much of our electricity needs amounts to “cutting butter with a chainsaw.” Tucker notes: “he [Lovins] didn’t see the futility of cutting steel with a butter knife.”

how do renewables fare if they have to supply the energy for energy intense processes like making hi alloy steel or even desal? has anyone done a focused comparison? or would this be a job for the natural gas, or the hydrogen presumably produced by excess wind power?


In relation to that discussion of how quantitatively dangerous or not dangerous nuclear energy is relative to other energy technologies, does anybody have the figure close at hand for the total accumulated worldwide electrical energy production from nuclear energy?


TerjeP, to ‘believe’ the 1,000,000 deaths from Chernobyl figure, you have to (i) postulate a mechanism whereby deaths from radiation is dramatically INCREASED at low exposure levels, relative to a linear no threshold dose response (i.e. anti-hormesis), and (ii) then explain why people living in regions with naturally high levels of background radiation actually show fewer cancer deaths than those in areas with naturally low background radiation.

As such, that figure can be ridiculed on both logical and empirical grounds. It’s nothing more than black magic and voodoo, and it is utterly disgraceful that some so-called scientists propose this theory as even slightly plausible. It is nothing short of ludicrous.


greg, great quote from Tucker, I shall have to remember that one. Regarding your question:

It is true that if you have natural gas backup you’ve only reduced by 95% the amount of carbon dioxide you’re putting into the air.
what is Ian Lowe’s basis for this comment?

I’m not sure, but I think it comes from some off-the-cuff comments from Diesendorf. And yet, it is demonstrably false… and not just a little.


Let us put Chernobyl in perspective:

Plutonium and Tritium for Soviet nuclear weapons was produced at three closely guarded locations, each of which includes a “closed” city of workers. These cities do not appear on maps, and until recently, travel to and from them was all but prohibited. Even now, foreign visitors have been allowed to see only two of the sites. Each of the sites has an official name, often including a number that indicates a post office address, but each was known by another name or names abroad as well as in the Soviet Union.

The people of the Chelyabinsk Region have suffered no less than three nuclear disasters:

For over six years, the Mayak complex systematically dumped radioactive waste into the Techa River, the only source of water for the 24 villages which lined its banks. The four largest of those villages were never evacuated, and only recently have the authorities revealed to the population why they strung barbed wire along the banks of the river some 35 years ago.

In 1957, the area suffered its next calamity when the cooling system of a radioactive waste containment unit malfunctioned and exploded. About two million curies spread throughout the region, exposing to radiation over a quarter million people. Less than half of one percent of these people were evacuated, and some of those only after years had passed.

The third disaster came ten years later. The Mayak complex had been using Lake Karachay as a dumping basin for its radioactive waste since 1951. In 1967, a drought reduced the water level of the lake, and gale-force winds spread the radioactive dust throughout twenty-five thousand square kilometres, further irradiating half a million people with five million curies.

About 10,000 people lived in the 1,000-square-kilometer area contaminated with more than two curies of strontium 90 per square kilometer. One-fifth of these people eventually showed a reduction of leukocytes in their blood. There are no records of deaths caused by the accident.

Then there is a legacy of contamination due to the ‘peaceful nuclear explosions’ programs the USSR had. There were in fact two programs: “Employment of Nuclear Explosive Technologies in the Interests of National Economy,” also referred to as “Program 6,” and “Peaceful Nuclear Explosions for the National Economy,” also referred to as “Program 7,” together consisting of some 239 nuclear tests.

Among the most cited catastrophes was the Kraton-3 explosion in Vilyuy, Yakutia in 1978, that was supposed to unearth a large amount of diamond-rich ores. Instead the amount of diamonds was insignificant but the plutonium pollution of the water sources was much higher than predicted. The level of plutonium in the drinking water of Vilyuy region twenty years after the explosion is ten thousand times higher than the maximal sanitary norm.

Another catastrophe resulted from the Globus-1 explosion near village Galkino, 40 kilometres from Kineshma city on September 19, 1971. It was a very small underground explosion of 2.5 kilotons that was a part of the seismological program for oil and gas exploration. Unexpectedly a large amount of radioactive gases went out through the cracks in the ground, creating a significant highly radioactive spot of two kilometres in diameter in the relatively densely populated area of European Russia. To make things worse, a small tributary of the Volga, the Shacha, changed its location and threatened to flood the very hole of the explosion. This could have led to nuclear pollution of the entire Volga region. They wound up digging a 12 km channel to shift the Shacha river away from the place of the explosion.

Compared to the general indifference in the USSR towards releasing radioactive material to the environment, Chernoby was nothing special and the antinuclear hand-wringing about it is overdone.


I’ve responded to Barry on the thread relating to my article. The thing that surprises however is that even if you accept extreme numbers like 1 million the safety record for the nuclear industry is still one to two orders of magnitude safer than coal. You can refute the 1 million figure and then go on to say that even if you did accept it the result is still an incredibly good safety record. Chernobyl would have to have killed over 150 million people (equivalent to half the USA) before the figures for nuclear safety start to look as bad as the global average for coal. That is quite astonishing.


DV: quick comment. in your discussion of soviets (very interesting), you mention a radiation release of 2 million curies, but recall your and G.R.L’s points about not all curies being alike and recall the discussion around permissible tritium leaks in CA of 2.5 million curies annually, etc.

In other words, without more qualifications, the ordinary reader might wonder why the soviet release of curies is so bad, but the canadian not. (in case you’re wondering, I’m engaging in no passive aggressive political commentary here; strictly about the energy units).


Folks: here’s a new argument against nukes that I’ve never heard. It’s from an engineer’s blog. This engineer is on one of my enviro lists:

But that doesn’t mean he [stewart brand] knows everything. In an interview with Brand in the NewScientist, we learn that he is touting nuclear power as a solution:

A new generation won’t have this prejudice about nuclear power, says Brand.

I don’t buy it, because there are bound to be more nuclear power plant mishaps, for a number of reasons. Many were built by a lot of stoners, back before drug testing was mandatory, for one thing.

Another 3 Mile Island, Chernobyl, or equivalent, will indeed help update new generations about the folly of heading in that direction. Then where will we be? Hoping we have alternatives.

DV et al: This guy is serious. what would a serious response look like?


Another 3 Mile Island, Chernobyl, or equivalent, will indeed help update new generations about the folly of heading in that direction. Then where will we be? Hoping we have alternatives.

DV et al: This guy is serious. what would a serious response look like?

“3 Mile Island, Chernobyl, or equivalent” encodes a big black lie: TMI and Chernobyl were equivalent.

Chernobyl did not derail the world’s conversion to nuclear power because the world, outside the former Soviet Union, had been taught the lessons of Chernobyl by Dr. Edward Teller and his Reactor Safeguard Committee before the end of 1955. Look them up.

Despite being, in comparison to Chernobyl, as to lightning is the lightning bug, TMI had a much bigger impact — because governments everywhere were looking for an excuse. Nuclear power was cutting into their fossil fuel revenues. Chernobyl-scale accidents are frequent with fossil fuels. If, rather than subsidizing government, they were subsidized by it, the regions affected by these disasters might similarly have declared around them large exclusion zones.

But cutting into the fossil fuel revenues of everyone who gets them is a necessary attribute of anything that solves the various fossil fuel problems.

(How fire can be domesticated)


greg meyerson – The point I was trying to make, is that there were other nuclear accidents in the ex-USSR at least as bad as Chernobyl, the difference being that in the absence of general awareness of them by the rest of the world, exaggerated projections of latent casualties were never made and circulated the way they have been with Chernobyl. I am not trying to trivialize any of these events, it is just that if the same calculations of death were applied to these other ones as well, then by rights, most of Eurasia should be devoid of living humans by now.

As for hyperbole like “Many were built by a lot of stoners, back before drug testing was mandatory, for one thing.” I doubt that this will be taken as serious by anyone, except the most obstinate antinuke.

However I think it is instructive to look at the current posture of the director of the CNSC here in Canada. He has taken it upon himself to go after any reports or stories in the media that suggest that Canada’s nuclear industry is anything but safe, a list of which can be found here:

I was so impressed that I wrote Michael Binder to say I was pleasantly surprised with his insinuative, and he wrote back saying in part:

As you’ve noted, we have been making an effort to promote scientific, fact-based debate on nuclear in the public. This has included making improvements to our Web site, requiring proactive disclosure of events, as well as intervening when misleading or inaccurate statements are made in public forums. Too often, the nuclear debate has been ruled by inaccuracies and unnecessarily alarmist statements having no basis in fact.

The CNSC takes its role very seriously, and our sole focus over the last 64 years of nuclear regulation has been to ensure the continued safety of all nuclear activities in Canada. That is why we feel it’s important to provide facts when statements are made to suggest that we have not met that objective.

He went on to say that the French regulator too, was also following his example in taking a less passive role in facing inaccurate and nonsensical press in their jurisdiction.

Now I still think that the industry is over regulated, but if it must be, at the very least people should know that there is someone keeping a good eye on things, and that Chernobyls or Three-Mile Islands aren’t going to happen on their watch.


G.R.L: as for the equation of TMI and Chernobyl, I don’t think he was lying.

I don’t think he knew what he was talking about. To be fair to him, I think his view is that due to inevitable human error, there will be another TMI and given the political climate in U.S., that will lead to shutdown, etc.

I don’t agree of course at all. I will forward the comments about canada, which may be especially useful.



Well done for your letter to the Director of CNSC. Regarding this extract from his reply to your letter:

As you’ve noted, we have been making an effort to promote scientific, fact-based debate on nuclear in the public. This has included making improvements to our Web site, requiring proactive disclosure of events, as well as intervening when misleading or inaccurate statements are made in public forums. Too often, the nuclear debate has been ruled by inaccuracies and unnecessarily alarmist statements having no basis in fact.

We need an organisation who will do the equivalent for renewable energy. We need a body like the Auditor General to regulate truth in Renewable Energy claims.

The Australian Department of Environment and Heritage, the Department of Climate Change, Environment Victoria are continually publishing exaggerations, false information and misleading the public about renewwable energy. Environment Victoria, NSW and ACT governments do also. I expect the other state governments are no better. For example, several of these environment departments are still advising that 1 MWh of wind energy saves 1 tonne of CO2 emissions. That is a massive exaggeration as most who have followed BNC threads for a while would know.


Peter Lang – I am under no illusions here with the CNSC. I still think they are over regulating the industry, and I do believe that some of their policies have crippled the development of nuclear technologies in Canada.

The only reason I am sure that is motivating this PR thrust of correcting poor press, is that stories of nuclear hazards reflect badly on the organization, and not out of some general support for nuclear energy per se. However it is better than nothing by far, and this I felt should be recognised.

The federal and provincial governments in Canada too have agencies that go out of their way to heap praise and outright falsehoods about renewable energy. In the end there is little difference between what you describe, and our experience here.


Here’s the truth about Chernobyl. It comes from the report to the General Assembly of the UN. It was prepared by the United NationsScientific Committee on the Effects of Atomic Radiation [UNSCEAR]. It was handed down in 2000, 14 years after the accident and looking at those who prepared the report etc, there is not one Russian amongst them.
From section C, The radiological consequences of the Chernobyl accident ,we read, Para 18. The accident at Chernobyl nuclear power plant was the most serious accident involving radiation exposure. It caused the deaths within a few days or weeks of 30 workers and radiation injuries to over a hundred others. It also brought about the immediate evacuation , in 1986 of about 116,000 people surrounding the reactor and the permanent relocation , after 1986, of about 220,000people from Belarus, the Russian Federation and Ukraine. It caused serious social and psychological disruption in the lives of those affected and vast economic losses over the entire region. Large areas of the three countries were contaminated and deposition of released radionuclides was measurable in all countries of the northern hemisphere. Para 19. There have been about 1,800 cases of thyroid cancer in children who were exposed at the time of the accident and if the current trend continues, there may be more cases in the next decades. Apart from this increase, there is no evidence of a major health impact attributable to radiation exposure14 years after the accident. There is no scientific evidence of increase in overall cancer incidence or mortality or non-malignant disorders that could be related to radiation exposure. The risk of leukemia, one of the main concerns owing to its short latency time, does not appear elevated , not even among the recovery operation workers. Although the most highly exposed individuals are at an increased risk of radiation-associated effects, the great majority of the population are not likely to experience serious health consequences as a result of radiation from the Chernobyl accident.

That accident will never be repeated anywhere because Chernobyl- type reactors [no containment structure] are no longer built. All/most modern reactors close down automatically when something goes wrong.

So Terpje, probably less than 50 people died from Chernobyl. And apparently, the ten kids who died and the 1800 affected with thyroid cancer could have been unaffected by the radiation exposure had they been given, immediately, a dose of potassium iodide instead of a day too late. Of other interest Terpje under the heading of Exposure of individuals, para 97.
Average doses to those persons most affected by the accident,were about 100 mSv for 240,000 recovery operation workers, 30mSv for 116,000 evacuated persons and 10mSv during the first decade after the accident to those who continued to live in contaminated areas. Maximum values of the dose may be an order of magnitude higher. Outside Belarus, the Russian Federation and Ukraine, other European countries were affected by the accident. Doses there were at most 1mSv in the first year after the accident with progressively decreasing doses in subsequent years. The dose over a lifetime was estimated to be 2-5 times the first-year dose. These doses are comparable to an annual dose from natural background radiation and are, therefore, of little radiological significance. I hope that’s all helpful Terpjes.


Leave a Reply (Markdown is enabled)

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s