Sustaining the Wind Part 1 – Is So Called “Renewable Energy” the Same as “Sustainable Energy?”

What follows on this blog over the next few weeks will be a series of five important essays on sustainable energy, by David Jones (who also blogs as NNadir on Daily Kos, bio here). A previous article on BNC by David, on world energy demand and uranium supply, can be read here.

Here is Part I.

——————
A lanthanide processing facility in China.  From Lim, Nature 520, 426–427 (23 April 2015)[1] 

A group calling itself “The FS-UNEP Collaborating Centre for Climate and Sustainable Energy Finance,” working out of the Frankfurt School, in collaboration with the United Nations Environment Program and the Bloomberg New Energy Finance Group has published study called “Global Trends in Renewable Energy Investment,[2] according to which, in the period between 2004 and 2014, the world expenditure on so called “renewable energy” amounted to 1.801 trillion dollars (US).  Of this, 711 billion dollars was applied to developing wind energy, an amount exceeded only by the investment in solar energy, which was 875.1 billion dollars in that same period.

The total “investment” in so called “renewable energy” in the last ten years is greater than the annual GDP (2013) of 179 of 192 nations as recorded by the World Bank[3], only 75 billion dollars smaller than the GDP of India, a nation estimated to contain a population of 1.396 billion human beings as of 2015, roughly 20% of the human race.[4]  For the amount of money spent on so called “renewable energy” in the last decade we could have written a check for about $1,200 dollars to every man, woman and child in India, thus almost doubling the per capita income[5] of that country.  It is roughly comparable to the 2013 GDP of Canada, a few hundred billion dollars larger than the annual 2013 GDP of Australia.

Here is a graphic from the text[6] of the FS-UNEP report showing the trends:

We shall look in this series at what we have to show for this “investment,” and then discuss what is and is not “sustainable energy.”  For the record, though we need not agree, what the Frankfurt School defines as “Sustainable Energy,” is pretty much what one expects these days.   The definition includes solar, wind, biofuels, small hydro, geothermal and marine energy.

The Frankfurt School does not define nuclear energy or “large hydro” as “sustainable energy.”

I agree, by the way, with the latter omission, since, on our path to “sustainable energy” as we have designed that path, a path more or less officially endorsed by the powers that be, we have basically killed or nearly killed every major river system on the planet, and are well on our way to destroying the major mountain glacier systems on which many of these already dying major rivers depend.

Continue reading

Solar Impulse; and other comedies

Guest Post by Geoff Russell. Geoff recently released the popular book “Greenjacked! The derailing of environmental action on climate change“.


Many nuclear supporters tend to shy away from overt criticism of renewable technologies because they are confident that in any objective analysis, unencumbered by radio-phobia, nuclear will dominate any effective response to climate change; should the world choose to give a damn. After all there is no shortage of very careful objective treatments that support such a view. But every so often the solar industry, in particular, shoots itself in the foot with a spectacular demonstration of just how bad this technology is and it behooves us all to call a spade a spade and a lemon a lemon.

I’m talking about the Solar Impulse circumnavigation project.

The Solar Impulse is a solar powered aircraft consisting of more than 17,000 solar cells and 633 kilograms of lithium batteries packed into a plane with a wingspan longer than a Boeing 747. Not to mention a cast including 80 engineers, 100 advisers, a 12 year construction time, sponsorship from 80 companies including Google, a real-time website, T-shirts and of course, the obligatory baseball caps. But my personal favourite, because the project hails from Switzerland, has to be the Victorinox commemorative pen knives which will get confiscated should you try to take them on-board a real plane.

How will Solar Impulse compare with Around the World in 80 days? That was a pretty good yarn, written by Jules Verne in 1873. But Verne’s story is fictional. Phileas Fogg didn’t exist and never really attempted to circumnavigate the world in 80 days to win a rather large bet. While it never happened, it did, apparently, create intense publicity at the time because people thought it was really happening. Which neatly mirrors, or perhaps I should say “heliostats”, the renewable energy “revolution”.

Some 140 years after Verne’s book, the Solar Impulse is definitely non-fiction. You can watch it in real time and buy stuff. The initial leg of the journey was on March the 9th and, as I write (May 31), they’re about to take off across the Pacific. Here’s a table of the legs completed so far and the other 6 listed on the website:

By my reckoning they’ll be about 5000 km short of a circumference, but we’ll let that slide. My real interest is how they managed to sell this as an achievement. In 2008 Mark Beaumont cycled around the planet in 195 days pedalling 29,000 kilometers … presumably with some shipping. That’s seriously tough. But it’s no feat of technology and doesn’t demonstrate a superior mode of locomotion or foreshadow a global shift to pedal power.

Does the Solar Impulse demonstrate a superior mode of transport? Does it herald a future of solar planes? Don’t be daft. It’s slow, expensive, risky, fragile, dangerous and the total payload delivered by all those panels and batteries and dollars is just a single person; the pilot. If there were ever a Solar Olympics, the motto would be something like slower, lower, and weaker.

Continue reading

Is Renewable Energy looking like a ‘new religion’?

Guest Post by Martin Nicholson. Martin studied mathematics, engineering and electrical sciences at Cambridge University in the UK and graduated with a Masters degree in 1974. He published a peer-reviewed book on low-carbon energy systems in 2012The Power Makers’ Challenge: and the need for Fission Energy


Firstly, what does renewable energy (RE) actually mean? Wikipedia says renewable energy refers to the provision of energy via renewable resources which are naturally replenished as fast as being used. RE resources include sunlight, wind, biomass, rain, tides, waves and geothermal heat.

In “The myth of renewable energy” (Dawn Stover, published in the Bulletin of the Atomic Scientists), Stover believes that “renewable energy” is a meaningless term with no established standards.

RE certainly needs to deliver energy that we can readily use – more than just the RE resources (sunlight, wind, etc.). These RE resources have to be converted into usable energy.  We need wind turbines, solar panels, farming equipment and generators for biomass, and water catchment and generators for hydro sources. Alas wind turbines and solar panels do not grow on trees.

Renewable energy converters require the use of steel, copper, concrete and rare earth elements plus all the land on which to build these converters. Wind farms and large scale solar plants require transmission lines to connect to the electricity grid. The materials used to make the energy converters and transmission lines are not naturally replenished so Stover is probably correct when she says “renewable energy” is a meaningless term. But let’s stick with the term for now because it is in the common vernacular.

But is RE looking like a ‘new religion’?

Continue reading

Tunnel Vision at the Climate Council

GR_April2015_CCCGuest Post by Geoff Russell. Geoff recently released the popular book “Greenjacked! The derailing of environmental action on climate change“.


The Climate Council has a new report out. The Global Renewable Energy Boom: How Australia is missing out (GREB) is authored by Andrew Stock, Tim Flannery and Petra Stock. The lead author is listed on the Climate Council website as a “Non Executive Director of several ASX listed and unlisted companies in the energy sector, ranging from traditional energy suppliers to emerging energy technology companies.” He’s also a chemical engineer.

Page 6 of the report begins by claiming “Globally, renewable energy’s contribution to global capacity and generation has climbed steadily upwards (Table 1)”.

Here’s line 4 from Table 1 except that I’ve added a column in red for 1973 using data from the IEA:

The percentage isn’t so clearly “climbing steadily upwards” now is it?

This table is one of a number carefully chosen or designed to enhance the images of wind and solar power and to misleadingly exaggerate their ability to prevent further destabilisation of the climate.

Misusing words

Page 8 follows with a claim in a large red font: “Global wind and solar capacity is growing exponentially”. This is accompanied by a graph which I’ve repeated here; but with a few annotations … in black. I’ll discuss them later.

Who think the graph supports the claim? It doesn’t. Exponential growth, by definition is growth with a regular doubling time, not regular increments … big difference! Growing exponentially is pretty easy for something trivially small, but it soon becomes hard and the graph shows clearly that both wind and solar are now only growing linearly; after about 2010 for solar PV and 2008 for wind.

The lead author is an engineer, so why call something exponential growth when it isn’t?

As the wind and solar contributions to an electricity grid grow, engineers expect stability problems to which there are currently no answers. AEMO’s 2013 report into 100% renewable electricty in Australia recommended underpinning wind and solar with either a biomass or geothermal baseload system to reduce the volatility; the sudden swings in supply. Germany obviously understands this and is now just burning half her forestry output annually. That’s about 30 million tonnes. This provides more electricity than either wind or solar.

Germany certainly had exponential growth in both wind and solar for some years, but that’s long gone. It took just one year to double the PV output for 2005; but the output from 2011 still hadn’t been doubled by the end of 2014. This slow down is despite solar providing just 6 percent of electricity. The wind power growth slowdown is even more advanced; it took eight years to double the 2004 wind output. Closer to home, South Australia has a higher renewable penetration than Germany, but no biomass baseload component, hence the stability risks which I suspect are behind the back-flip by long time nuclear opponent Jay Weatherill with the establishment of a Royal Commission into (almost) all things nuclear.

Understanding renewable growth

But am I being too cynical? The wind and solar growth lines above still look impressively steep. How can that be when Table 1, in contrast, shows a negligible percentage growth between 1973 and the present?

Continue reading

A path to energy nirvana, or just a circuitous detour?

Guest Post by Geoff Russell. Geoff recently released the popular book “Greenjacked! The derailing of environmental action on climate change“.


My previous BNC post started with a story about satnavs, those great little replacements for a dog-eared street directory. Everybody understands the value of planning a route. Everybody understands that just because a road is heading in the general direction of your destination, it may not be good choice; let alone the best choice.

It might be a dead end or take you on a long circuitous route to or past your destination. Everybody knows this but when it comes to climate change, it’s as if basic smarts take a holiday and anything that can demonstrate a CO2 savings (i.e., heads in the general direction of a solution) produces cheering and cries of victory. The article went on to show that we’ve wasted over a decade with biofuels because they demonstrably cannot decarbonise our transportation system. Not ever. It was an easy argument; a slam dunk, a lay down misere.

But what about renewable energy? Specifically wind and solar? Are these dead end technologies? It certainly isn’t a slam dunk, but lets examine what’s been happening in South Australia for the past decade.

On Sunday the 8th of February, South Australian Premier Jay Weatherill called for a Royal Commission into all things nuclear after a long political history of being anti-nuclear and after being heavily involved in the past decade of wind and solar roll outs in South Australia.

This launched a small flurry of opposition with Greens Senator Mark Parnell rejecting the call with claims about any involvement in the nuclear industry by SA leading to dirty bombs; SA Conservation Council CEO Craig Wilkins invoked a threat to our clean food image. Following an op-ed by me in the Adelaide Advertiser, Wilkins followed with a letter claiming that SA couldn’t possibly have a nuclear reactor within 10 years, and went on to say that (Advertiser Letters 18th Feb):

credible commentators are suggesting that SA could be 100 percent renewable in 10 years

Why have nuclear inquiry if success is imminent?

What on earth is going on? If SA could have 100 percent of its electricity being generated by renewables in 10 years, I’d certainly be cheering and dancing in the street. And what’s with Weatherill? Doesn’t he have any “credible commentators” on his staff? Or is he getting advice from real engineers instead of credible commentators.

Let’s look at the numbers.

First a couple of interesting graphs from AEMO’s 2014 South Australian Electricity Report.

The graph shows exports and imports of electricity into SA. After a steep decline in 2006, we see a gradual rise in imports of electricity starting in 2007. Why?

Continue reading